
Information Flow on Directed Acyclic Graphs

Michael Donders, Sara Miner More, and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland 21157, USA

{msd002,smore,pnaumov}@mcdaniel.edu

Abstract. The paper considers a multi-argument independence relation
between messages sent over the edges of a directed acyclic graph. This
relation is a generalization of a relation known in information flow as
nondeducibility. A logical system that describes the properties of this
relation for an arbitrary fixed directed acyclic graph is introduced and
proven to be complete and decidable.

1 Introduction

p

rq

s

a

bc

d

ef

g

Fig. 1. Graph G0.

In this paper we study information flow on directed acyclic
graphs. We view directed graphs as communication networks
in which vertices are parties and directed edges are communi-
cation channels. An example of such a graph, G0, is depicted
in Figure 1. We use loop edges to represent values that are
computed by the party, but not sent to anyone else. The con-
ditions that parties must observe while communicating over
the network will be called action relations. The set of action
relations for all vertices will be called a protocol. Here is a
sample protocol P0 over graph G0: vertex p picks a random
boolean value a ∈ {0, 1} and finds two boolean values c and
b such that a ≡ b + c (mod 2). It sends value c to vertex q
and value b to vertex r. Vertex q finds boolean values d and
f such that c ≡ d + f (mod 2) and sends them to vertices
r and s, respectively. Vertex r computes the value e ≡ d+ b
(mod 2) and sends it to vertex s. Vertex s computes value
g ≡ f + e (mod 2).

An assignment of values to all channels that satisfies all
action relations will be called a run of the protocol. Note

that for the protocol described above, values c and b are independent in the
sense that any possible value of c may occur on the same run with any possible
value of b. We denote this by [c, b]. This relation between two values was originally
introduced by Sutherland [1] and later became known in the study of information
flow as nondeducibility. Halpern and O’Neill [2] proposed a closely-related notion
called f -secrecy. More and Naumov [3] generalized nondeducibility to a relation
between an arbitrary set of values and called it independence. For example,
values c, b, and d for the above protocol are independent in the sense that any

combination of their possible values may occur on the same run. We denote this
relation by [c, b, d]. At the same time, it is easy to see that under the above
protocol:

g ≡ f + e ≡ f + (d+ b) ≡ (f + d) + b ≡ c+ b ≡ a (mod 2). (1)

Thus, not every combination of values of a and g can occur together on a run.
In our notation: ¬[a, g].

The properties mentioned above are specific to the given protocol. If the
protocol changes, some of the true properties can become false and vice versa.
In this paper, however, we focus on the properties that are true for a given
graph no matter which protocol is used. An example of such property for the
above graph is [c, b, f, e] → [a, g]. It says that for any protocol under G0 if
values c, b, f and e are independent over this protocol, then values a and g are
also independent under the same protocol. We will formally prove this claim in
Proposition 3.

The main result of this paper is a sound and complete logical system that
describes all propositional properties of the multi-argument relation [a1, . . . , an]
on directed graphs which are acyclic, with the possible exception of loop edges.
Previously, More and Naumov obtained similar results for undirected graphs [3]
and hypergraphs [4]. Compared to the case of undirected graphs, the logical
system described here adds an additional Directed Truncation inference rule.

Our logical system describes information flow properties of a graph, not a
specific protocol over this graph. However, this system can be used to reason
about the properties of a specific protocol by treating some properties of the
protocol as axioms, then using our system to derive additional properties of the
protocol.

2 Protocol: A Formal Definition

Throughout this work, by a graph we mean a finite directed graph with cycles of
length no more than one or, less formally, “directed acyclic graphs with loops”.
Such graphs define a partial order on vertices that will be assumed to be the
order in which the protocol is executed. The protocol will specify how the values
on outgoing edges are related to the values one the incoming edges of each vertex.
With this in mind, we will count loops at any vertex v among its outgoing edges
Out(v), but not among its incoming edges In(v).

Definition 1. A protocol over a graph G = 〈V,E〉 is a pair 〈M,∆〉 such that

1. M(e) is an arbitrary set of values (“messages”) for each edge e ∈ E,
2. ∆ = {∆v}v∈V is a family of action relations between values of incoming and

outgoing edges of the vertex v:

∆v ⊆

 ∏
e∈In(v)

M(e)

×
 ∏
e∈Out(v)

M(e)

 .

3. (continuity condition) For any possible tuple of values on the incoming
edges of a vertex v, there is at least one tuple of values possible on its outgoing
edges:

∀x ∈
∏

e∈In(v)

M(e) ∃y ∈
∏

e∈Out(v)

M(e)

(
(x, y) ∈ ∆v

)
.

The continuity condition above distinguishes protocols over directed graphs from
protocols over undirected graphs [3].

Definition 2. A run of a protocol P = 〈M,∆〉 over graph G = 〈V,E〉 is any
function r on E such that

1. r(e) ∈M(e) for each e ∈ E,
2. 〈〈r(e)〉e∈In(v), 〈r(e)〉e∈Out(v)〉 ∈ ∆v for each v ∈ V .

The set of runs of a protocol P is denoted by R(P).

Definition 3. A protocol P = 〈M,∆〉 over graph G = 〈E, V 〉 is called finite if
the set M(e) is finite for each edge e ∈ E.

We conclude with the definition of a multi-argument version of Sutherland’s
binary nondeducibility predicate called independence. It is identical to the one
used by More and Naumov [3, 4].

Definition 4. A set of edges A is called independent under protocol P if for any
family of runs {ra}a∈A ⊆ R(P) there is a run r ∈ R(P) such that r(a) = ra(a)
for each a ∈ A.

In the above definition, we refer to the value ra(a), rather than an arbitrary
element of M(a), because there may be some values in M(a) that are not actually
used on any given run. In the next section, we will formally define the formulas
of our logic system. The atomic formula expressing the independence of a set A
will be denoted by [A].

