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Abstract

We explicitly determine the skew-symmetric eigenvectors and corresponding
eigenvalues of the real symmetric Toeplitz matrices

T = T (a, b, n) := (a+ b|j − k|)1≤j,k≤n

of order n ≥ 3 where a, b ∈ R, b 6= 0. The matrix T is singular if and only
if c := a

b
= −n−1

2
. In this case we also explicitly determine the symmetric

eigenvectors and corresponding eigenvalues of T . If T is regular, we explicitly
compute the inverse T−1, the determinant detT , and the symmetric eigen-
vectors and corresponding eigenvalues of T are described in terms of the roots
of the real self-inversive polynomial pn(δ; z) := (zn+1−δzn−δz+1)/(z+1) if
n is even, and pn(δ; z) := zn+1−δzn−δz+1 if n is odd, δ := 1+2/(2c+n−1).
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1. Introduction, main results

For a, b ∈ R, b 6= 0, and n ∈ N≥3 we consider the real symmetric Toeplitz
matrices T = T (a, b, n) := (a + b|j − k|)1≤j,k≤n of order n. For example,
subclasses of these matrices occur in the literature as test-matrices for com-
putational algorithms for the inversion of symmetric matrices. For instance,
the matrices T (n,−1, n) = (n − |j − k|)1≤j,k≤n occur in the matrix collec-
tions of Gregory and Karney [6], pp. 31,32, and Westlake [16], p. 137, both

Preprint submitted to Linear Algebra and its Applications July 30, 2014



referring to Lietzke and Stoughton [11], where the analytical inverse is given.
Todd [13], pp. 31-35, describes the matrices T (0, 1, n) = (|j − k|)1≤j,k≤n in
detail. Again the analytical inverse is explicitly constructed, which can be
deduced from a matrix inversion formula given by Fiedler for the even more
general class of symmetric matrices C = (cmax(j,k) − cmin(j,k))1≤j,k≤n where
c1, . . . , cn ∈ R satisfy ci 6= ci+1 for i ∈ {1, . . . , n − 1} and cn 6= c1 (see [13],
p. 32). Also asymptotic bounds for the eigenvalues T (0, 1, n) are discussed
in [13].

By other means Bogoya, Böttcher, and Grudsky [1] investigated the more
general class of Hermitian n×n Toeplitz matrices Tn = Tn[a0, a1, ...an−1] with
polynomially increasing first row entries ak = p(k), k = 0, ..., n − 1, where
p(x) =

∑α
i=0 pix

i is some polynomial of degree α ∈ N. 1 Besides establishing
general spectral properties of these matrices they derive special results for
the linear case p(x) = a+ bx in which Tn equals T (a, b, n).

We will give a unified approach and closed formulas for inverses, deter-
minants, eigenvalues, and eigenvectors of the matrices T (a, b, n) which, as
an application, will sharpen the corresponding results in [1]. Doing this, we
use results of Yueh [18], Yueh and Cheng [19], and Willms [17] concerning
eigenvalues and eigenvectors of tridiagonal matrices with perturbed corners.

Clearly, since T (a, b, n) = b · T (a
b
, 1, n), it suffices to consider the matri-

ces T (c, n) := T (c, 1, n), c ∈ R. The main results that we will prove in the
subsequent sections are now formulated.

Theorem 1. The matrix T := T (c, n) = (c + |j − k|)1≤j,k≤n, c ∈ R, n ∈ N,
is regular if and only if c 6= −n−1

2
. In this case and if n ≥ 3, then

T−1 = −1

2


1− τ −1 −τ
−1 2 −1

. . . . . . . . .

−1 2 −1
−τ −1 1− τ

 with τ :=
1

2c+ n− 1
. (1)

In general, for every c and every n, we have

detT = (−1)n−12n−2(2c+ n− 1). (2)

1These matrices themselves build a subclass of the even more general class of generalized
Kac-Murdock-Szegö matrices introduced and analyzed by Trench [14].
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For a, b ∈ R, b 6= 0, c := a
b
, Theorem 1 implies

detT (a, b, n) = bn detT (c, n)

= (−2b)n−1b

(
c+

n− 1

2

)
= (−2b)n−1

(
a+ b · n− 1

2

)
. (3)

As an application, we immediately see that according to Sylvester’s criterion
T (a, b, n) is positive definite if and only if

b < 0 and c < −n− 1

2

(
or equivalently a > −b · n− 1

2

)
. (4)

In [1], Theorem 1.3 a), it was proved that the matrices T := T (R,−h, n),
R, h ∈ R>0, n ∈ N, are positive definite if

sn := R(2n− 1)− hn(n− 1) ≥ h

4
.

This condition is equivalent to

R

h
− n− 1

2
≥ 1

2n

(
R

h
+

1

4

)
which by (4) with a := R, b := −h, c := −R

h
can be weakened to

R

h
− n− 1

2
> 0. 2

Real symmetric Toeplitz-matrices of order n ∈ N possess an orthogonal
basis of eigenvectors consisting of bn

2
c skew-symmetric and n−bn

2
c symmet-

ric eigenvectors where a vector v = (v1, . . . , vn)t ∈ Rn is called symmetric
if vk = vn+1−k and skew-symmetric if vk = −vn+1−k for all k ∈ {1, . . . , n}
(see [2], Theorem 2). The following theorem distinguishes between these two
kinds of eigenvectors of regular matrices T (c, n).

2Thanks to Prof. A. Böttcher, TU Chemnitz, for noting this application of Theorem 1.
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Theorem 2. Let T := T (c, n) = (c+|j−k|)1≤j,k≤n, c ∈ R\{−n−1
2
}, n ∈ N≥3,

m := bn/2c.

a) The eigenvalues λk of T corresponding to skew-symmetric eigenvectors

v(k) = (v
(k)
1 , . . . , v

(k)
n )t ∈ Rn, k ∈ {1, . . . ,m}, are

λk =

(
−1 + cos

(2k − 1)π

n

)−1
. (5)

The components of v(k) can be scaled to

v
(k)
j = −v(k)n+1−j =

{
cos

(j− 1
2
)(2k−1)π
n

if j ≤ m,
0 if j = m+ 1 and n is odd,

(6)

for j ∈ {1, . . . ,m}.
b) The eigenvalues µk of T corresponding to symmetric eigenvectors

w(k) = (w
(k)
1 , . . . , w

(k)
n )t ∈ Rn, k ∈ {1, . . . , n−m}, are

µk = (−1 + cos θk)
−1 (7)

where zk = eiθk , θk ∈ R := (0, π] ∪ iR>0 ∪ π + iR>0, i :=
√
−1, are

n − m pairwise distinct roots of the real self-inversive polynomial 3 of
degree 2(n−m)

pn(δ; z) :=

 zn+1−δzn−δz+1
z+1

= zn + (1 + δ)
n−1∑
j=1

(−z)j + 1 if n is even,

zn+1 − δzn − δz + 1 if n is odd,

(8)

with δ := 1 + 2
2c+n−1 ∈ R\{1}. Equivalently, the θk are the distinct zeros

in R of the trigonometric function

Pn(δ; θ) :=


1

cos θ
2

(
cos (n+1)θ

2
− δ cos (n−1)θ

2

)
if n is even,

cos (n+1)θ
2
− δ cos (n−1)θ

2
if n is odd.

