
A new modeling interface for the pen-input displays

Dae Hyun Kim a,*, Myoung-Jun Kim b

a Institute for Graphic Interfaces, 11-1, Daehyun-dong, Seodaemun-gu, Seoul 120-750, South Korea
b Division of Digital Media, Ewha Womens University, 11-1, Daehyun-dong, Seodaemun-gu, Seoul 120–750, South Korea

Received 27 January 2005; received in revised form 12 October 2005; accepted 16 October 2005

Abstract

Sketch interactions based on interpreting multiple pen markings into a 3D shape is easy to design but not to use. First of all, it is difficult for the

user to memorize a complete set of pen markings for a certain 3D shape. Secondly, the system will be waiting for the user to complete the sequence

of the pen markings, often causing a certain mode error. To address these problems, we present a novel, interaction framework, suitable for

interpretations based on single-stroke marking on pen-input display; within this framework 3D shape modeling operations are designed to create

appropriate communication protocols.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Pen-input displays; Direct manipulation; Sketch
1. Introduction

Most of the 3D modeling systems of WIMP1 style do not

match many important benefits of traditional tools such as

pencil on paper to communicate design ideas at an early

stage [8]. One of the main advantages of pencil-on-paper

interface is that it allows ambiguous sketching, which is

quite opposite to the existing sketch-based approaches having

uniform binding similar to UNIX command line interpreter

(i.e. one pen marking results in one command) and does not

distract the focus of the attention from drawing task (e.g. for

selecting menu buttons). Pen-input display implements most

features of the pencil-on-paper paradigm although the pen-

input display still have limited resolution and the display is

not as handily manipulated as paper. Meanwhile, it is still

questionable freehand drawings can be quickly and directly

led to a feasible 3D model for engineering purposes. For this,

many sketch-based approaches [2,4,9,12,15,19,25,33] have

been suggested; user inputs pen markings and the system

interprets them as a geometric primitive or as a modeling

operation. However, providing interpretation to the pen
0010-4485//$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2005.10.007

* Corresponding author. Fax: C82 2 3277 3893.

E-mail address: daek@acm.org (D.H. Kim).
1 Windows, Icons, Menus, and Point-and-click.
markings, called informal interface [19,20], has posed the

following problems:

† Uniform binding: Sketch-based systems interpret each pen

marking and convert it into a primitive component (or a

command). However, not all the pen markings carry a

definite user intention, since they often come out of a

vague idea.

† Geometric ambiguity: Geometries contained in a 2D pen

marking may be insufficient to be used to infer 3D

geometries, requiring further user interventions.

† Memorability: Usually a sequence of pen markings are

required to constitute an interpretation into a 3D shape

(e.g. a box, a cone, etc.). Therefore, it becomes even

harder for user to remember the constituents of the pen

sequence.

The problems listed above can now be rephrased:

‘inappropriate communication protocols between the user and

the system’. To handle these problems, research needs to span

topics from user interface design to 3D modeling. However, the

earlier 3D sketch systems seem to put aside the issues of user

interactions, while immensely emphasizing the importance of

3D modeling functionalities.

Contributions: We solve the problems by (1) reducing the

number of pen markings that should be recognized for 3D

modeling operations (mostly arrow-shaped pen markings), (2)

further simplifying the multiple-stroke based pen markings of

the other approaches [2,12,25,33] into single-strokes,
Computer-Aided Design 38 (2006) 210–223
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad


D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 211
(3) however, diversifying the number of shapes that can be

made from the recognized pen markings through an interaction

framework, but not by adding more recognizable pen markings

burdening the users in remembering them, which, meanwhile,

was often the case for other sketch-based 3D modeling

approaches. Our design of the sketch-based 3D modeling

system is based on the following key ideas:

† Interaction framework: We generalize an interaction

framework of pen-based modeling system to both 2D and

3D using immediate- and selective-manipulation. All the

input pen markings fall into one of the two techniques so

that a certain feedback can be always given to the user

(Section 4).

† 3D shape modeling: We provide a novel 3D modeling

environment that requires only a few single-stroke pen

markings supporting the following diverse CAD operations:

– A consistent style of model generation based on the

generative modeling paradigm [29] such as extrusion,

sweeping (translation, rotation, freeform), lofting, filling.

– Construction tools: positioning the working axis and

working plane and model transformations such as axis-

aligned translation, rotation, and scaling.

† Sketching gesture: We devise most of recognizable pen

markings for the generative modeling to have an arrow

shape in common. Since this gesture is used in every corner

of sketching practices to represent a certain behavior or

relation between entities, the user can remember and try

them out more easily and instantly.

The problem of uniform binding has not been completely

resolved but relieved by introducing the selective-manipulation

technique. Geometric ambiguity has been overcome by

embedding the interaction framework into the modeling

pipeline; A certain direct manipulator follows after user pen

marking as a feedback with which user can refine her/his

intention. Memorability issue has been improved by adopting

the generative modeling paradigm and introducing a sketching

gesture: most modeling operations are invoked from the

‘arrow’ marking that resembles the modeling behavior of the

generative modeling.

Paper organization: The rest of this paper is organized as

follows. We survey previous work on sketch-based modeling

in Section 2, and give an overview of our system in Section 3.

In Section 4, we describe our interaction framework for pen-

based modeling generalized for both 2D and 3D modeling.