3 Semantics

Informally, by Φ(G) we denote the set of all propositional properties of indepen-
dence over a fixed graph G = 〈V,E〉. Formally, Φ(G) is a minimal set defined
recursively as follows: (i) for any finite set of edges A ⊆ E, formula [A] belongs
to set Φ(G), (ii) the false constant ⊥ belongs to Φ(G), and (iii) for any formulas
φ and ψ in Φ(G), the implication φ → ψ also belongs to Φ(G). Conjunction,
disjunction, and negation will be assumed to be defined through connectives →
and ⊥.

Next, we define the relation P � φ between a protocol P over graph G and
a formula φ ∈ Φ(G). Informally, P � φ means that formula φ is true under P.

Definition 5. For any protocol P over a graph G, and any formula φ ∈ Φ(G),
we define the relation P � φ recursively as follows: (i) P 2 ⊥, (ii) P � [A] if the
set of edges A is independent under protocol P, (iii) P � φ1 → φ2 if P 2 φ1 or
P � φ2.

We will illustrate this definition with the two propositions below. By G0 we mean
the graph depicted earlier in Figure 1.

Proposition 1. There is a protocol P over G0 such that P 2 [b, f, g]→ [a, g].

Proof. Consider the protocol P under which the party (represented by vertex)
p picks a boolean value a and sends it via edge c to party q . In other words,
a = c is the action relation at vertex p. At the same time, the constant value
0 is sent via edge b, which means that M(b) = {0}. Party q resends value c
through edge d and sends the constant 0 through edge f . Party r then resends
value d through edge e and, finally, s resends value e through channel g. Under
this protocol, M(b) = M(f) = {0}. Thus, any possible values of edges b, f , and
g may occur on the same run. In other words, P � [b, f, g]. At the same time,
a = c = d = e = g, and M(a) = M(g) = {0, 1}. Thus, not every combination of
values of a and g can occur on the same run. Therefore, P 2 [a, g]. ut

Note that in the proof of the previous proposition direction of edge d is
important. One might expect that the result is not true if the direction of the
edge d is reversed. This, however, is not true:

Proposition 2. There is a protocol P over G0 such that P 2 [c, e, g]→ [a, g].

Proof. Consider the protocol P0 over G0 described in the introduction. It was
shown earlier through equality (1), that P0 2 [a, g]. Thus, we only need to prove
that P0 � [c, e, g]. Let c0, e0, g0 be any boolean values. We will show that these
values can co-exist on the same run. Indeed, let f0 = e0+g0 (mod 2), d0 = c0+f0
(mod 2), b0 = d0 + e0 (mod 2), and a0 = c0 + b0 (mod 2). It is easy to see that
values a0, b0, c0, d0, e0, f0, and g0 form a valid run of P0. ut

In this paper, we study the set of formulas that are true under any protocol
P as long as the graph G remains fixed. The set of all such formulas will be
captured by our logical system for information flow over directed acyclic graphs.
This system is described in Section 5.

4 Graph Notation

Before the introduction of our formal system, we need to define some graph-
related notation that will be used in this system.

A cut of a graph is a disjoint partitioning of its vertices into two sets. A
crossing edge of a cut is an edge whose ends belong to different sets of the
partition. For any set of vertices X of a graph G, we use E(X) to denote the set
of all edges of G whose ends both belong to X.

Definition 6. Let G be an arbitrary graph and (X,Y) be an arbitrary cut of G.
We define the “truncation” graph GX of graph G as follows:

1. The vertices of graph GX are the vertices of set X.
2. The edges of GX are all of the edges from E(X) plus the crossing edges of

the cut (X,Y) modified in the following way: if, in graph G, a crossing edge
c connects vertex v ∈ X with a vertex in Y , then, in graph GX , edge c loops
from v back into v.

p

s

a

bc

ef

g

Fig. 2. Graph G′
0.

Each edge e in a truncated graph GX corresponds to
a unique edge in the original graph G. Although the two
corresponding edges might connect different vertices in their
respective graphs, we will refer to both of them as edge e.
For example, graph G′0 in Figure 2 is obtained from graph
G0 in Figure 1 by truncating along the cut ({p, s}, {q, r}).
In the above notation, this truncated graph can be denoted
by (G0){p,s}.

Definition 7. A cut (X,Y) is called “directed” if there are
no crossing edges of this cut that lead from Y to X.

Definition 8. A gateway between sets of edges A and B in
a graph G is a set of edges W such that every undirected
path from A to B contains at least one edge from W .

Note that sets A, B, and W are not necessarily disjoint.
Thus, for example, for any set of edges A, set A is a gateway between A and
itself. Also, note that the empty set is a gateway between any two components
of the graph that are not connected one to another.

5 Formal System: Axioms and Rules

We are now ready to describe our logical system for information flow over di-
rected acyclic graphs. We will write G ` φ to state that formula φ ∈ Φ(G)
is provable in this logic. Everywhere below, X,Y denotes the union of sets X
and Y . In addition to all propositional tautologies and the Modus Ponens infer-
ence rule, the deductive system for this logic consists of the Small Set axiom,
the Gateway axiom, and the Truncation and the Directed Truncation inference
rules:

Small Set Axiom. Any set that contains less than two edges is independent:
G ` [A], where A ⊆ E and |A| < 2.

Gateway Axiom. G ` [A,W]→ ([B]→ [A,B]), where W is a gateway between
sets of edges A and B such that A ∩W = ∅.

Truncation Rule. Let C be the set of all crossing edges of a cut (X,Y) and φ
be a formula in Φ(GX). If GX ` φ, then G ` [C]→ φ.

Directed Truncation Rule. Let (X,Y) be a directed cut and φ ∈ Φ(GX). If
GX ` φ, then G ` φ.

The soundness of this system will be demonstrated in Section 6 and its com-
pleteness in Section 7. Below, we present a general result to which we will refer
during the proof of completeness.