(9)

3A real polynomial p(z) =
∑n

k=0 pkz
k of degree n ∈ N0 is called self-inversive if p∗(z) :=

znp(1/z) =
∑n

k=0 pn−kz
k = ±p(z). Roots of self-inversive polynomials occur in reciprocal

pairs z, z−1 ∈ C\{0}.
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The eigenvectors w(k) can be scaled to

w
(k)
m+j = w

(k)
n−m+1−j =


cos(j − 1

2
)θk if n is even and θk 6= π,

(−1)j−1(2j − 1) if n is even and θk = π,
cos(j − 1)θk if n is odd,

(10)

j ∈ {1, . . . , n −m}. Moreover, pn(δ; z) possesses a root zk = −1, that is
θk = π for some k, if and only if one of the following two cases holds true:

(i) n is even and δ = −n+1
n−1 , i.e., c = −n

2
+ 1

2n
,

(ii) n is odd and δ = −1, i.e., c = −n
2
.

In both cases the remaining zk′ are roots of pn(δ; z)/(z + 1)2.

The location of the roots of the polynomials pn(δ; z) defined in (8) is elu-
cidated in the sequel. The proof of these facts is, although straightforward,
quite technical and therefore placed in the appendix. The stated inclusions
of the roots might be helpful from a numerical point of view for choosing
appropriate starting points of a Newton’s method for finding numerical ap-
proximations of the roots. Figure 1 clarifies the distinguished cases.

Let n ∈ N≥3, m := bn/2c, δ ∈ R, and p(z) := pn(δ; z) be the polyno-
mial of degree 2(n−m) defined in (8). Since pn(δ; z) is self-inversive of even
degree, its roots occur in pairs (zk, z

−1
k ), k = 1, . . . , n − m, with zk = eiθk ,

θk ∈ C, Re(θk) ∈ [0, π], Im(θk) ∈ R≥0, for k = 1, . . . , n −m. Suppose that
the roots are ordered such that Re(θ1) ≤ Re(θ2) ≤ · · · ≤ Re(θn−m).

P1) If δ = 0, then θk = 2k−1
n+1

π, k = 1, . . . , n−m. 4

P2) If δ = 1, then θk = 2(k−1)
n

π, k = 1, . . . , n−m. In particular, z1 = 1 is a
double root of pn(δ; z). 5

P3) If δ = −1, then θk = 2k−1
n
π, k = 1, . . . , n−m.

P4) If δ → ±∞, then θ1 → i · (+∞), that is z1 → 0, and θk → 2k−3
n−1 π,

k = 2, . . . , n−m.

P5) If δ ∈ (0, 1), then θk ∈
(

2(k−1)
n

π, 2k−1
n+1

π
)

, k = 1, . . . , n−m.

P6) If δ ∈ (−1, 0), then θk ∈
(
2k−1
n+1

π, 2k−1
n
π
)
, k = 1, . . . , n−m.

4This corresponds to c = −n+1
2 in Theorem 2 b).

5In Theorem 2 b) δ = 1 + 2
2c+n−1 does not attain the value δ = 1. We do not exclude

this case here since it corresponds to the asymptotic cases c→ ±∞.
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P7) If δ ∈ (1,∞), then θ1 ∈ i·(0,∞), i.e., z1 ∈ (0, 1), and θk ∈
(

2k−3
n−1 π,

2(k−1)
n

π
)

,

k = 2, . . . , n−m.

P8) If δ ∈ (−∞,−1), then θk ∈
(
2k−1
n
π, 2k−1

n−1 π
)

for k = 1, . . . , n−m−1. If n is

odd or δ ∈ (−∞,−n+1
n−1), then θn−m ∈ π+i·(0,∞), that is zn−m ∈ (−1, 0).

If n is even and δ ∈
(
−n+1
n−1 ,−1

)
, then θm = θn−m ∈

(
n−1
n
π, π

)
. If n is

even and δ = −n+1
n−1 , then θm = π.

In general: for odd n if |δ| < 1, then all n+1 roots of p(z) have modulus 1
and are non-real and simple. If δ = ±1, then p(z) has n− 1 non-real simple
roots of modulus 1 and one double root z = δ. If |δ| > 1, then p(z) has
n − 2 non-real simple roots of modulus 1 and two simple real roots z, z−1

with sign(z) = sign(δ). For even n if δ ∈ (−n+1
n−1 , 1), then all n roots of p(z)

have modulus 1 and are non-real and simple. If δ ∈ {−n+1
n−1 , 1}, then p(z) has

n − 2 non-real simple roots of modulus 1 and one double root z = sign(δ).
If δ ∈ R\[−n+1

n−1 , 1], then p(z) has n − 2 non-real simple roots of modulus 1
and two simple real roots z, z−1 with sign(z) = sign(δ). Moreover, in the
cases P5) to P8) the real angles θk = θk(δ) and the real roots z1 = z1(δ)
[case P7)], zn−m = zn−m(δ) [case P8)] are monotonically decreasing functions
of δ moving from the upper interval boundary to the lower with speed

θ′k(δ) =
cos (n−1)θk(δ)

2

−n+1
2

sin (n+1)θk(δ)
2

+ (n−1)δ
2

sin (n−1)θk(δ)
2

6= 0, (11)

for all k = 1, . . . , n−m. In particular,

lim
δ↑1

(cos θ1(δ))
′ = lim

δ↓1
(cos θ1(δ))

′ =
1

n
. (12)

The inclusions for the real roots z1, zn−m of pn(δ, z) in the cases P7) and
P8) respectively can be sharpened by using standard bounds for roots of real
polynomials, for example Cauchy’s bound.

P7’) ζ := z−11 ∈ (δ, δ + ρ] with ρ := min(1,
√
δ2 − 1).

P8’) If n is odd, then ζ := z−1m+1 ∈ [δ−ρ, δ) with ρ := min(1,
√
δ2 − 1). If n is

even and δ < −n+1
n−1 , then ζ := z−1m ∈ (δ, δ+ρ) with ρ := min(1, |δ+ 1|).

As an application, for T (0, 1, n) Theorem 2 and P7) with c := 0 and
δ = n+1

n−1 ∈ (1,∞) show that T (0, 1, n) has exactly one positive eigenvalue

α1 := µ1 = (−1 + cosh |θ1|)−1 (13)
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Figure 1: Location of the roots z1, . . . , zn−m corresponding to the cases P5) to P8)
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and n− 1 negative eigenvalues

αi = (−1 + cos βi)
−1 < −1

2
(14)

for suitable angles βi ∈ (0, π), i = 2, ..., n. This proves a numerical observa-
tion stated in [1], p. 272, and sharpens Theorem 1.2 b) of that paper where
the weaker upper bound −1/4 for the negative eigenvalues of T (0, 1, n) was
given.

The next theorem explicitly states the eigenvalues and eigenvectors of the
singular matrices T (−n−1

2
, n).

Theorem 3. Let T := T (−n−1
2
, n) = (−n−1

2
+ |j − k|)1≤j,k≤n, n ∈ N≥3, and

m := bn/2c.

a) The skew-symmetric eigenvectors and corresponding eigenvalues of T are
the same as in the regular case stated in Theorem 2 a).

b) For k ∈ {1, . . . , n−m}

µk :=

{ (
−1 + cos (2k−1)π

n−1

)−1
if k ∈ {1, . . . , n−m− 1},

0 if k = n−m,
(15)

are the eigenvalues of T corresponding to symmetric eigenvectors
w(k) = (w

(k)
1 , . . . , w

(k)
n )t where

w
(k)
m+j = w

(k)
n−m+1−j =


cos

(j− 1
2
)(2k−1)π
n−1 if n is even, 1 ≤ k ≤ m− 1,

cos (j−1)(2k−1)π
n−1 if n is odd, 1 ≤ k ≤ m,

δn−m,j if k = n−m,6
(16)

for j ∈ {1, . . . , n−m}.