Also, we build the 3D modeling environment consisting of

various generative modeling commands based on the inter-

action framework. In Section 5, we discuss the implementation

issues and present the user testing results of the modeling

system. We conclude this paper and present future work in

Section 6.
2. Previous work

We give a brief survey of interaction and modeling

techniques used in other sketch systems, and discuss the pros
and cons of using the techniques provided by these systems.

For more extensive survey of the field, we refer the readers to

[21,16]; for a comparison between many sketch-based systems

in a wider technological view, see [21]. In Section 2.1, we

discuss interaction techniques developed mainly for 2D planar

drawings and other recognition techniques such as voice

recognition, although they have not been considered for 3D

sketching systems. These techniques serve on the issue how to

properly feedback the user input and to let the user know what

has been done by the system for the input.

Subsequently, we discuss the other sketch-based modeling

systems for 3D shapes. Through this section, we find out what

could have been improved to solve the problems of the

informal interface, listed in Section 1.

2.1. Interaction techniques

Rubine suggested the two-phase interaction and eager

recognition, in which a gesture recognition is immediately

followed by a direct manipulator [27,28]. With the two-phase

interaction, the user is forced to signal the end of the gesture

that makes input behavior awkward. Moreover, physically the

same action (e.g. dragging) is used for conceptually two

different tasks (e.g. drawing and manipulation). An

example can explain the eager recognition: the user performs

a create-line marking by drawing a line, followed by a stopping

motion for one-quarter second while continuing to press the

mouse button. The system recognizes the gesture and creates a

straight-line; remarkably, one endpoint of which is placed at

the start of the gesture and the other at the current mouse

position. The user may drag around the latter endpoint (rubber

banding), while still pressing the mouse button.

A good reason behind this input constraint is to keep the

physical tension of pressing the mouse button to the end of each

primitive task, because such periods of tension are

accompanied by heightened state of attentiveness and

improved performance [3,28]. However, the two-phase

interaction imparts a feeling to the user that only a special

parameter is important. The eager recognition removes the

awkward stopping motion from the two-phase interaction; the

gesture is recognized as soon as enough of it has been drawn.

However, this sharply reduces the number of recognizable

gestures (e.g. line and rectangle cannot coexist within one

gesture set; while drawing a rectangle, a line will be already

recognized), and thus, the range of applications. In our

approach, meanwhile, these problems caused by this awkward

input pattern are solved by adopting the hovering action which

can be found only in pen-input displays recently.

Pegasus in [13] is a line-drawing system, where the user

sketches a line and the system decides on the position of two

endpoints. A constraint solver produces candidates that satisfy

the inferred constraints. All preferable candidates are presented

to be chosen. Its drawback is that the candidate space is often

too thickly populated, distracting the user from drawing.

Suggestive interface [14] extends Pegasus into 3D space; it

displays the possible 3D objects that can be generated from the

current marking (again straight line) under the canvas.



Fig. 1. Three different ways to define a box object from pen markings. (a) Bimber et al. and Zeleznik et al. [2,33]. (b) Hwang et al. and Qin et al. [12,25]. (c) Our

approach.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223212
This makes the user change the focus of attention into different

places distracting the user. See [23] for the survey on what is

called “mediation” techniques in many areas. In our approach,

we introduce selective manipulation in which only two

candidates are given for a few drawing primitives such as

poly-line, circular arc, spline, or mixture of them in one stroke:

inference results and further interactive drawing for the

drawing primitive inferred.
2.2. Sketch-based 3D shape modeling

To represent diverse 3D shapes, current sketch-based

modeling systems have implemented many gestures [2,33],

which can be recognized and directly converted to 3D shapes.

Research suggests, however, that limiting the number of

gestures is needed considering the ability of the user to

memorize them; for example, the number of the frequently

used gestures for the Newton PDA system is reported to be no

more than four [22]. Although very special effort can be

exerted to design very memorable pen markings, there still

exists a certain cognitive limit.

In [2,33] description of each target shape consists of a

sequence of pen markings: for example, on the left of Fig. 1, a

box is created from three strokes which should form arrow

head junction; they do not need to have any ordering (e.g. left

to right) but between them no other pen markings should come

in. Between these pen markings, no feedback is given but only

after recognizing them as a box. Feedback is an important

criterion for a good interactive system [6]. Often, the user does

not get any hint of what her input is bringing about: “Has the

pen marking been correctly recognized?” or “Can I input the

next pen marking?” This tends to cause unintended mode
Fig. 2. (a) In Eggli’s approach, two nearly symmetric curves (only open curves) are

one open curve (only open) just produces a rotational sweep. (c) In Qin’s approac

approach.
errors, when the user forgets what was input previously. For a

detailed discussion on mode errors in interactive systems, see

[26]. On the other hand, such lines are limited to represent only

3D objects, users are strongly prohibited from performing

sketching (i.e. scratching, doodling, and so on): It is the

problem of uniform binding.

Hwang et al. [12] suggested a 3D sketch system based on

feature detection, i.e. box and cylinder features. For example,

suppose that a new input line constitutes an arrow-head

junction with the two existing lines that are already recognized

as a rectangle (see on the right of Fig. 1) and they are

perpendicular in a fixed isometric projection. Then, the system

recognizes them as a box feature. Notice that unlike Zeleznik’s

approach no constraint such that the three lines should be

drawn successively is imposed. However, it restricts the user’s

input behavior in that he/she cannot draw the arrow-head

junction which may be flat.