Theorem 1 (monotonicity). G ` [A]→ [B], for any graph G and any subsets
B ⊆ A of edges of G.

Proof. Consider sets B and ∅. Since there are no paths connecting these sets,
any set of edges is a gateway between these sets. In particular (A \ B) is such
a gateway. Taking into account that sets B and (A \ B) are disjoint, by the
Gateway axiom, G ` [B, (A \ B)] → ([∅] → [B]). By the Small Set axiom,
G ` [∅]. Thus, G ` [B, (A \B)]→ [B]. By the assumption B ⊆ A, we conclude
that G ` [A]→ [B]. ut

Next we give two examples of derivations in our logical system. In these exam-
ples, by G0 we mean the graph depicted earlier in Figure 1.

p

rq

a

bc

d

ef

Fig. 3. Graph G′′
0 .

Proposition 3. G0 ` [c, b, f, e]→ [a, g].

Proof. We will start with graph G′0 depicted in Fig-
ure 2. Recall that this graph is obtained from G0

by truncation with crossing edges c, b, f and e. Note
that, in graph G′0, the empty set is a gateway be-
tween sets {a} and {g}. Thus, by the Gateway ax-
iom, G′0 ` [a] → ([g] → [a, g]). By the Small Set
axiom, G′0 ` [a] and G′0 ` [g]. Hence, G′0 ` [a, g]. By
the Truncation rule, G0 ` [c, b, f, e]→ [a, g]. ut

Proposition 4. G0 ` [c, b, d]→ [c, e].

Proof. Consider graph G′′0 depicted in Figure 3. It is
obtained from graph G by a truncation with crossing
edges e and f . Note that in graph G′′0 set {b, d} is a gateway between sets {c} and
{e}. Thus, by the Gateway axiom, G′′0 ` [c, b, d] → ([e] → [c, e]). By the Small
Set axiom, G′′0 ` [e]. Hence, G′′0 ` [c, b, d] → [c, e]. By the Directed Truncation
rule, G0 ` [c, b, d]→ [c, e]. ut

6 Soundness

The proof of soundness is non-trivial. For each axiom and inference rule, we
provide its justification as a separate theorem.

Theorem 2 (Small Set). For any graph G = 〈V,E〉, if P is an arbitrary
protocol over G and subset A ⊆ E has at most one element, then P � [A].

Proof. Case 1: A = ∅. Due to the continuity condition in Definition 1 and
because graph G is acyclic, there is at least one run r ∈ R(P). Thus, P � [∅].
Case 2: A = {a1}. Consider any run r1 ∈ R(P). Pick r to be r1. This guarantees
that r(a1) = r1(a1). ut

Theorem 3 (Gateway). For any graph G = 〈V,E〉, and any gateway W be-
tween sets of edges A and B in graph G, if P � [A,W], P � [B], and A∩W = ∅,
then P � [A,B].

Proof. Assume P � [A,W], P � [B], and A∩W = ∅. Let A = {a1, . . . , an} and
B = {b1, . . . , bk}. Consider any r1, . . . , rn+k. We will show that there is a run
r ∈ R(P) such that r(ai) = ri(ai) for each i ≤ n and r(bi) = rn+i(bi) for each
i ≤ k. By the assumption P � [B], there is a run rB ∈ R(P) such that

rB(bi) = rn+i(bi) for i ≤ k. (2)

By assumptions P � [A,W] and A ∩W = ∅, there must be a run rA such that

rA(e) =

{
ri(e) if e = ai for i ≤ n,
rB(e) if e ∈W .

(3)

Next, consider graph G′ obtained from G by removing all edges in W . By the
definition of gateway, no single connected component of graph G′ can contain
both an edge from A and an edge from (B \W). Let us group all connected
components of G′ into two subgraphs G′A and G′B such that G′A contains no
edges from (B \W) and G′B contains no edges from A. Components that contain
edges neither from A nor from (B \W) can be arbitrarily assigned to either G′A
or G′B .

By equation (3), runs rA and rB on G agree on each edge of gateway W . We
will now construct a combined run r by “sewing together” portions of rA and
rB with the “stitches” placed along gateway W . Formally,

r(e) =

 rA(e) if e ∈ G′A,
rA(e) = rB(e) if e ∈W,
rB(e) if e ∈ G′B .

(4)

Let us first prove that r is a valid run of the protocol P. For this, we need
to prove that it satisfies action relation ∆v at every vertex v. Without loss of
generality, assume that v ∈ G′A. Hence, on all edges incident with v, run r agrees
with run rA. Thus, run r satisfies ∆v simply because rA does.

Next, we will show that r(ai) = ri(ai) for each i ≤ n. Indeed, by equations (3)
and (4), r(ai) = rA(ai) = ri(ai). Finally, we need to show that r(bi) = rn+i(bi)
for each i ≤ k. This, however, follows easily from equations (2) and (4). ut

Theorem 4 (Truncation). Assume that C is the set of all crossing edges of
cut (X,Y) in graph G and φ is a formula in Φ(GX). If P ′ � φ for each protocol
P ′ over GX , then P � [C]→ φ for each protocol P over graph G.

Proof. Suppose that there is a protocol P over G such that P � [C], but P 2 φ.
We will construct a protocol P ′ over GX such that P ′ 2 φ.

Let P = 〈M,∆〉. Note that, for any edge e, not all values from M(e) are
necessarily used in the runs of this protocol. Some values might be excluded by
the action relations of P. To construct protocol P ′ = 〈M ′, ∆′〉 over truncation
GX , for any edge e of GX we first define M ′(e) as the set of values that are
actually used by at least one run of protocol P. Thus,M ′(e) = {r(e) | r ∈ R(P)}.
The action relation ∆′v at any vertex v of GX is the same as under protocol P.

Lemma 1. For any run r′ ∈ R(P ′) there is a run r ∈ R(P) such that r(e) =
r′(e) for each edge e in truncation GX .