In particular, T has rank n − 1 and the 1-dimensional kernel is spanned by
the vector (1, 0, . . . , 0, 1)t ∈ Rn.

Now we deduce some consequences of the above results concerning the
multiplicities and the so-called Iohvidov parameters of the eigenvalues of the
matrices T (c, n). First we recall the less known definition of the Iohvidov

6Here δi,j is Kronecker’s delta.
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parameter of an eigenvalue of a real symmetric Toeplitz matrix. With a
column vector v = (v1, . . . , vn)t ∈ Rn, n ∈ N, we associate the polynomial
v(z) := (1, z, . . . , zn−1)v =

∑n
k=1 vkz

k−1 in the unknown z. If v is the eigen-
vector of some matrix T ∈ Rn,n, then we say that v(z) is an eigenpolynomial
of T . The following well-known description of eigenpolynomials of symmetric
Toeplitz matrices can be found in [5] and [8].

Theorem 4. Let T ∈ Rn,n be a symmetric Toeplitz matrix and λ ∈ R be
an eigenvalue of T of multiplicity m ∈ {1, . . . , n}. If r ∈ {0, . . . , n − 1} is
the largest integer such that λ is not an eigenvalue of the upper left r × r
submatrix Tr := (Tjk)1≤j,k≤r of T , then λ is a simple eigenvalue of Tr+1 and
the corresponding eigenpolynomial p(z) = p(T, λ; z) is self-inversive and can
be chosen to be monic. The Iohvidov parameter

l = l(T, λ) := (n−m− r)/2

of λ as an eigenvalue of T is a non-negative integer and the space of eigen-
polynomials of T corresponding to λ consists of all polynomials of the form
zlp(z)q(z) where q(z) is an arbitrary real polynomial of degree deg(q) ≤ m−1.

Corollary 5. Let T := T (c, n) := (c+ |j − k|)1≤j,k≤n, c ∈ R, n ∈ N≥3.

a) If c 6= −n
2
, then T has only simple eigenvalues. If c = −n

2
and n is even,

then all eigenvalues have multiplicity 2. If c = −n
2

and n is odd, then the
eigenvalue λ = b/2 of smallest absolute value (|λ| is the smallest singular
value) is simple and all others have multiplicity 2.

b) The eigenvalues of T corresponding to skew-symmetric eigenvectors have
Iohvidov parameter 0. If T is regular (c 6= −n−1

2
), then also all eigenvalues

corresponding to symmetric eigenvectors have Iohvidov parameter 0. If T
is singular (c = −n−1

2
), then all non-zero eigenvalues corresponding to

symmetric eigenvectors have Iohvidov parameter 1 and the eigenvalue 0
has Iohvidov parameter 0.

Finally, before proving these results, we want to point out the connection
to another class of real autocorrelation Toeplitz matrices. For m,n ∈ N≥2
the real symmetric n× n Toeplitz matrices

A = A(m,n) := (max(m− |j − k|, 0))1≤j,k≤n (17)
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are autocorrelation matrices of the discrete signals x := (
∑m

j=1 δj,k)k∈Z with
impulse length m. The corresponding autocorrelation function is Rxx(t) :=∑

j xjxj−t and Aj,k = Rxx(|j − k|) for j, k ∈ {1, . . . , n}. In particular, A is
positive-definite. To have a picture of the matrices A(m,n) in mind we state
the following examples:

A(7, 5) =


7 6 5 4 3
6 7 6 5 4
5 6 7 6 5
4 5 6 7 6
3 4 5 6 7

 , A(3, 5) =


3 2 1 0 0
2 3 2 1 0
1 2 3 2 1
0 1 2 3 2
0 0 1 2 3

 .
Another definition of A via its Laurent polynomial is

Aj,k =
1

2π

∫ π

−π
p(eiθ)p(e−iθ)e−i(j−k)θ dθ, j, k ∈ {1, . . . , n}

where p(z) := zm−1
z−1 =

∑m−1
k=0 z

k and i :=
√
−1. The matrix A is non-negative

and irreducible since its graph is strongly connected as Aj,j−1 = Ak,k+1 =
m − 1 6= 0 for j = 2, . . . , n and k = 1, . . . , n − 1. Hence, by the Perron-
Frobenius Theorem, the largest eigenvalue of A is simple. For m ≥ n− 1, we
have A(m,n) = T (m,−1, n) and therefore Theorem 2 implies, since m 6= n

2
,

that actually all eigenvalues of A(m,n) are simple. For m < n− 1, repeated
zeros occur in the upper right and lower left corner of A(m,n). Thus, for
growing n and constant m a band structure with bandwidth m − 1 is build
out. In this case the eigenvalues of A(m,n) are not simple in general. For
example, symbolic computations suggest that the matrices A(m,m(m− 1))
for m ≥ 4 have the eigenvalue 1 of multiplicity 2bm

2
c − 1.7 On the other

hand, numerical simulations support

Conjecture 6. The smallest eigenvalue of A is simple.

To the authors knowledge the interesting class of integral, symmetric,
positive definite, non-negative, and irreducible Toeplitz matrices A(m,n)
was explicitly treated for m ≤ n− 1 only by L. Rehnquist [12] who made an
approach to compute the inverses. Since the class A(m,n) has so many struc-
tural properties and such a tempting simple pattern from the purely matrix

7Thanks to Prof. S.M. Rump, TU Hamburg-Harburg, for pointing out this regular
behavior.
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theoretical point of view, we hope to encourage further research especially
on its spectrum.

2. Proof of Theorem 1

For small dimensions n ∈ {1, 2} the assertion is easily checked and we may
therefore assume n ≥ 3 in the sequel. Define A := T (0, 1, n) = (|j−k|)1≤j,k≤n,
and 1n := (1, . . . , 1)t ∈ Rn. Then, T = A+ c1n1

t
n is simply a rank-1 update

of the matrix A. The inverse B := A−1 = (bjk)1≤j,k≤n and the determinant
of A were derived by Fiedler, see [13], p. 31,32:

bjk =


− n−2

2(n−1) if j = k ∈ {1, n},
−1 if j = k ∈ {2, n− 1},

1
2

if |j − k| = 1,
1

2(n−1) if (j, k) ∈ {(1, n), (n, 1)},
0 otherwise,

detA = (−1)n−12n−2(n− 1). (18)

Thus,

A−1 = −1

2


1− 1

n−1 −1 − 1
n−1

−1 2 −1
. . . . . . . . .

−1 2 −1
− 1
n−1 −1 1− 1

n−1

 . (19)

Using the Sherman-Morrison-Woodbury formula, c.f. [7], with u := c1n
and v := 1n yields that T = A+uvt is invertible if and only if 1+utA−1v 6= 0,
and in this case

T−1 = A−1 − A−1uvtA−1

1 + utA−1v
. (20)

From (19), utA−1v = 2c
n−1 and

A−1uvtA−1 = c(A−11n)(1tnA
−1) =

c

(n− 1)2


1 0 . . . 0 1
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
1 0 . . . 0 1

 . (21)
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Therefore, T is invertible if and only if

c 6= −n− 1

2
, (22)

and in this case

T−1 = A−1 − c

(n− 1)(2c+ n− 1)
E (23)

where E := (1, 0, . . . , 0, 1)t(1, 0, . . . , 0, 1) is the matrix with ones in the cor-
ners that appears in (21). Formula (23) is equivalent to (1). Finally, (18)
and the matrix determinant lemma give (2):

detT = det(A+ utv) = (1 + vtA−1u) detA

=

(
1 +

2c

n− 1

)
(−1)n−12n−2(n− 1) = (−1)n−12n−2(2c+ n− 1).