Qin et al. [25] made the following improvements to

Hwang’s approach: (1) one pen marking can include several

segments, each of which can be a primitive, (2) more features,

i.e. revolution surface and sweeping, are added (see Fig. 2(c)).

The arrow-head junction in Hwang’s system is replaced by a

closed curve and an extrusion line emanating from the curve.

Eggli et al. [5] added more interactive features to Hwang’s

approach; before invoke extrusion operation, user picks a menu

button to let the system know that the coming input marking is

for extrusion.

Differently from the above approaches, in our immediate

manipulation, after the arrow shaped pen marking, a direct

manipulator comes for feedback while the pen is hovering over

the screen surface, which adjusts the extrusion depth or the

amount of the rotational sweep.
input to produce a rotational sweep. (b) In Bimber’s and Zeleznik’s approaches,

h, a curve tangentially touching a circle produces a rotational sweep. (d) Our



Fig. 3. (a) Zeleznik’s approach to translate a face. (b) Our approach.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 213
Lim et al. [21] made a rigorous survey on most sketch-based

modeling systems published so far and proposed a method to

represent vague geometry sketched. This allows the user to

draw vague objects and the system keeps them in a hierarchy.

For example, for an object, such as a cube, the hierarchy on its

geometry consists of at least five levels. However, it is still not

clear how to use such information in 3D modeling environ-

ment. It seems to us that all the decisions on a specific type of

the curve objects at the leaf level are put to the later

applications. In our approach, this problem of reaching a

decision is provided with a user interaction technique, so

called, selective manipulation.

We weigh the pros and cons of the aforementioned sketch-

based modeling schemes. As far as feedback is concerned, they

all have uncomfortable interaction frameworks since there

exist only input pen marking and the resulting interpretation;

no intermediate steps are taken. Nonetheless, object trans-

formations in [33] are valuable in that they can be used for

further diversifying base shapes or for recovering from

recognition errors. However, they require another different

pen marking to remember (see Fig. 3); nevertheless, they

provide no explicit construction tools other than face

transformation. Meanwhile, Qin’s system is more consistent

in modeling style than the others in that box and cylinder

features are specified in a consistent way. However, as for the

number of representable shapes, it is not comparable with [33].
3. System overview

In this section, we give an overview of our sketch-based

modeling environment and, in the following sections, we

explain two important issues relevant to devising such an

environment in detail, i.e. interaction framework and modeling

framework. We begin this section by defining terminologies

that we use throughout the paper.
3.1. Terminologies

Definition 1 (Dragging and hovering action). Pen movement

while the pen is touching a flat screen surface is called

‘dragging’. Movement without touching but keeping within a

certain distance to the surface is called ‘hovering’.

Hovering is identified as a gestural element. This action is

supported in most tablet PCs which use electromagnetic
digitizer [31]. Moreover, this action lets the user move the

cursor quickly and easily.

Since the pen movement is made by three fingers, wrist,

and forearm in unison, kinematically the transition from

the dragging action to the hovering action is continuous.

By recognizing this gestural element, we separate, physi-

cally as well as conceptually, ‘drawing on paper’ and

‘manipulating (editing) an object’, on the continuously

changing curve of muscular tension. Dragging is used for

drawing an object and hovering action is used for

manipulating an object.

Definition 2. (Picking action). Let p be a pen marking and kpk

its arc length. We call the pen marking ‘picking’ if kpk is small

(e.g. less than 5 pixel-lengths). In the context of using the

mouse, it is also called ‘clicking’.

Now, we define what interpretation means in the context of

our application, since it is sometimes used with different

meanings in different areas.

Definition 3 (Interpretation). Let C be a set of general

commands, and T a mapping from the pen markings to C. If p is

a pen marking and T(p)Zc, c2C, we call c the ‘interpretation’

of p. More precisely, c is the (T,C)-interpretation of p.

Notice that pen marking itself can be treated as an

interpretation with further user interaction.

Definition 4 (Identical interpretation). When a pen marking

is mapped to itself, the resulting interpretation is called

‘identical interpretation’, T0, also known as ‘personal touch’,

‘as-is’ drawing, or ‘content marking’ [9,18].

In our approach, most basic result of pen marking is always

identical interpretation as will be discussed in the later section

for interaction framework; which lets the system stay like a

sketch pad. None-identical interpretation needs more par-

ameters to be set; for example, an interpretation, ‘rectangle’,

will have two corner points to be presented. Thus, we need

more to complete the interpretation.

Definition 5 (Command parameters and Inference). The

variables that can affect the final presentation of an

interpretation c are denoted by {tZtijiZ0,.,m} and called

‘command parameters’. The size of t is denoted by O(t).

Thereby, the final presentation can be represented by c(t). The

process of determining t by the system is called ‘inference’.



Fig. 4. The pipeline of our sketch-based modeling environment.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223214
To help understanding what command parameters and the

inference in this context are, we bring one simple example. To

visualize what has been done by the system, the input pen

marking p which looks like a rectangle, should be recognized

as a rectangle first (i.e. c). Then the rectangle should have two

diagonal corners (or one axis and two corners). This

information can be directly given by the segmentation results.