Proof. Consider any run r′ ∈ R(P ′). By the definition of M ′, for any crossing
edge c ∈ C, there is a run rc ∈ R(P) such that r′(c) = rc(c). Since P � [C],
there is a run rY ∈ R(P) such that rY (c) = rc(c) = r′(c) for each c ∈ C.

We will now construct a combined run r ∈ R(P) by “sewing together” rY
and r′ with the “stitches” placed in set C. Recall that we use the notation E(X)
to denote edges whose ends are both in set X. Formally, let

r(e) =

 r′(e) if e ∈ E(X),
r′(e) = rY (e) if e ∈ C,
rY (e) if e ∈ E(Y).

We just need to show that r satisfies ∆v at every vertex v of graph G. Indeed,
if v ∈ Y , then run r is equal to rY on all edges incident with v. Thus, it satisfies
the action relation at v because run rY does. Alternatively, if v ∈ X, then run
r is equal to run r′ on all edges incident with v. Since r′ satisfies action relation
∆′v and, by definition, ∆′v ≡ ∆v for all v ∈ X, we can conclude that r again
satisfies condition ∆v. ut

Lemma 2. For any set of edges Q in graph GX , P � [Q] if and only if P ′ � [Q].

Proof. Assume first that P � [Q] and consider any runs {r′q}q∈Q ⊆ R(P ′). We
will construct a run r′ ∈ R(P ′) such that r′(q) = r′q(q) for every q ∈ Q. Indeed,
by Lemma 1, there are runs {rq}q∈Q ⊆ R(P) that match runs {r′q}q∈Q on all
edges in GX . By the assumption that P � [Q], there must be a run r ∈ R(P)
such that r(q) = rq(q) for all q ∈ Q. Hence, r(q) = rq(q) = r′q(q) for all q ∈ Q.
Let r′ be the restriction of run r to the edges in GX . Since the action relations
of protocols P and P ′ are the same at all vertices in X, we can conclude that
r′ ∈ R(P ′). Finally, we notice that r′(q) = r(q) = r′q(q) for any q ∈ Q.

Next, assume that P ′ � [Q] and consider any runs {rq}q∈Q ⊆ R(P). We will
show that there is a run r ∈ R(P) such that r(q) = rq(q) for all q ∈ Q. Indeed,
let {r′q}q∈Q be the restrictions of runs {rq}q∈Q to the edges in GX . Since the
action relations of these two protocols are the same at the vertices in X, we can
conclude that {r′q}q∈Q ⊆ R(P ′). By the assumption that P ′ � [Q], there is a run
r′ ∈ R(P ′) such that r′(q) = r′q(q) = rq(q) for all q ∈ Q. By Lemma 1, there is a
run r ∈ R(P) that matches r′ everywhere in GX . Therefore, r(q) = r′(q) = rq(q)
for all q ∈ Q. ut

Lemma 3. For any formula ψ ∈ Φ(GX), P � ψ if and only if P ′ � ψ.

Proof. We use induction on the complexity of ψ. The base case follows from
Lemma 2, and the induction step is trivial. ut

The statement of Theorem 4 immediately follows from Lemma 3. ut

Theorem 5 (Directed Truncation). Assume that (X,Y) is a directed cut of
a graph G and φ is a formula in Φ(GX). If P ′ � φ for every protocol P ′ over
truncation GX , then P � φ for every protocol P over graph G.

The proof of this theorem is a straightforward modification of the proof of The-
orem 4. Specifically, in the proof of Lemma 1, instead of “sewing together” runs
r′ and rY , we use the continuity condition from Definition 1 to extend run
r′ ∈ R(P ′) into a run r ∈ R(P) that agrees with r′ on all vertices in GX .

7 Completeness

Theorem 6 (completeness). For any directed graph G, if P � φ for all finite
protocols P over G, then G ` φ.

The theorem will be proven by contrapositive. At the core of this proof is the
construction of a finite protocol. This protocol will be formed as a composition
of several simpler protocols, where each of the simpler protocols is defined re-
cursively. The base case of this recursive definition is the parity protocol defined
below. It is a generalization of the protocol described in the introduction.

7.1 Parity Protocol

In the following discussion, we use the overloaded notation Inc(x) to denote the
set of objects incident with an object x in a graph, where x may be either an
edge or a vertex. That is, if x is an edge, then Inc(x) represents the set of (at
most two) vertices which are the ends of edge x. On the other hand, if x is a
vertex, then Inc(x) represents the set of edges which have vertex x as an end.

Let G = 〈V,E〉 be a graph and A be a subset of E. We define the “parity
protocol” PA over G as follows. The set of values of any edge e in graph G is the
set of boolean functions on the ends of e (each loop edge is assumed to have a
single end). Thus, a run r of the protocol will be a function that maps an edge
into a function from the ends of this edge into boolean values: r(e)(v) ∈ {0, 1},
where e is an edge and v is an end of e. It will be more convenient, however, to
think about a run as a two-argument function r(e, v) ∈ {0, 1}.

Not all assignments of boolean values to the ends of an edge e will be permit-
ted in the parity protocol. Namely, if e /∈ A, then the sum of all values assigned to
the ends of e must be even. This is formally captured by the following condition:∑

v∈Inc(e)

r(e, v) ≡ 0 (mod 2). (5)

This means that if an edge e /∈ A has two ends, then the values assigned to
its two ends must be equal. If edge e /∈ A is a loop edge and, thus, has only one
end, then the value assigned to this end must be 0. However, if e ∈ A, then no
restriction on the assignment of boolean values to the ends of e will be imposed.
This defines the set of values M(e) for each edge e under PA.

The second restriction on the runs will require that the sum of all values
assigned to ends incident with any vertex v is also even:∑

e∈Inc(v)

r(e, v) ≡ 0 (mod 2). (6)

0

11

1

11

0

1

0 0

1

1

Fig. 4. A run.