3. Proof of Theorem 2

We define

S := 2T−1 =


−1 + τ 1 τ

1 −2 1
. . . . . . . . .

1 −2 1
τ 1 −1 + τ

 (24)

with τ := 1
2c+n−1 . We will determine the eigenvalues and eigenvectors of

S which directly correspond to those of T . The matrix S can be viewed
as a tridiagonal Toeplitz matrix with four symmetrically perturbed corners.
Yueh and Cheng [19] gave formulas for eigenvalues and eigenvectors in the
even more general case of tridiagonal Toeplitz matrices with all four corners
arbitrarily perturbed. 8 But they derive explicit formulas only for certain

8Similarly, Jain [9] also considers Toeplitz matrices with arbitrarily perturbed four
corners but he only investigates the positive definite ones among them in greater detail,
the orthonormal basis of eigenvectors of which build his “sinusoidal family of unitary
transforms”. He proves asymptotic equivalence of the members of this family and general
connections to Markov processes but he does not compute or enclose eigenvalues and
eigenvectors explicitly. Thus, his work is of minor relevance in our context.
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perturbations and only implicit ones otherwise. Therefore, we do not apply
their results directly but use the symmetry of the matrix S for a reduction
first. Since S is symmetric and centrosymmetric, that is JSJ = S, where
J = Jn := (δn−j+1,k)1≤j,k≤n is the flip-matrix, we can conjugate S in a well-
known fashion to obtain a block structure that corresponds to the so-called
even and odd factors of the characteristic polynomial of S (see [2], Theorem
2, and also [15]). First, set m := bn

2
c, J := Jm and partition S into blocks

S =

[
A JBJ
B JAJ

]
if n is even, (25)

S =

 A s JBJ
st −2 stJ
B Js JAJ

 if n is odd (26)

where

A :=


−1 + τ 1

1 −2 1
. . . . . . . . .

1 −2 1
0 1 −2

 ∈ Rm,m, (27)

B :=


0 . . . 0 γ
... . . . . . . 0

0 . . . . . .
...

τ 0 . . . 0

 ∈ Rm,m, (28)

γ := 1 if n is even, and γ := 0 if n is odd, and s := (0, . . . , 0, 1)t ∈ Rm if n is
odd. Next, define the orthogonal matrix

K :=
1√
2

[
I −J
J I

]
if n is even, (29)

K :=
1√
2

 I 0 −J
0
√

2 0
J 0 I

 if n is odd. (30)
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Finally, conjugate S with K to obtain

KSKt =

[
A− JB 0

0 JAJ +BJ

]
if n is even, (31)

KSKt =

 A− JB 0 0

0 −2
√

2stJ

0
√

2Js JAJ +BJ

 if n is odd. (32)

The blocks are easily identified as

C = Cm := A− JB =


−1 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2− γ

 ∈ Rm,m, (33)

D = Dm := JAJ +BJ =


−2 + γ 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 + δ

 ∈ Rm,m (34)

with δ := 1 + 2τ = 1 +
2

2c+ n− 1
,

E = Em+1 :=

[
−2

√
2stJ√

2Js Dm

]

=



−2
√

2√
2 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 + δ


∈ Rm+1,m+1, n odd. (35)

Thus, in order to determine the eigenvalues and eigenvectors of S, by (31)
and (32) we have to find those of the symmetric tridiagonal matrices Cm for
even and odd n, Dm for even n and Em+1 for odd n.
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3.1. Eigenvalues and eigenvectors of Cm
The matrices Cm and Dm can be viewed as tridiagonal Toeplitz ma-

trices with perturbed upper left and lower right corners. Eigenvalues and
eigenvectors of such matrices were studied by da Fonseca [3], Kouachi [10],
Willms [17], Yueh [18], and Yueh and Cheng [19]. Let

An′ :=


−α + b′ c′

a′ b′ c′

. . . . . . . . .

a′ b′ c′

a′ −β + b′

 ∈ Rn′,n′ (36)

with n′ ∈ N≥3, a′, b′, c′, α, β ∈ R, a′c′ 6= 0. In Theorems 2 and 3 of [18] Yueh
exactly states the eigenvalues and eigenvectors for special cases of α and β

that fit to the matrices Cm in our context 9. Set ρ :=
√

a′

c′
and d :=

√
a′c′.

Theorem 7 (Yueh). Suppose α = 0 and β = −d 6= 0. Then, the eigenvalues
λ1, . . . , λn′ of An′ are given by

λk = b′ + 2d cos
(2k − 1)π

2n+ 1
, k = 1, 2, 3, . . . , n′. (37)

The corresponding eigenvectors u(k) = (u
(k)
1 , . . . , u

(k)
n′ )t, k = 1, . . . , n′, are

given by

u
(k)
j = ρj−1 sin

(2k − 1)jπ

2n′ + 1
, j = 1, 2, 3, . . . , n′. (38)

In case β = 0 and α = −d 6= 0, the eigenvalues are given by (37) and the
corresponding eigenvectors by

v
(k)
j = ρj−1 cos

(2k − 1)(2j − 1)π

2(2n′ + 1)
, j = 1, 2, 3, . . . , n′. (39)

Theorem 8 (Yueh). Suppose α = −β = d 6= 0. Then, the eigenvalues
λ1, . . . , λn′ of An′ are given by

λk = b′ + 2d cos
(2k − 1)π

2n′
, k = 1, 2, 3, . . . , n′. (40)

9Those two Theorems correspond to the four cases 3.1.4.-3.1.7, p. 646, of Willms [17].
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The corresponding eigenvectors u(k) = (u
(k)
1 , . . . , u

(k)
n′ )t, k = 1, . . . , n′, are

given by

u
(k)
j = ρj−1 sin

(2k − 1)(2j − 1)π

4n′
, j = 1, 2, 3, . . . , n′. (41)

In case α = −β = −d 6= 0, the eigenvalues are given by (40) and the
corresponding eigenvectors by

v
(k)
j = ρj−1 cos

(2k − 1)(2j − 1)π

4n′
, j = 1, 2, 3, . . . , n′. (42)

For even n the matrices Cm are the matrices Am with a′ = 1 = c′ = ρ = d,
b′ = −2, and α = −1 = −β = −d so that its eigenvalues and eigenvectors
are given by (40) and (42) with n′ = m. For odd n the matrices Cm are
the matrices Am with a′ = 1 = c′ = ρ = d, b′ = −2, α = −1 = −d, and
β = 0 so that its eigenvalues and eigenvectors are given by (37) and (39) with
n′ = m. By (24) we simply have to invert the eigenvalues of S and hence of
Cm and multiply them by two to obtain the eigenvalues of T stated in (5).
The corresponding skew-symmetric eigenvectors given in (6) are obtained
from those of Cm by a skew-symmetric extension: a vector v ∈ Rm is skew-
symmetrically extended to v̂ ∈ Rn by setting v̂j = vj for j = 1, . . . ,m and
v̂j = −vn+1−j for j = m+1, . . . , n which for odd n especially means v̂m+1 = 0.
This finishes the proof of part a) of Theorem 2.