However, it is often the case that the rectangle can be aligned

with neighbor objects. This additional information can be

obtained by inference.
3.2. Pipeline

The pipeline of our sketch-based modeling environment

consists of four major steps as follows (also shown in Fig. 4):

(1) Segmentation: Each pen marking is segmented to enhance

the recognition, thus, eventually improving the overall user

interaction by better recognition results. More shape

features are extracted from the segmentation results and

smoothing each segment; for example, primitive type of

each segment (i.e. line, circle, etc.) and chord-length

parametrization of each segment.

(2) Interpretation: Primitive shapes are inferred from the

shape features and bound to the context of modeling

environment to yield a complete command with the

command parameters.

(3) Interaction: The command is combined with an appro-

priate interaction framework. For a fluent flow in the

modeling process, we design a new interaction framework

generalized for both 2D and 3D pen-based modeling:

immediate-manipulation and selective-manipulation.

(4) Modeling: Most 3D modeling operations reminding us of a

certain behavior (e.g. extrusion, transformations) are

combined with immediate-manipulation, while drawing

operations (e.g. line and curve primitives) are combined

with selective-manipulations. Further interaction designed

on the command parameters diversify shapes.

In the following sections, we will elaborate on interaction

and modeling; for the segmentation and the interpretation step

we refer the readers to the authors’ another paper on pen

marking segmentation. In particular, to recognize a primitive

shape from the segmentation results, we adopted the approach
of Hammond et al. [10]; they proposed a general language to

describe shapes using the shape features.
4. Interaction framework

In this section, we present the interaction framework of our

pen-input based 3D modeling environment supporting two

different types of manipulation: immediate-manipulation

combining the interpretation and the direct manipulator and

selective-manipulation combining the two more selectively at

the discretion of the user. The former improves the awkward

input behavior of the two-phase interaction—which was

discussed in Section 2—and the selective-manipulation

permits as-is drawings, thus, allowing the user to perform

vague drawings. Within each type of manipulation, 3D

modeling operations are implemented.

For each pen marking, the system decides whether it should

be directed to either immediate manipulation or selective

manipulation. When the pen marking falls within the depiction

shown in the table (Fig. 7), an immediate manipulation comes;

as for its metaphor, the pen marking is categorized as the tasks

of editing objects, such as transformation, or the tasks of 3D

modeling such as extrusion, which emphasizes behavior rather

than drawing. Meanwhile, all the other pen markings not

connected to the immediate manipulation are combined with

selective manipulation; that is, drawing behaviors (not editing)

results in selective manipulation. Within the selective

manipulation, user can just either perform vague drawings or

selectively achieve hard-line drawings such as curve primi-

tives, which tastes of computer-aided design.
4.1. Immediate-manipulation

The interaction scenario for immediate-manipulation is as

follows:

(1) The user inputs a pen marking.

(2) The system interprets it and presents a direct manipulator

corresponding to the interpretation.

(3) The user interacts with the manipulator, while hovering

over the screen surface.

We call the technique immediate-manipulation, since the

direct manipulator follows immediately after the pen marking.

A possible drop of muscular tension in the transition from



Fig. 5. Immediate-manipulation. Hovering over the screen surface right after the pen marking moves the object, which is, then, drawn with thin solid line. After the

picking, which fixes the position of the object, hovering causes nothing.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 215
the dragging action to the hovering action is, though slight,

compensated by visualizing the direct manipulation providing

visual feedback.

For example, assume that the user specified a move-object

command by a pen marking as depicted in Fig. 5(a). First of all,

the system interprets the pen marking as the move-object

command, denoted by c. Along with the intermediate result

c(tZ{t})—t is initialized using a simple inference routine

because it is used to inform the user of what happened only—a

manipulator immediately follows to let the user interactively

decide on the command parameter t. So, while the user

hovering over the screen surface the target object follows the

pen accordingly updating t (see Fig. 5(b)). The user can fix

command parameter t by picking at the screen surface.

To finalize the manipulation explicitly, which corresponds

to the finalize manipulation in the figure, the user pushes the

barrel button on the pen. The manipulation will be terminated

automatically when O(t) is fixed and all ti in t have been

confirmed. When O(t) is variable and at least t0 has been

confirmed, pushing the barrel button will terminate the

manipulation and leave c(t) on the canvas. Pushing the button

while t is under-determined will discard c(t).

Hovering action of the user is distinct enough, both

conceptually and physically, from the action of pen making

because during the hovering action pen does not touch the

paper or leave ink on the paper. Sketching is more concerned

about the act of creating marks on paper rather than editing and

manipulating a drawing, which, on the other hand, are more

emphasized in most CAD applications.
Fig. 6. Creating a cylinder, a cone, and a cu
4.2. Modeling operations with immediate manipulation

We adopt generative modeling [29], which are all invoked

by one class of pen markings, the arrow; moving a profile

curve (or surface), the trace after the movement forms a

final model. This consistent style of modeling automatically

reduces the burden of remembering the recognizable pen

markings; for example, generating different 3D shapes, such as

cube, cylinder (cone), sphere, torus, can be obtained by the

same style of pen marking. Moreover, tools are supported for

the completeness as a modeling tool; for example, model

transformations or construction tools such as a working plane

and a working axis.

We illustrate an example of taking advantage of immediate-

manipulation to model a 3D shape. Fig. 6 shows how the user

creates a cylinder using our system.