The latter restriction specifies the action relation ∆v for
each vertex v. We will graphically represent a run by placing
boolean values at each end of each edge of the graph. For ex-
ample, Figure 4 depicts a possible run of the parity protocol
PA with A = {c, b, g} over the graph G0 from Figure 1.

The finite protocol PA is now completely defined, but
we still need to prove that it satisfies the continuity condi-
tion from Definition 1. This is true, however, only under an
additional assumption:

Lemma 4. If set A is such that it contains a loop edge for
each sink of graph G, then PA satisfies the continuity con-
dition.

Proof. As long as a vertex has at least one outgoing edge
whose boolean value is not fixed, this value an be adjusted
to satisfy condition (6). The only edges that have fixed values
are loop edges that do not belong to set A. ut

Recall that we use the notation Inc(x) to denote the set
of objects incident with either an edge x or a vertex x.

Lemma 5.
∑
e∈A

∑
v∈Inc(e) r(e, v) ≡ 0 (mod 2), for any run r of the parity

protocol PA.

Proof. Let G = 〈V,E〉. Using equations (6) and (5),∑
e∈A

∑
v∈Inc(e)

r(e, v) ≡
∑
e∈E

∑
v∈Inc(e)

r(e, v)−
∑

e∈E\A

∑
v∈Inc(e)

r(e, v) ≡

≡
∑
v∈V

∑
e∈Inc(v)

r(e, v)−
∑
e/∈A

0 ≡
∑
v∈V

0− 0 ≡ 0 (mod 2).

Everywhere below, by a path we will mean a sequence of edges that form a
simple (undirected) path.

Definition 9. For any path π = e0, e1, . . . , en in a graph G and any run r of
the parity protocol PA, we define run rπ as

rπ(e, v) =

{
1− r(e, v) if v ∈ Inc(ei) ∩ Inc(ei+1) for some i < n,
r(e, v) otherwise.

Informally, rπ is obtained from r by “flipping” the boolean values on path π at
π’s “internal” vertices. If a path is cyclic, then all vertices along this path are
considered to be internal.

Lemma 6. For any r ∈ PA and any path π, if π is a cycle or starts and ends
with edges that belong to set A, then rπ ∈ R(PA).

Proof. Run rπ satisfies condition (5) because rπ is different from r at both ends
of any non-terminal edge of path π. The same run rπ satisfies condition (6) at
every vertex v of the graph, because path π includes either zero or two ends of
edges incident at vertex v. ut

Lemma 7. If |A| > 1 and graph G is connected, then for any e ∈ A and any
g ∈ {0, 1} there is a run r ∈ R(PA) such that

∑
v∈Inc(e) r(e, v) ≡ g (mod 2).

Proof. Let r̂(e, v) be a run of the protocol PA which is equal to 0 for each end
v of each edge e. If g = 0, then r̂ is the required run r. Assume now that g = 1.
Since |A| > 1 and graph G is connected, there is a path π that connects edge e
with an edge a ∈ A such that a 6= e. Notice that r̂π is the desired run r, since∑
v∈Inc(e) r̂π(e, v) =

∑
v∈Inc(e) r̂(e, v) + 1 ≡ g (mod 2). ut

Lemma 8. If |A| > 1 and graph G is connected, then PA 2 [A].

Proof. Let A = {a1, . . . , ak}. Pick any boolean values g1, . . . , gk such that g1 +
· · · + gk ≡ 1 (mod 2). By Lemma 7, there are runs r1, . . . , rk ∈ R(PA) such
that

∑
v∈ai ri(ai, v) ≡ gi (mod 2) for any i ≤ k. If PA � [A], then there is a run

r ∈ R(PA) such that r(ai, v) = ri(ai, v) for each v ∈ ai and each i ≤ k. Therefore,∑
v∈a1 r(a1, v)+ · · ·+

∑
v∈ak r(ak, v) =

∑
v∈a1 r1(a1, v)+ · · ·+

∑
v∈ak rk(ak, v) ≡

g1 + · · ·+ gk ≡ 1 (mod 2). This contradicts Lemma 5. ut

Lemma 9. If A and B are sets of edges of a graph G = 〈V,E〉, such that each
connected component of the graph 〈V,E \B〉 contains at least one edge from A,
then PA � [B].

Proof. Let B = {b1, . . . , bk}. Consider any runs r1, . . . , rk ∈ R(PA). We will
prove that there is a run r ∈ R(PA) such that r(bi, v) = ri(bi, v) for any v ∈
Inc(bi) and any i ≤ k. We will start with a run r̂(e, v) equal to 0 for each end
v of each edge e and modify it to satisfy the condition r̂(bi, v) = ri(bi, v) for
every i ≤ k and every v ∈ Inc(bi). Our modification will consist of repeating
the following procedure for each i ≤ k and each v ∈ Inc(bi) such that r̂(bi, v) 6=
ri(bi, v):

1. If bi ∈ A, then, by the assumption of the lemma, there must be a path
a0,e1,e2,. . . , en in the graph 〈V,E \ B〉 that connects an edge a0 ∈ A with
vertex v. Consider path π = a0,e1,e2, . . . , en, bi in graph G. By Lemma 6,
r̂π ∈ R(PA). Note that r̂π matches r̂ exactly on both ends of each edge bj ,
where j 6= i. Furthermore, if bi is not a loop edge, then r̂π also matches r̂
exactly on the end of edge bi which is not incident with vertex v. However,
r̂π(bi, v) = 1− r̂(bi, v) = ri(bi, v), as desired. Pick r̂π to be the new r̂.

2. If bi /∈ A, then, by (5),
∑
v∈Inc(bi) r̂(bi, v) ≡ 0 ≡

∑
v∈Inc(bi) ri(bi, v) (mod 2).