3.2. Eigenvalues and eigenvectors of Dm, n = 2m

In order to compute the eigenvectors of Dm for even n = 2m, we use the
notation of Willms [17] describing the eigenvalues and eigenvectors of general
matrices of type An′ defined in (36). Following Willms [17] we introduce the
function

g : Z× C→ C, (n, θ) 7→


sinnθ
sin θ

if θ 6∈ Zπ,
n if θ ∈ 2Zπ,
(−1)n−1n if θ ∈ (2Z + 1)π

(43)

which is continuous in θ.

Theorem 9 (Yueh,Willms). The eigenvalues λk and corresponding eigenvec-

tors v(k) = (v
(k)
1 , . . . , v

(k)
n′ )t, k = 1, . . . , n′, of the matrix An′ defined in (36),

admit a representation

λk = b′ + 2d cos θk (44)
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where the θk are the n′ solutions (counting multiplicity) of

g(n′ + 1, θ) +
α + β

d
g(n′, θ) +

αβ

d2
g(n′ − 1, θ) = 0 (45)

in the region R = {θ = (x + iy) | 0 ≤ x ≤ π, x, y ∈ R} where roots on
the boundary of R are counted with half weight. The components of the
corresponding eigenvector v(k) can be scaled to

v
(k)
j =

 ρj−1
sin jθk+

α
d
sin(j−1)θk

sin θk
if θk 6∈ {0, π},

ρj−1(j + α
d
(j − 1)) if θk = 0,

ρj−1(−1)j−1(j − α
d
(j − 1)) if θk = π,

j ∈ {1, . . . , n′}. (46)

Applied to Dm, n even, we have n′ = m = n/2, a′ = 1 = c′ = ρ = d,
b′ = −2, α = −γ = −1, β = −δ = −1 − 2

2c+n−1 . Therefore, (44), (45), and
(46) reduce to

λk = 2(−1 + cos θk) (47)

0 = g(n′ + 1, θ)− (1 + δ)g(n′, θ) + δg(n′ − 1, θ)

= [g(n′ + 1, θ)− g(n′, θ)]− δ[g(n′, θ)− g(n′ − 1, θ)] (48)

v
(k)
j =


sin jθk−sin(j−1)θk

sin θk
=

cos
(2j−1)θk

2

cos
θk
2

if θk 6∈ {0, π},
1 if θk = 0,
(−1)j−1(2j − 1) if θk = π,

1 ≤ j ≤ n. (49)

The function g fulfills the following trigonometric identity (cf. Willms [17],
p. 645, no. (28)):

g(j, θ)− g(j − 1, θ) =


cos

(2j−1)θ
2

cos θ
2

if θ 6∈ {0, π},
1 if θ = 0,
(−1)j−1(2j − 1) if θ = π,

j ∈ N. (50)

The regularity of S implies λk 6= 0, so (48) does not have a root θk = 0
by (47). Thus, by (50) and (48) a θk is either a solution of

0 =
cos (n+1)θ

2
− δ cos (n−1)θ

2

cos θ
2

= z−
n
2 · z

n+1 − δ(zn + z) + 1

z + 1
, z := eiθ, (51)

in R\{0, π}, that is zk := eiθk ∈ C\{−1, 0, 1}, or θk = π and

0 = (−1)m(n+ 1)− (−1)m−1(n− 1)δ ⇔ δ = −n+ 1

n− 1
. (52)
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Consequently, the second case forces the m − 1 remaining roots zk′ with
k′ ∈ {1, . . . ,m}\{k} to be solutions of

0 =
zn+1 + n+1

n−1(zn + z) + 1

(z + 1)3
(53)

in R\{0, π}. Summing up, µk := 2bλ−1k = b
−1+cos θk

, k = 1, . . . ,m, are the

eigenvalues of T stated in (7). The corresponding symmetric eigenvectors

w(k) = (w
(k)
1 , . . . , w

(k)
n )t stated in (10) are the symmetric extensions of the

v(k) given in (49) to the first m components:

w(k) =
√

2Kt

(
0

v(k)

)
=

(
Jv(k)

v(k)

)
.

Componentwise this means w
(k)
m+j = v

(k)
j = w

(k)
m+1−j, j = 1, . . . ,m. This

finishes the proof of part b) of Theorem 2 for even n = 2m.

3.3. Eigenvalues and eigenvectors of Em+1, n = 2m+ 1

Finally, we determine the eigenvalues an eigenvectors of the matrices
E = Em+1 defined in (35) when n = 2m + 1 is odd. It is somehow more
convenient for us to transform E further by conjugating with the diagonal
matrix Q := diag(1,

√
2, . . . ,

√
2) ∈ Rm+1,m+1, that is we actually consider

F := Q−1EQ =


−2 2
1 −2 1

. . . . . . . . .

1 −2 1
1 −2 + δ

 (54)

instead of E. The matrix F differs from E only in the (1, 2)- and (2, 1)-entry
where

√
2 is replaced by 2 and 1 respectively. Let us fix an eigenvalue λ ∈ C

of F with corresponding eigenvector u = (u1, . . . , un′)
t ∈ Cn′ , n′ := m + 1.

First we treat the case λ = −4. By (54), (Fu)j = −4uj for j = 1, . . . , n′ − 1
implies uj = (−1)j−1u1, j = 1, . . . , n′. Evaluating the last component of
(Fu)j = −4uj yields (3 − δ)u1 = (Fu)n′ = −4un′ = 4u1 which means
−1 = δ = 1 + 2

2c+n−1 , that is, c = −n
2
. Thus, we see that the case λ = −4

is included in (7) and the last line of (10) with θk = π and zk := eiθk = −1
being a double root of pn(δ; z) = zn+1 + zn + z + 1.
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Next, for λ 6= −4, we follow the arguments of Yueh and Cheng [19] in
order to determine the eigenvalues and eigenvectors of F . The eigenvector
u can be extended to a sequence (uj)j∈N0 ∈ CN0 which fulfills the three-term
recursion

uk−1 + (−2− λ)uk + uk+1 = fk (55)

with boundary conditions

fk :=


−u2 if k = 1,
−δun′ if k = n′,
0 else,

(56)

and constraints

u0 = 0 = un′+1. (57)

Setting ~ := (δ1,j)j∈N0 = (0, 1, 0, . . . ) ∈ CN0 and c := (c, c, . . . ) ∈ CN0 for
c ∈ C the recursion (55) reads in sequence notation

(~2 + (−2− λ)~ + 1)u = (u1 + f)~ (58)

where the product of two sequences a = (aj)j∈N0 and b = (bj)j∈N0 is the
convolution a ∗ b = c = (cj)j∈N0 , cj :=