(1) The user performs an arrow pen marking, emanating from

a face.

(2) Once the system interprets it as an extrusion command,

denoted by c, two direct manipulators immediately follow

one by one to allow the user to interactively edit the

command parameters, tZ{t0,t1}: t0 is the extrusion

amount and t1 the scaling factor of the top face.

(3) The first shape parameter is adjusted by the hovering-over

action and the system displays the model changing the

height of the extrusion.

(4) The extrusion height is determined by the picking

operation.
t cone in one immediate-manipulation.



Fig. 7. Summarizing the immediate-manipulations. Shaft of the arrow pen marking means the remaining part of it after the arrow-head.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223216



Fig. 8. Lofting when the number of the section curves are three. (a) The user performs a lofting pen marking, whose shaft emanates from a point on the first curve and

ends at a point on the Nth curve. (b) After the pen marking is interpreted as a lofting command, the user adjusts the seam of the closed curve. (c) The user changed the

direction of C2. (d) Final result.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 217
(5) Right after this, another direct manipulator comes to help

the user adjust the scaling factor of the top face. Depending

on the scaling factor, the resulting model can be a cylinder,

a cone, or a cut cone.

Consequently, the user can produce different shapes such as

a cylinder, a cone, or a truncated cone with only one pen

marking. This has two advantages over earlier approaches such

as [2,33] that require multiple pen markings: improvement in

memorability and easy recovery from inference errors. Since

user’s sense of 3D space is not always correct, projecting 2D

stroke into 3D space often conveys unwanted errors, not

quantitatively but in user satisfaction.

Fig. 7 summarizes the pen markings that our system

supports for 3D shape modeling, followed by immediate-

manipulation. Fig. 8 generalizes the lofting operation in Fig. 7,

so that N section curves, {Ck(t), kZ1,.,N}, are used for the

final shape of the surface. Fig. 9 shows how transformation

commands are issued by performing different pen markings.

The recognition of the pen marking to issue the scaling

command should be addressed; if the knob around the starting

point of the pen marking is detected, the rest can be recognized

as any other arrow marking. While user’s inputting of the pen

marking, current length of the pen marking (l) and length of the

diagonal of the bounding box (d) are known. Setting the

maximum knob size to k, if lOdp and d!k, the pen marking is

reported to have a knob.

Extracting command parameters: Command parameters

which are inferred from 2D pen markings are not very

important since they are just the initial feedback to the pen
Fig. 9. Affine transform
marking. They will be later on modified through further user

interaction. Problem, anyway, is that this inference causes

geometric ambiguity. Our methods heavily use projection

method. For working axis command, for example, the two end

points of the arrow in 2D are projected onto the current

working plane along the viewing direction and the resulting 3D

points are used for the two command parameters. For another

example, let us consider general sweep. The starting point of

the arrow projected onto the profile curve. From the curve

point, a plane normal to the tangent direction at the point is

computed. The second command parameter is then computed

from the B-spline curve approximating the shaft of the arrow.
4.3. Selective-manipulation

Differently from the immediate-manipulation that empha-

sizes direct manipulation, selective-manipulation is used when

as-is drawing is more emphasized and the application should

be more sketch-based, thus letting the user draw ambiguous

objects.

The difference from other approaches can be characterized by

a question: Whether each pen marking results in a non-identical

interpretation. If yes, this will force the user to draw like the left

side of Fig. 11 for the same structure (or form) [4,9,11,19,25,5,2,

12,13]. However, to allow more freedom for the user to draw like

the right side of Fig. 11, a new interaction technique is necessary.

One metaphor for selective manipulation is this: “A user

places a transparent paper on top of a Wacom LCD tablet, and

sketches her idea on the paper. The system interprets each pen

marking and presents to the user what it can do (but, not what it
ations of a face.



Fig. 10. Selective-manipulation (S). The user provides a rectangular pen marking. (A:1) The cursor is placed on a iconic label during hovering action and the system

visualizes the selectable layer. (A:2) The user picks the icon and started to manipulate the object. (B:1) The cursor is placed on another iconic label during hovering

action and the system visualizes the selectable layer with the inference result. (B:2) The user picks the icon and the system presents the inference result at once. (C)

The user continues to perform another pen marking without any other action.

Fig. 11. Left: A drawing on the assumption that each pen marking carries a

certain non-identical interpretation. Right: For the same form, the user added

more markings to existing markings.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223218
did) for the input, under the paper. Until the user finds his/her

idea concrete on the paper, she is not forced to go to hard-line

drawing which is always made available under the current pen

marking by the system.”

The interaction scenario for selective-manipulation is as

follows:

(1) The user inputs a pen marking and the system interprets it

(Fig. 10(S)).

(2) The user can choose three types of selective-manipulation:

– Continued manipulation by the user.

(a) The system visualizes the tentative interpretation

after inference under the pen marking on a selectable

layer, only when the cursor is hovering over an iconic

label attached to the bounding area of the pen

marking (Fig. 10(A:1)).

(b) The user may pick up the interpretation to be put into

a modeling context (Fig. 10(A:2)).

– Inference by the system

(a) The system visualizes only the selectable layer when

the cursor is hovering over another iconic label

(Fig. 10(B:1)).

(b) By picking the icon, the user can invoke a direct

manipulator assigned to the interpretation and

manipulate it to his/her intention (Fig. 10(B:2)).