At the same time, by our assumption, r̂(bi, v) 6= ri(bi, v). Thus another end
u ∈ Inc(bi) must exist and be such that u 6= v and r̂(bi, u) 6= ri(bi, u). Note
that vertices u and v may belong to either the same connected component or
to two different connected components of graph 〈V,E \B〉. We will consider
these two subcases separately.
(a) Suppose u and v belong to the same connected component of graph
〈V,E \B〉. Thus, there must be a path π′ in that graph which connects
an edge containing vertex u with an edge containing v. Now, consider
a cyclic path in graph G = 〈V,E〉 that starts at edge bi, via vertex u
connects to path π′, goes through the whole path π′, and via vertex v
connects back to bi. Call this cyclic path π.

(b) Suppose u and v belong to different connected components of graph
〈V,E \ B〉. Thus, by the assumption of the lemma, graph 〈V,E \ B〉
contains a path πu = au, . . . , eu that connects an edge au ∈ A with an
edge eu containing end u. By the same assumption, graph 〈V,E\B〉must
also contain a path πv = ev, . . . , av that connects an edge ev, containing
end v, with an edge av ∈ A. Let π = πu, bi, πv.

Note that r̂π matches r̂ exactly on all ends of each edge bj where j 6= i.
However, r̂π(bi, v) = 1−r̂(bi, v) = ri(bi, v), as desired. In addition, r̂π(bi, u) =
1 − r̂(bi, u) = ri(bi, u). Furthermore, by Lemma 6, r̂π ∈ R(PA). Pick r̂π to
be the new r̂.

Let r be r̂ with all the modifications described above. These modifications guar-
antee that r(bi, v) = r̂(bi, v) = ri(bi, v) for each i ≤ k and each v ∈ bi. ut

7.2 Recursive Construction

In this section we will generalize the parity protocol through a recursive con-
struction. First, however, we will establish a technical result that we will need
for this construction.

Lemma 10 (protocol extension). For any cut (X,Y) of graph G = 〈V,E〉
and any finite protocol P ′ on truncation GX , there is a finite protocol P on G
such that for any set Q ⊆ E, P � [Q] if and only if P ′ � [Q ∩ E(GX)].

Proof. To define protocol P we need to specify a set of values M(e) for each edge
e ∈ E and the set of action relations for each vertex p in graph G. If e ∈ E(GX),
then let M(e) be the same as in protocol P. Otherwise, M(e) = {ε}, where ε is
an arbitrary element. The action relations at the vertices in X are as in protocol
P ′, and the action relations at the vertices in Y are equal to the boolean constant
True. It is easy to see that because the continuity condition in Definition 1 holds
for P ′, it also holds for P. This completes the definition of P.
(⇒) : Suppose that Q∩E(GX) = {q1, . . . , qk}. Consider any r′1, . . . , r

′
k ∈ R(P ′).

Define runs r1, . . . , rk as follows. For any edge e:

ri(e) =

{
r′i(e) if e ∈ E(GX),
ε if e /∈ E(GX).

Note that runs ri and r′i, by definition, are equal on any edge incident with any
vertex in graph GX . Thus, ri satisfies the action relations at any such vertex.
Hence, since the action relations at all other vertices are trivially satisfied, ri ∈
R(P) for each i ∈ {1, . . . , k}. By the continuity condition in Definition 1 and
the fact that G is acyclic, there must be at least one run of protocol P (even if
k = 0). Call this run r0. By the assumption that P � [Q], there is a run r ∈ R(P)
such that for any edge e,

r(e) =

{
ri(e) if e = qi,
r0(e) if e ∈ Q \ E(GX).

Define r′ to be a restriction of r on graph GX . Note that r′ satisfies all action
relations of P ′. Thus, r′ ∈ R(P ′). At the same time, r′(qi) = ri(qi) = r′i(qi).
(⇐) : Suppose that Q = {q1, . . . , qk}. Consider any runs r1, . . . , rk ∈ R(P),
and let r′1, . . . , r

′
k be their respective restrictions to graph GX . Since, for any

i ∈ {1, . . . , k}, run r′i satisfies the action relations of P ′ at any vertex of GX , we
can conclude that r′1, . . . , r

′
k ∈ R(P ′). By the assumption that P ′ � [Q∩E(GX)],

there is a run r′ ∈ R(P ′) such that r′(qi) = r′i(qi) for any i such that qi ∈
Q ∩ E(GX). In addition, r′(q) = ε = r′i(q) for any q ∈ Q\E(GX). Hence,
r′(qi) = r′i(qi) for any i ∈ {1, . . . , k}. For any edge e, define run r as follows:

r(e) =

{
r′(e) if e ∈ E(GX),
ε if e /∈ E(GX).

Note that r satisfies the action relations of P at all vertices. Thus, r ∈ R(P). In
addition, r(qi) = r′(qi) = r′i(qi) for all i ∈ {1, . . . , k}. ut

We will now prove another key lemma in our construction. The proof of this
lemma recursively defines a generalization of the parity protocol.

Lemma 11. For any sets A,B1, . . . , Bn of edges of G, if G 0
∧

1≤i≤n[Bi]→ [A],
then there is a finite protocol P over G such that P � [Bi] for all 1 ≤ i ≤ n and
P 2 [A].