∑j
k=0 akbj−k. Equation (58) has the

solution

u =
(u1 + f)~

~2 + (−2− λ)~ + 1
=

1√
ω

(
1

γ− − ~
− 1

γ+ − ~

)
(cu1 + f)~

=
2i√
ω

(sin jθ)j∈N0(cu1 + f) (59)

where

γ± :=
2 + λ±

√
ω

2
= e±iθ = cos θ ± i sin θ, θ ∈ C, Re θ ∈ [0, π], (60)

are the roots of the quadratic polynomial z2 + (−2− λ)z + 1 ∈ C[z] and

√
ω :=

√
(2 + λ)2 − 4 = 2i sin θ 6= 0

as 0 6= λ 6= −4. Evaluating (59) componentwise yields

uj =
2i√
ω

(u1 sin jθ − u2 sin(j − 1)θ −H(j − n′)δun′ sin(j − n′)θ) (61)
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for j ≥ 1 where H is the Heaviside-function, that is H(x) = 0 if x ≤ 0, and
H(x) = 1 if x > 0. Let us first consider the case n = 2m + 1 = m + n′ ≥ 5,
that is n′ ≥ 3. Then, 2, n′, n′ + 1 are distinct and (61) evaluated for these
values supplies

u2
u1

=
sin 2θ

2 sin θ
= cos θ (62)

un′

u1
sin θ = sinn′θ − u2

u1
sin(n′ − 1)θ (63)

0 = sin(n′ + 1)θ − u2
u1

sinn′θ − δun
′

u1
sin θ. (64)

Note that u1 (and un′) cannot be zero, since otherwise (55) would imply
u = 0. If n = 3, that is n′ = 2, (63) and (64) still hold. But (63) becomes

u2
u1

sin θ = sin 2θ − u2
u1

sin θ ⇔ u2
u1

=
sin 2θ

2 sin θ
= cos θ. (65)

Thus, (62) also holds. Inserting (63) in (64) and replacing u2
u1

by the right
side of (62) gives

0 = sin(n′ + 1)θ − u2
u1

sinn′θ − δ(sinn′θ − u2
u1

sin(n′ − 1)θ)

= sin(n′ + 1)θ − cos θ sinn′θ − δ(sinn′θ − cos θ sin(n′ − 1)θ)

=
1

2
(sin(n′ + 1)θ − sin(n′ − 1)θ − δ(sinn′θ − sin(n′ − 2)θ))

= (cosn′θ − δ cos(n′ − 1)θ) sin θ.

Since sin θ 6= 0, we obtain the following necessary condition for θ:

0 = cosn′θ − δ cos(n′ − 1)θ. (66)

By substituting z := eiθ we may convert this trigonometric equation to a
polynomial one:

0 = z2n
′
+ 1− δ(z2n′−1 + z) = zn+1 + 1− δ(zn + z) = pn(δ; z). (67)

Thus, the eigenvalues of F (which are clearly those of E) are described by
the roots of the polynomial pn(δ; z) in exactly the same way as those of Dm

in the preceding subsection. Hence, the eigenvalues of T corresponding to
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symmetric eigenvectors are also for odd n those stated in (7). By (61) and
(62) the components of the eigenvector u can be scaled to

uj = sin jθ − u2
u1

sin(j − 1)θ = sin jθ − cos(θ) sin(j − 1)θ

= sin jθ − 1

2
(sin(j − 2)θ + sin jθ) =

1

2
(sin jθ − sin(j − 2)θ)

= cos(j − 1)θ sin θ.

The corresponding extended eigenvector of S and T can be chosen as

w :=
1

sin θ
Kt

(
0

Qu

)
= (cos |m+ 1− j|θ)j=1,...,n

which establishes the last line of (10) and finishes the proof of Theorem 2.

4. Proof of Theorem 3

We use a continuity argument to prove Theorem 3. Consider a small
perturbation c̃ of c. Then, T̃ := T (c̃, n) is regular and its eigenvalues and
eigenvectors are described in Theorem 2. By continuity they will converge
for c̃→ c to those of T . First note that the skew-symmetric eigenvectors and
corresponding eigenvalues of T̃ given in Theorem 2 a) do not depend on c̃,
so that they coincide with those of T which proves part a) of Theorem 3.

The quantity δ̃ := 1 + 2
2c̃+n−1 converges to ±∞ for c̃→ c = −n−1

2
. Thus,

the roots of the polynomial

pn(δ; z) :=


zn+1−δz(zn−1+1)+1

z+1
if n is even,

zn+1 − δz(zn−1 + 1) + 1 if n is odd,

defined in (8) converge to those of

pn(±∞; z) :=


z(zn−1+1)

z+1
if n is even,

z(zn−1 + 1) if n is odd

which are 0 and exp(iθk) where θk := (2k−1)π
n−1 , k ∈ {1, . . . , n − 1}. For

k ∈ {1, . . . , n−m− 1} we have θk ∈ R = (0, π] ∪ iR>0 ∪ π + iR>0. Inserting
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these θk in (7) and (10) gives the first n−m− 1 symmetric eigenvectors and
corresponding eigenvalues stated in (15) and (16).

Finally, the remaining root z = 0 may formally be written as 0 = exp(iθl),
l := n − m, with θl := i · (+∞). The corresponding perturbed θ̃l ∈ R

converging to θl supplies an eigenvector w̃(l) = (w̃
(l)
1 , . . . , w̃

(l)
n )t ∈ Rn with

components given in (10):

w̃
(l)
m+j = w̃

(l)
l+1−j =

{
cos(j − 1

2
)θ̃l if n is even,

cos(j − 1)θ̃l if n is odd,
1 ≤ j ≤ l.

Scaling the first and last component of w̃(l) to 1 by dividing through w̃
(l)
1

yields

lim
θ̃l→θl

1

w̃
(l)
1

w̃
(l)
m+j = lim

θ̃l→θl

1

w̃
(l)
1

w̃
(l)
l+1−j = lim

θ̃l→θl


cos(j− 1

2
)θ̃l

cos(l− 1
2
)θ̃l

if n is even,

cos(j−1)θ̃l
cos(l−1)θ̃l

if n is odd,
= δj,l

for j ∈ {1, . . . , l}. Thus, the vector u := (1, 0, . . . , 0, 1)t ∈ Rn is contained in
the kernel of T which of course could have been verified directly without the
above derivation: (Tu)j = Tj,1+Tj,n = c+ |j−1|+c+ |n−j| = 2c+n−1 = 0.
This finishes the proof of part b) of Theorem 3.

5. Proof of Corollary 5

a) If T is singular, then Theorem 3 shows that all eigenvalues are simple,
so that the assertion holds in this case. Thus, we may assume that T is
regular. By Theorems 2 the eigenvalues corresponding to skew-symmetric
eigenvectors are pairwise distinct and the same holds true for the eigenvalues
corresponding to symmetric eigenvectors by P1)-P8). Indeed, this fact can be
deduced directly without any special knowledge on the eigenvalues of T from
the tridiagonal matrices Cm, Dm, and Em defined in the proof of Theorem
2 (cf. (33) - (35)) which of course only have simple eigenvalues. Thus, if we
assume that T has a multiple eigenvalue λ, then the corresponding eigenspace
necessarily contains symmetric and skew-symmetric eigenvectors. 10

10Indeed, this is a priori known by a result of Delsarte and Genin [4], Theorem 8,
p. 204, which says that an eigenspace of dimension d of a real symmetric Toeplitz matrix
possesses a basis consisting of dd2e (or bd2c) symmetric and bd2c (or dd2e) skew-symmetric
eigenvectors, that is, the numbers of symmetric and skew-symmetric basis eigenvectors
split the eigenspace dimension as evenly as possible.
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But then (5) and (7) imply λ = (−1+cos θ)−1 where θ = (2k−1)π
n

for some
k ∈ {1, . . . ,m} satisfies

0 = cos
(n+ 1)θ

2
− δ cos

(n− 1)θ

2
= (1 + δ)(−1)k sin

π

2n
.