– As-is drawing

The user can continue to sketch, resulting in automatically

discarding the tentative interpretation but keeping the pen

marking ‘as is’ (Fig. 10(C)).
The selectable layer is a transparent rectangular window

with iconic labels (see Fig. 10), having similar usages to the

transparent medium in [17,24,30]. The selectable layer is

placed under the as-is drawing of the input pen marking. Since

the transparent drawing can prioritize information within a

complex display [30], the selectable layer suggests, to a certain

degree, what can be obtained with further interaction, less

distracting the user from his/her sketching process (i.e. the

selectable layer is drawn with a low visual priority while the as-

is drawing with a high visual priority). In our approach we do

not visualize the layer at all unless the cursor hovers over the

iconic labels (Fig. 11).

Fig. 10 illustrates an example of the selective-manipulation.

In 2D space, right after each pen marking p (Fig. 10(S)),

the system tries to interpret it; in this example, the user

specified a rectangle. A corresponding selectable layer is laid



Fig. 12. (a) The user drew a planar map. (b) The system produced the interpretation and inference result by selecting the interpretations. Remarkably, the user could

just leave the pen drawing (a) by just continuing sketching.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 219
under the as-is drawing of the pen marking when the cursor

moves to an iconic label. Similarly to the immediate-

manipulation, the resulting interpretation c(t) requires several

parameters to be set, first tentatively by the inference routine.

For example, the rectangle command needs two additional

parameters, lower left corner t0 and upper right corner t1:

c(tZ{t0,t1}). The command parameters t0 and t1 are
Fig. 13. Automatic generation of alignment objects (dashed lines). Black spots o
initialized using an inference rules and c(t) is transparently

rendered on the selectable layer (see Fig. 10(B:1)). For the

inference and the direct manipulators we use Bier’s snap-

dragging [1]. Detected corner points are attracted to alignment

objects; because his approach does not support automatic

generation of alignment objects to which the cursor is attracted

we established some rules for the generation of alignment
f circle shape denote point objects and rectangular spots intersection points.



Fig. 14. Inferencing command parameters of a straight-line using snap-

dragging. (1) User inputs a pen marking, which is interpreted as a straight-line.

(2) One end point is attracted to an alignment line. (3) The other is attracted to

an intersection point between two alignment lines.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223220
objects. Fig. 12(a) shows several pen markings drawn and (b)

shows results after the interpretation and inference without

further user intervention.

In our approach, notably, the inference uses Bier’s snap-

dragging [1]. Because his approach does not support automatic

generation of alignment objects to which the cursor is attracted

we established some rules for the generation of alignment

objects. The alignment objects can be one of the following: (1)

axis-aligned lines emanating from the points, which are

recently referenced during manipulation (e.g. touching the

points), (2) lines perpendicular (parallel) to the recently
Fig. 15. Pen markings and their interpretations as primitive elements. From left to r

freeform curve are inferred from the given pen markings, respectively.
referenced line objects, and (3) intersection points between

the line objects or between the line objects and faces. We use a

hash table to store the recently referenced objects. See Fig. 13.

With the aid of these alignment objects, the feature points

detected from the segmentation are used as if they are the

cursor; in snap-dragging [1], the cursor is attracted to objects

(including the alignment objects). Fig. 14 illustrates the

inference process. The resulting 3D points (snap results)

replace the command parameters. For the curved objects, like

splines, the curve points are attracted to the 3D points.

Since our interaction framework provides a safe means for

many inference algorithms, other’s approaches can be used as

well, such as [13,14,5], if they can be made suitable for 3D

space.

4.4. Drawing operations with selective-manipulation

We now consider how to draw curve primitives (e.g.

circular arc, line, etc.), some of which can be connected to form

a face. Fig. 15 shows what the system interprets from the user’s

pen marking. Six primitives are supported: a line, a rectangle

(regular polygons), a circle, a circular arc, a polyline (polygon

if closed), and a freeform curve.

Each pen marking that falls into selective-manipulation is

interpreted as one of the above drawing primitives. For any

non-identical interpretation, the system needs to figure out

command parameters, t (Fig. 16).

5. Implementation, analysis and evaluation

We now discuss the implementation issues of our sketch

system and also present user testing results that we conducted

to verify the effectiveness of the system.

5.1. Implementation

We implemented the sketch system described using the

Visual C programming language and tested on a Fujitsu
ight and top to bottom, a rectangle, a circle, a polyline, a circular arc, a line, a



Fig. 16. Sketching results of various shapes using our system. All of these complex models are sketched in less than 5 min by novice users.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 221
1.4 GHz Tablet PC running under the Windows XP Tablet PC

Edition. We adopted Weiler’s radial-edge representation [32]

to handle a non-manifold geometric boundary that may appear

during sketching. To automatically detect the filling and

splitting of a polygon from the user’s pen markings, we took

advantage of the planar map algorithm, a well-known result

presented by [7] (Fig. 12).
5.2. Usability tests for the interaction framework

We performed two usability tests: one to check the learning

time and the other to check its usability for experienced users.