Proof. We use induction on the number of vertices of graph G.
Case 1. If |A| ≤ 1, then, by the Small Set axiom, G ` [A]. Hence, G `∧

1≤i≤n[Bi]→ [A], which is a contradiction.
Case 2. Suppose that the edges of graph G can be partitioned into two non-
trivial disconnected sets X and Y . That is, no edge in X is adjacent with a
edge in Y . Thus, the empty set is a gateway between A ∩X and A ∩ Y . By the
Gateway axiom, G ` [A ∩ X] → ([A ∩ Y] → [A]). Hence, taking into account
the assumption G 0

∧
1≤i≤n[Bi] → [A], either G 0

∧
1≤i≤n[Bi] → [A ∩ X] or

G 0
∧

1≤i≤n[Bi]→ [A∩Y]. Without loss of generality, we will assume the former.
By Theorem 1, G 0

∧
1≤i≤n[Bi ∩X]→ [A∩X]. Consider the sets PX and PY of

all vertices in components X and Y respectively. Note that (PX , PY) is a cut of
G that has no crossing edges. Let GX be the result of the truncation of G along
this cut. By the Directed Truncation rule, GX 0

∧
1≤i≤n[Bi ∩X]→ [A∩X]. By

the Induction Hypothesis, there is a protocol P ′ on GX such that P ′ 2 [A ∩X]

and P ′ � [Bi ∩X], for any i ≤ n. Therefore, by Lemma 10, there is a protocol
P on G such that P 2 [A] and P � [Bi] for any i ≤ n.
Case 3. Suppose that graph G has a non-trivial directed cut (X,Y) such that
E(Y) ∩ A = ∅. Thus, by Theorem 1, G 0

∧
1≤i≤n[Bi ∩ E(X)] → [A]. By the

Directed Truncation rule, GX 0
∧

1≤i≤n[Bi ∩ E(X)] → [A]. By the Induction
Hypothesis, there is a protocol P ′ over GX such that P ′ � [Bi ∩ E(X)] for all
1 ≤ i ≤ n and P ′ 2 [A]. Therefore, by Lemma 10, there is a protocol P on G
such that P 2 [A] and P � [Bi] for any i ≤ n.
Case 4. Suppose there is i0 ≤ n such that if all edges in Bi0 are removed from
graph G, then at least one connected component of the resulting network G′

does not contain an element of A. We will denote this connected component by
Q. Let W ⊆ Bi0 be the set of edges in G that connect a vertex from Q with a
vertex not in Q. Any path connecting a edge in E(Q) with a edge not in E(Q)
will have to contain a edge from W . In other words, W is a gateway between
E(Q) and the complement of E(Q) in G. Hence, W is also a gateway between
A∩E(Q) and A \E(Q). Therefore, by the Gateway axiom, taking into account
that (A ∩ E(Q)) ∩W ⊆ E(Q) ∩W = ∅,

G ` [A ∩ E(Q),W]→ ([A \ E(Q)]→ [A]). (7)

Recall now that by the assumption of this case, component Q of graph G′ does
not contain any elements of A. Hence, A ∩ E(Q) ⊆ Bi0 . At the same time,
W ⊆ Bi0 . Thus, from statement (7) and Theorem 1,

G ` [Bi0]→ ([A \ E(Q))]→ [A]). (8)

By the assumption of the lemma,

G 0
∧

1≤i≤n

[Bi]→ [A]. (9)

From statements (8) and (9), G 0
∧

1≤i≤n[Bi] → [A \ E(Q))]. By the laws of

propositional logic, G 0 [Bi0] → (
∧

1≤i≤n[Bi] → [A \ E(Q)]). Note that if Q

is the complement of set Q, then (Q,Q) is a cut of graph G and W is the set
of all crossing edges of this cut. Since W ⊆ Bi0 , by Theorem 1, G 0 [W] →
(
∧

1≤i≤n[Bi] → [A \ E(Q)]). Again by Theorem 1, G 0 [W] → (
∧

1≤i≤n[Bi \
E(Q)] → [A \ E(Q)]). Let GQ be the truncation of graph G along the cut

(Q,Q). By the Truncation rule, GQ 0
∧

1≤i≤n[Bi \ E(Q)]→ [A \ E(Q)].
By the Induction Hypothesis, there is a protocol P ′ on GQ such that P ′ 2

[A \ E(Q)] and P ′ � [Bi \ E(Q)] for any i ≤ n. Therefore, by Lemma 10, there
is a protocol P on G such that P 2 [A] and P � [Bi] for any i ≤ n.
Case 5. Assume now that (i) |A| > 1, (ii) graph G is connected, (iii) graph G
has no non-trivial directed cuts (X,Y) such that E(Y) ∩ A = ∅, and (iv) for
any i ≤ n, if graph G′ is obtained from G by the removal of all edges in Bi then
each connected component of G′ contains at least one element of A. Note that
condition (iii) implies that A contains at least one loop edge at every sink vertex
in graph G. Consider the parity protocol PA over G. By Lemma 8, PA 2 [A]. By
Lemma 9, PA � [Bi] for any i ≤ n. ut

7.3 Protocol Composition

In this section, we define a composition of several protocols and finish the proof
of the completeness theorem.

Definition 10. For any protocols P1 = (M1, ∆1), . . . ,Pn = (Mn, ∆n) over a
graph G, we define the Cartesian composition P1 × P2 × · · · × Pn to be a pair
(M,∆) such that

1. M(e) = M1(e)× · · · ×Mn(e),
2. ∆p(〈e11, . . . , en1 〉, . . . , 〈e1k, . . . , enk 〉) =

∧
1≤i≤n∆

i
p(e

i
1, . . . , e

i
k).

For each composition P = P1 × P2 × · · · × Pn, let {r(e)}i denote the ith com-
ponent of the value of secret e over run r.

Lemma 12. For any n > 0 and any finite protocols P1, . . . ,Pn over a graph G,
P = P1 × P2 × · · · × Pn is a finite protocol over G.

Proof. The validity of the continuity condition for P follows from the continuity
conditions for protocols P1, . . . ,Pn. ut

Lemma 13. For any n > 0, for any protocol P = P1×P2×· · ·×Pn over a graph
G = 〈V,E〉, and for any set of edges Q, P � [Q] if and only if ∀i (Pi � [Q]).