We see that this is only possible for δ = −1, that is c = −n
2
. By P3) the

eigenvalues of T corresponding to symmetric eigenvectors

µk = (−1 + cos
(2k − 1)π

n
)−1, k = 1, . . . , n−m,

coincide with those corresponding to skew-symmetric eigenvectors (cf. (5))
with one exception where n = 2m + 1 is odd and k = n−m = m + 1 when
µm+1 = −b/2 is the eigenvalue of smallest absolute value.

b) By (6) the first component of a skew-symmetric eigenvector v(k) is

v
(k)
1 = cos (2k−1)π

2n
, which is distinct from 0 for k ∈ {1, . . . ,m}. By Theorem

4 the Iohvidov parameter of the corresponding eigenvalue is 0. If T is singu-
lar, then by (15) the first two components of a symmetric eigenvector w(k),
k ∈ {1, . . . ,m}, are

w
(k)
1 =

{
cos (2k−1)π

2
= 0 if 1 ≤ k ≤ n−m− 1,

1 if k = n−m,

w
(k)
2 =

{
(−1)k−1 sin (2k−1)π

n−1 6= 0 if 1 ≤ k ≤ n−m− 1,

0 if k = n−m.

Since by a) all eigenvalues are simple, this implies that the non-zero eigenval-
ues of T corresponding to symmetric eigenvectors have Iohvidov parameter
one and the eigenvalue µ = 0 with eigenvector (1, 0 . . . , 0, 1)t has Iohvidov
parameter zero.

Now suppose that T is regular. Then, by (10) the first component of a
symmetric eigenvector w = (w1, . . . , wn)t can be found as

w1 = wn =

{
cos (n−1)θ

2
if θ 6= π,

(−1)m−1(n− 1) if n is even and θ = π,

for some θ ∈ R := (0, π] ∪ iR>0 ∪ π + iR>0 satisfying

cos(n+ 1)
θ

2
− δ cos(n− 1)

θ

2
= 0, δ = 1 + 2/(2c+ n− 1).
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Thus, if θ = π, then clearly w1 6= 0. But this also holds for θ 6= π since other-
wise θ must have the form θ = 2k−1

n−1 π for some k ∈ {1, . . . , n−m− 1} which
by (15) [or P4)] corresponds to singular T (formally δ = ±∞) treated before.
Thus, again w1 6= 0 shows that the Iohvidov parameter of the corresponding
eigenvalue is 0.

Appendix

This appendix contains the rather technical proofs of P1)-P8), P7’), P8’),
(11), (12). The roots of pn(δ; z) are those of qn(δ; z) := zn + 1 − δ(zn + z)
where for even n the multiplicity of the root −1 is reduced by one. The roots
of qn(δ; z) correspond to those of the trigonometric polynomial

Qn(δ; θ) := e−i(n+1) θ
2 qn(δ; eiθ) = cos

(n+ 1)θ

2
− δ cos

(n− 1)θ

2
.

Actually, we may view qn(δ; z) (and Qn(δ; θ)) as a homotopy of (trigonomet-
ric) polynomials which causes the distinguished cases for δ. To make this
clear, let us look at the polynomials

qn(0; z) = zn+1 + 1

qn(1; z) = zn+1 − zn − z + 1

qn(−1; z) = zn+1 + zn + z + 1

qn(±∞; z) := zn + z.

with corresponding trigonometric polynomials

Qn(0; θ) = cos
(n+ 1)θ

2

Qn(1; θ) = cos
(n+ 1)θ

2
− cos

(n− 1)θ

2
= −2 sin

nθ

2
sin

θ

2

Qn(−1; θ) = cos
(n+ 1)θ

2
+ cos

(n− 1)θ

2
= 2 cos

nθ

2
cos

θ

2

Qn(±∞; θ) := e−i(n+1) θ
2 qn(±∞; eiθ) = cos

(n− 1)θ

2
.

Now for δ ∈ [0, 1], qn(δ, z) is a homotopy of qn(0; z) to qn(1; z), and for
δ ∈ [−1, 0], qn(δ, z) is a homotopy of qn(0; z) to qn(−1; z). If δ ∈ [1,+∞],
δ−1qn(δ, z) is a homotopy of qn(1; z) to qn(±∞; z), and finally, if δ ∈ [−∞,−1],
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δ−1qn(δ, z) is a homotopy of qn(−1; z) to qn(±∞; z). The same holds true
for the trigonometric polynomials. The whole thing now is to establish
the stated inclusions for the zeros of pn(δ; z) by those of the polynomials
qn(0; z), qn(1; z), qn(−1; z), qn(±∞; z) which are immediately deduced from
the trigonometric representations given above. If we define

θ
(0)
k :=

2k − 1

n+ 1
π, k = 1, . . . , n−m,

θ
(1)
k :=

2(k − 1)

n
π, k = 1, . . . , n−m,

θ
(−1)
k :=

2k − 1

n
π, k = 1, . . . , n−m,

θ
(±∞)
k :=

2k − 1

n− 1
π, k = 1, . . . , n−m− 1,

then θ
(δ)
k ∈ [0, π] and Q(δ,±θ(δ)k ) = 0 for δ ∈ {0, 1,−1,±∞} and the given k.

The range of the k is already chosen such that for even n the root z = −1
that corresponds to θ = π is neglected. This proves P1) to P4). For d) note
that z = 0 clearly is the remaining root of qn(±∞; z) = z(zn−1 + 1). This
case corresponds to singular matrices T (c, n) as already shown in the proof
of Theorem 3. Define the open intervals

I
(0,1)
k := (θ

(1)
k , θ

(0)
k ), k = 1, . . . , n−m,

I
(−1,0)
k := (θ

(0)
k , θ

(−1)
k ), k = 1, . . . , n−m,

I
(1,∞)
k := (θ

(±∞)
k−1 , θ

(1)
k ), k = 2, . . . , n−m,

I
(−∞,−1)
k := (θ

(−1)
k , θ

(±∞)
k ), k = 1, . . . , n−m− 1.

Then, it is routine to check that none of the angles θ
(±∞)
j , j = 1, . . . , n−m−1,

is contained in any of these intervals. But this means that the function

f(θ) :=
Qn(0; θ)

Qn(±∞; θ)
=

cos (n+1)θ
2

cos (n−1)θ
2

(68)

restricted to any of those intervals is well defined an continuous and can
be continuously extended to the boundaries in those cases where they differ
from the zeros θ

(±∞)
k of the denominator Qn(±∞; θ). Since f(θ

(1)
k ) = 1,

f(θ
(0)
k ) = 0 the intermediate value theorem yields (0, 1) ⊆ f(I

(0,1)
k ). Thus,

for each δ ∈ (0, 1) there is a θk = θk(δ) ∈ I(0,1)k such that f(θk) = δ which
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is equivalent to Qn(δ, θk) = 0. This proves P5) and analogously P6). In the

same way f(θ
(1)
k ) = 1 and lim

θ↓θ(±∞)
k−1

f(θ) = +∞ imply (1,+∞) ⊆ f(I
(1,∞)
k ).