For the tests to be more quantitative, we gave the users the

target model they have to model; as for free modeling, the

analysis of the final model and time to reach the level cannot

show quantitative results but qualitative. The target model has

been chosen such that the target model requires diverse

modeling functionalities (i.e. basic primitives, boolean oper-

ations) and repetitive modeling operations that could result in
Fig. 17. An image from a LEGO block model given to the test subjects to d
frequent errors. Since fine freeform models such as the bicycle

body can be achieved by neither using our system nor using

other sketch based modeling systems, we did not undergo the

test.

For the first test, we selected 20 subjects from industrial

design department and divided them into two groups and gave

them a task to build a LEGO block (Fig. 17). The first group

used our modeling system and the other a commercial solid

modeling tool; none of the subjects have used the tools before.

A professional designer with much experiences with the

commercial solid modeling tool was assigned to the second

team for teaching and one author for the sketching system.

Prior to the test, the two tutors planned their tutorial,

especially to define what modeling operations are to be taught

to complete the task, and made user manuals designed for the

task. To teach the first group, the teacher showed them how to

use the needed operations on the tablet PC for some time and

for further reference distributed the printed user manuals. To

teach the second group, the teacher demonstrated
raw: (a) an image for the top part and (b) an image for the bottom part.



Fig. 18. Statistics for the first test.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223222
the commercial tool on a Desktop PC with mouse and

distributed the printed user manual too. After the tutorial, we

let the subjects to practice until they feel they can build the

model. During the practice, the tutors were sitting in the room

to be available for their questions and possibly teach them more

if needed. When a subject volunteer to take the test of building

the model from the scratch, one of many assistants supervised

the test: pass or fail. The subject who failed the test went back

to practice and learn the tool more. For the evaluation, we

measured two: (1) Time from the beginning of the tutorial to

the point when each subject passes the test, which we call

learning time, and (2) the time needed to build the model

during the test for each subject, which we call modeling time.

About the learning time (shown with blue color bars in

Fig. 18), our system showed better performance (in average

256%). About the modeling time (shown with red color bars),

our system showed almost 400% better performance. One

reason to this difference is that the second group was not taught

how to make full use of the tool, e.g. using short-cut keys; again

then, this will take additional time for teaching and

remembrance. There was one thing that disturbed the first
Fig. 19. Statistics for the second test.
group; our system often crashed, some of the users had to

restart the program, which also takes some time to get used to

the system. Since the target shape was designed considering the

limit of the modeling functionalities of our system as well as

the amount of the time given for the testing (e.g. we could not

simply hold the subjects for half a day or so in one place), we

confess, this test was not very fairly set for the commercial

system.

For the second usability test, we invited two designers who

have used the solid modeling tool for years and two students

attended the test as the experienced users for sketch based

modeling systems (ours and Zeleznik et al.’s system). For the

very experienced users, there is no big difference in completing

the modeling task, however, as we saw in the first user test, the

learning time differs (Fig. 19).
6. Conclusions and future work

We have presented an interaction framework for sketch-

based shape modeling on the pen-input displays. It encases two

different interaction techniques, namely, immediate- and

selective-manipulation. These interaction techniques alleviate

the memorability problem of existing multiple-stroke based

sketching systems, and can create diverse 3D shapes that might

be otherwise limited by single-stroke pen markings of our

approach. Although the idea inserting a further interaction step

to sketching is not new, to all our knowledge, we were the first

to elaborate upon the idea to be used in a 3D modeling

environment.

Our major interaction metaphor for the single-stroke pen

marking was an ‘arrow’ which has been extensively used in

many sketching practices. The metaphor was suitable for the

generative modeling paradigm. We also have carried out user

experiments to benchmark our shape modeling framework, and

the participated subjects have shown a steep learning curve to

sketch complex 3D shapes using pen-input displays.



D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 210–223 223
Nonetheless our approach still presents many limitations;

our system is specially devised for rapidly sketching CAD-

favored B-rep models, not other types of generic models (e.g.

blobby objects and sophisticated freeform surface models).

Moreover, although we targeted the system that can be out for

real practice, the system is not quite stable yet. To be useful for

practical purposes, first of all, this should support undo/redo

function which is a fundamental one for modeling. While the

user tests, this lack of useful functions did not make good

impression for the users who expected them.

Supplementary Data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.cad.2005.10.007

References

[1] Bier Eric A. Snap-Dragging: Interactive Geometric Design in Two and

Three Dimensions. PhD thesis, Department of Computer Science,

University of California, Berkeley; 1988.

[2] Bimber Oliver, Encarnacao LMiguel, Stork A. A multi-layered

architecture for sketch-based interaction within virtual environment.

Comput Graph 2000;(24):851–67.

[3] Buxton William. Chunking and phrasing and the design of human-

computer dialogues. Inf Process 1986.

[4] Davis R. Position statement and overview: sketch recognition at mit. In:

American Association for Artificial Intelligence Spring Symposium on

Sketch Recognition; 2002.

[5] Eggli Lynn, Hsu Chingyao, Bruederlin BeatD, Elber Gershon. Inferring

3d models from freehand sketches and constraints. Comput Aided Des

1997;29(2):101–12.

[6] Foley JD, van Dam A, Feiner SK, Hughes JF. Computer Graphics:

Principles and Practice. Reading, MA: Addison-Wesley; 1996.

[7] Gangnet Michel, Herve Jean-Claude, Pudet Thierry, Van Thong Jean-

Manuel. Incremental computation of planar maps. Technical Report 1,

Digital Equipment Corporation; May 1989.