Proof. Let Q = {q1, . . . , q`}.
(⇒) : Assume P � [Q] and pick any i0 ∈ {1, . . . , n}. We will show that Pi0 � [Q].
Pick any runs r′1, . . . , r

′
` ∈ R(Pi0). For each i ∈ {1, . . . , i0−1, i0+1, . . . , n}, select

an arbitrary run ri ∈ R(Pi). Such runs exist because graph G is acyclic and all
protocols satisfy the continuity condition. We then define a series of composed
runs rj for j ∈ {1, . . . , `} by

rj(e) = 〈r1(e), . . . , ri0−1(e), r′j(e), r
i0+1(e), . . . , rn(e)〉,

for each edge e ∈ E. Since the component parts of each rj belong in their
respective sets R(Pi), the composed runs are themselves members of R(P). By
our assumption, P � [Q], thus there is r ∈ R(P) such that r(qi) = ri(qi) for
any i0 ∈ {1, . . . , `}. Finally, we consider the run r∗, where r∗(e) = {r(e)}i0
for each e ∈ E. That is, we let the value of r∗ on e be the itho component of
r(e). By the definition of composition, r∗ ∈ R(Pi0), and it matches the original
r′1, . . . , r

′
` ∈ R(Pi0) on edges q1, . . . , q`, respectively. Hence, we have shown that

Pi0 � [Q].
(⇐) : Assume ∀i (Pi � [Q]). We will show that P � [Q]. Pick any runs
r1, . . . , r` ∈ R(P). For each i ∈ {1, . . . , n}, each j ∈ {1, . . . , `}, and each edge e,
let rij(e) = {rj(e)}i. That is, for each e, define a run rij whose value on edge e
equals the ith component of rj(e). Note that by the definition of composition,
for each i and each j, rij is a run in R(Pi). Next, for each i ∈ {1, . . . , n}, we use

the fact that Pi � [Q] to construct a run ri ∈ R(Pi) such that ri(qj) = rij(qj).

Finally, we compose these n runs r1, . . . , rn to get run r ∈ R(P). We note that
the value of each edge qj on r matches the the value of qj in run rj ∈ R(P),
demonstrating that P � [Q]. ut

We are now ready to prove the completeness theorem, which was stated
earlier as Theorem 6:

Theorem 6. For any graph G = 〈V,E〉, if P � φ for all finite protocols P over
G, then G ` φ.

Proof. We give a proof by contradiction. Let X be a maximal consistent set of
formulas from Φ(G) that contains ¬φ. Let {A1, . . . , An} = {A ⊆ E | [A] /∈ X}
and {B1, . . . , Bk} = {B ⊆ E | [B] ∈ X}. Thus, due to the maximality of set
X, we have G 0

∧
1≤j≤k[Bj]→ [Ai], for every i ∈ {1, . . . , n}. We will construct

a protocol P such that P 2 [Ai] for any i ∈ {1, . . . , n} and P � [Bj] for any
j ∈ {1, . . . , k}.

First consider the case where n = 0. Pick any symbol ε and define P to be
〈M,∆〉 such that M(e) = {ε} for any e ∈ E and action relation ∆p to be the
constant True at any vertex p. By Definition 4, P � [C] for any C ⊆ E.

We will assume now that n > 0. By Theorem 11, there are finite protocols
P1, . . . ,Pn such that Pi 2 [Ai] and Pi � [Bj] for all j ∈ {1, . . . , k}. Consider
the composition P of protocols P1, . . . ,Pn. By Theorem 13, P 2 [Ai] for any
i ∈ {1, . . . , n} and P � [Bj] for any j ∈ {1, . . . , j}.

Since X is a maximal consistent set, by induction on the structural complex-
ity of any formula ψ ∈ Φ(G), one can show now that ψ ∈ X if and only if P � ψ.
Thus, P � ¬φ. Therefore, P 2 φ, which is a contradiction. ut

Corollary 1. The set {(G,φ) | G ` φ} is decidable.

Proof. The complement of this set is recursively enumerable due to the com-
pleteness of the system with respect to finite protocols. ut

8 Conclusion

In this paper, we captured the properties of information flow that can be de-
scribed in terms of the independence relation [A]. This is not the only relation
that can be used to describe properties of information flow on a graph. Another
natural relation is the functional dependency relation ABB between two sets of
edges. This relation is true if the values of edges in set A functionally determine
the values of all edges in set B. A complete axiomatization of this relation when
graph G is not fixed was given by Armstrong [5]. This logical system has be-
come known in the database literature as Armstrong’s axioms [6, p. 81]. Beeri,
Fagin, and Howard [7] suggested a variation of Armstrong’s axioms that describe
properties of multi-valued dependency.

A complete axiomatization of relation ABB for a fixed undirected graph was
given by More and Naumov [8]. It consists of Armstrong’s axioms and a version
of the Gateway axiom discussed in this paper, but contains no inference rules
other than Modus Ponens. It appears, however, that this result can not be easily
generalized to directed acyclic graphs. Thus, an axiomatization of relation ABB
for directed acyclic graphs remains an open problem.

References

1. Sutherland, D.: A model of information. In: Proceedings of Ninth National Com-
puter Security Conference. (1986) 175–183

2. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1) (2008) 1–47

3. Miner More, S., Naumov, P.: On interdependence of secrets in collaboration net-
works. In: Proceedings of 12th Conference on Theoretical Aspects of Rationality
and Knowledge (Stanford University, 2009). (2009) 208–217

4. Miner More, S., Naumov, P.: Hypergraphs of multiparty secrets. In: 11th Inter-
national Workshop on Computational Logic in Multi-Agent Systems CLIMA XI
(Lisbon, Portugal), LNAI 6245, Springer (2010) 15–32

5. Armstrong, W.W.: Dependency structures of data base relationships. In: Informa-
tion processing 74 (Proc. IFIP Congress, Stockholm, 1974). North-Holland, Ams-
terdam (1974) 580–583

6. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.
Second edn. Prentice-Hall (2009)

7. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD ’77: Proceedings of
the 1977 ACM SIGMOD international conference on Management of data, New
York, NY, USA, ACM (1977) 47–61

8. More, S.M., Naumov, P.: Functional dependence of secrets in a collaboration net-
work. CoRR arXiv:1011.0399v1 [cs.LO] (2010)