Hence, again there exists for each δ ∈ (1,+∞) a θk = θk(δ) ∈ I
(1,∞)
k such

that f(θk) = δ so that Qn(δ, θk) = 0. This proves the inclusions for θk
stated in P7) for k = 2, . . . , n − m and analogously the inclusions for θk
given in P8) for k = 1, . . . , n −m − 1. For δ ∈ (1,+∞) we have qn(δ; 0) =
1 > 0 > 2(1 − δ) = qn(δ; 1). Using the intermediate value theorem we find
the last remaining root z1 ∈ (0, 1) to prove P7). Next, we prove P8). Let
δ ∈ (−∞,−1) and suppose that n is odd, then qn(δ;−1) = 2(1− |δ|) < 0 <
1 = pn(δ; 0) and again the intermediate value theorem supplies the missing
root zn−m ∈ (−1, 0). Now suppose that n is even, then all coefficients of
qn(δ; z) = zn+1 + |δ|zn + |δ|z + 1 are positive, whence qn(δ; z) does not have
positive real roots. The coefficients of qn(δ;−z) = −zn+1 + |δ|zn − |δ|z + 1
change their signs three times, so that by Descartes rule of signs qn(δ; z)
has either three or one negative real roots where −1 is clearly one of them.
Looking at the derivative q′n(δ; z) = (n+ 1)zn − δ(nzn−1 + 1) we see

q′n(δ;−1) = (n+ 1) + δ(n− 1)


< 0 if δ < −n+1

n−1 ,

= 0 if δ = −n+1
n−1 ,

> 0 if δ > −n+1
n−1 .

Thus, if δ < −n+1
n−1 , then qn(δ; z) assumes negative values in (−1, 0) and,

since qn(δ, 0) = 1 > 0, there must be at least one root zm = zn−m in (−1, 0).
By the preceding considerations z−1m ,−1, zm are all real roots of qn(δ; z). If
δ = −n+1

n−1 , then z = −1 is a three-fold root of qn(δ, z) as already mentioned

in Theorem 2. If δ > −n+1
n−1 , then qn(δ;−1) = 0, q′n(δ;−1) > 0, and qn(δ; 0) =

1 > 0 imply that qn(δ; z) must have an even number 2ν, ν ∈ N0, of roots
in (−1, 0) counting multiplicities. Since qn(δ;−1) is self-inversive, it must
have the same number of roots in (−∞,−1), so that we obtain 4ν + 1 real
roots overall. But we already found n− 2 non-real roots of qn(δ;−1) on the
complex unit circle, whence ν = 0. Since cos n−1

2
θ does not have a zero in

(n−1
n
π, π), the function f(θ) (cf. (68)) is well defined and continuous and can

be continuously extended to the boundaries using L’Hospital’s rule at the
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right boundary:

f

(
n− 1

n
· π
)

= −1 and

f(π) := lim
θ→π

cos (n+1)θ
2

cos (n−1)θ
2

= lim
θ→π

(n+ 1) sin (n+1)θ
2

(n− 1) sin (n−1)θ
2

= −n+ 1

n− 1
.

Thus, δ ∈ (−n+1
n−1 ,−1) ⊆ f((n−1

n
π, π)) finally supplies the remaining root

θm ∈ (n−1
n
π, π) with f(θm) = δ, that is Qn(δ, θm) = 0 proving P8).

In all inclusions given in P5) to P8) we found that the θk = θk(δ) are im-
plicitly defined functions on the given intervals by the equation f(θk(δ)) = δ.
Building derivatives on both sides yields

1 =
−n+1

2
sin (n+1)θk(δ)

2
cos (n−1)θk(δ)

2
+ n−1

2
cos (n+1)θk(δ)

2
sin (n−1)θk(δ)

2

cos2 (n−1)θk(δ)
2

· θ′k(δ)

0 < cos2
(n− 1)θk(δ)

2
=

(
−n+ 1

2
sin

(n+ 1)θk(δ)

2
cos

(n− 1)θk(δ)

2
+

n− 1

2
cos

(n+ 1)θk(δ)

2
sin

(n− 1)θk(δ)

2

)
θ′k(δ)

=

(
−n+ 1

2
sin

(n+ 1)θk(δ)

2
+
n− 1

2
δ sin

(n− 1)θk(δ)

2

)
· θ′k(δ) cos

(n− 1)θk(δ)

2
.

This shows θ′k(δ) 6= 0 in the given open intervals and also proves (11). Hence,
θk(δ) depends monotonically on δ. From P1) to P4) where the boundary
values of δ were considered, we see that the real θk(δ) and the real z1 = z1(δ)
[case P7)], zn−m = zn−m(δ) [case P8)] are monotonically decreasing functions
of δ. Finally, we prove (12). For δ close to but distinct from 1 we compute
using the chain rule and (11):

(cos θ1(δ))
′ = −θ′1(δ) sin θ1(δ) =

− sin θ1(δ) cos (n−1)θ1(δ)
2

−n+1
2

sin (n+1)θ1(δ)
2

+ n−1
2
δ sin (n−1)θ1(δ)

2

.

Since limδ→1 θ1(δ) = 0, both the numerator and denominator of the above
fraction converge to 0 for δ → 1 so that we can apply L’Hospital’s rule to
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compute the limit:(
− sin θ1(δ) cos (n−1)θ1(δ)

2

)′
(
−n+1

2
sin (n+1)θ1(δ)

2
+ n−1

2
δ sin (n−1)θ1(δ)

2

)′
=

(
− cos θ1(δ) cos (n−1)θ1(δ)

2
+ n−1

2
sin θ1(δ) sin (n−1)θ1(δ)

2

)
θ′1(δ)(

−(n+1
2

)2 cos (n+1)θ1(δ)
2

+ (n−1
2

)2δ cos (n−1)θ1(δ)
2

+ n−1
2θ′1(δ)

sin (n−1)θ1(δ)
2

)
θ′1(δ)

.

Since limδ→1 |θ′1(δ)| = +∞ by (11), the above fraction converges for δ → 1
to −1
−(n+1

2
)2+(n−1

2
)2

= 1
n

proving (12). Finally, we prove P7’) and P8’). Set

q(z) := zn+1 − δzn − δz + 1.

P7’) Since δ > 1, Cauchy’s bound for the moduli of the roots of q(z) is
1 + δ. Hence, q(δ) = δ2− 1 < 0 and limx→∞ q(x) = +∞ imply δ < ζ ≤ δ+ 1
which proves P7’) if ρ = 1. If ρ =

√
δ2 − 1 < 1, then

q(δ + ρ) = ρ(δ + ρ)n − δ(δ + ρ) + 1 ≥ ρ(δ + ρ)− δ(δ + ρ) + 1 = 0

also shows δ < ζ ≤ δ + ρ.
P8’) If n is odd, then pn(δ;−z) = zn+1 − |δ|zn − |δ|z + 1 = pn(|δ|; z) and

the assertion follows from P7’). Now suppose that n ≥ 3 is even. If δ < −2,
then ρ = 1, |δ + ρ| = |δ| − 1 > 1, and

q(δ + ρ) = (δ + 1)n − δ(δ + 1) + 1

> (|δ| − 1)3 − δ(δ + 1) + 1

= |δ|3 − 4|δ|2 + 4|δ|+ 1

≥ 0 > δ2 − 1 = q(δ).

This implies ζ ∈ (δ, δ + ρ) = (δ, δ + 1).
If −2 ≤ δ < −n+1

n−1 , then ρ = |δ + 1| = −δ − 1, δ + ρ = −1, and for

p(z) := pn(δ; z) = q(z)/(z + 1) = zn +
n−1∑
j=1

(−z)j + 1

we have p(δ+ ρ) = p(−1) = 2 + (n− 1)(1 + δ) < 0 < p(δ) = (δ2− 1)/(δ+ 1).
Again, this implies ζ ∈ (δ, δ + ρ) = (δ,−1).
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