[8] Gribnau Maarten W. Two-handed interaction in computer supported 3D

conceptual modeling. PhD thesis, Delft University of Technology,

Netherland; 1999.

[9] Gross MD, Do EY. Ambiguous intentions: a paper-like interface for

creative design. In: Proceedings of ACM Symposium on User Interface

Software and Technology. ACM; 1996. p. 183–92.

[10] Tracy Hammond, Randall Davis. Ladder: a language to describe drawing,

display, and editing in sketch recognition. In: Proceedings of IJCAI

(International Joint Conference on Artificial Intelligence); August 2003.

[11] Hong Jason, Landay James, Long Chris, Mankoff Jennifer. Sketch

recognizers from the end-user’s, the designer’s, and the programmer’s

perspective. In: In Proceedings of AAAI 2002 Spring Symposium (Sketch

Understanding Workshop). American Association for Artificial Intelli-

gence; 2002.
[12] Hwang T, Ullman D. Recognize features from freehand sketches. ASME

Comput Eng 1994;1:67–78.

[13] Igarashi T. Interactive beautification: a technique for rapid geometric

design. In: UIST’97; 1997. p. 105–14.

[14] Igarashi T, Hughes JF. A suggestive interface for 3d drawing. In: UIST;

2001.

[15] Igarashi T, Matsuoka S, Tanaka H. Teddy: a sketching interface for 3d

freeform shapes. In: SIGGRAPH; 1999. p. 409–61.

[16] Kim Dae Hyun. A sketch-based modeling interface for pen-input displays.

PhD thesis, University Bremen, Shaker Verlag, ISBN 3-832203121-8;

June 2004.

[17] Axel Kramer. Translucent patches-dissolving windows-. In: UIST’94;

November 1994. p. 121–30.

[18] Landay James A, Hong Jason I, Klemmer Scott R, Lin James, Newman

Mark W. Informal puis: no recognition required. In: AAAI 2002 Spring

Symposium (Sketch Understanding Workshop). American Association

for Artificial Intelligence; 2002.

[19] Landay James A, Myers Brad A. Interactive sketching for the early stages

of user interface design. In: Proceedings of CHI ’95: Human Factors in

Computing Systems; May 1995. p. 43–50.

[20] Landay James A, Myers Brad A. Sketching interfaces: toward more

human interface design. Computer 2001;March:56–64.

[21] Lim SW, Lee BS, Duffy HB. Incremental modelling of ambiguous

geometric ideas (i-magi): representation and maintenance of vague

geometry. Artif Intell Eng 2001;15:93–108.

[22] Long Jr Allan Christian, Landay James A, Rowe Lawrence A. PDA and

gesture uses in practice: Insights for designers of pen-based user

interfaces. Technical report, Dept of EECS, U.C. Berkeley; 1997.

[23] Mankoff J, Hudson SE, Abowd GD. Interaction techniques for ambiguity

resolution in recognition-based interfaces. In: Proceedings of UIST’00;

2000. p. 11–20.

[24] Mase Jitsuro. Moderato: 3d sketch cad with quick positioned working

plane and texture modeling. In: Rhyne T-M, Chalmers A, editors.

eCAADe2000, June. Germany: Bauhaus-Universitat Weimar; 2000.

[25] Qin SF, Wright DK, Jordanov N. From on-line sketching to 2d and 3d

geometry: a system based on fuzzy knowledge. Comput Aided Des 2000;

32:851–66.

[26] Raskin Jef. The Humane Interface: New Directions for Designing

Interactive Systems. Reading, MA: Addison Wesley; 2000.

[27] Rubine D. Specifying gestures by example. In: Computer Graphics

(SIGGRAPH’91). ACM; March 1991. p. 329–37.

[28] Rubine D. Combining gestures and direct manipulation. In: CHI’92.

ACM; May 1992. p. 659–60.

[29] Snyder JM, Kajiya JT. Generative modeling: a symbolic system for

geometric modeling. In: SIGGRAPH 1992 Proceedings. ACM; July 1992.

p. 369–78.

[30] Trinder M. The computer’s role in sketch design: a transparent sketching

medium. In: Computers and Building, Proceedings of CAAD futures 99,

Atlanta; 1999. p. 227–44.

[31] Wacom. 2002. http://www.wacom-components.com/english/tablet_pc.

asp.

[32] Weiler K. The radial-edge structure: a topological representation for non-

manifold geometric boundary representations. In: Geometric Modelling

for CAD Applications. New York: North Holland; 1988. p. 3–36.

[33] Zeleznik RC, Herndon KP, Hughes JF. Sketch: an interface for sketching

3d scenes. In: SIGGRAPH96. ACM; 1996. p. 163–70.

http://dx.doi.org/doi:10.1016/j.cad.2005.10.007
http://www.wacom-components.com/english/tablet_pc.asp
http://www.wacom-components.com/english/tablet_pc.asp

	A new modeling interface for the pen-input displays
	Introduction
	Previous work
	Interaction techniques
	Sketch-based 3D shape modeling

	System overview
	Terminologies
	Pipeline

	Interaction framework
	Immediate-manipulation
	Modeling operations with immediate manipulation
	Selective-manipulation
	Drawing operations with selective-manipulation

	Implementation, analysis and evaluation
	Implementation
	Usability tests for the interaction framework

	Conclusions and future work
	Supplementary Data
	References


