
On the meaning of focalization

Michele Basaldella Alexis Saurin Kazushige Terui

June 30, 2009

Abstract

In this paper, we use Girard’s Ludics to analyze focalization, a fundamental property
of linear logic. In particular, we show how this can be realized interactively thanks to
section-retraction pairs (uαβ, fαβ) between behaviours α〈ˆ(β〈~Y〉), ~X〉 and αβ〈~Y, ~X〉.

1 Introduction

Focalization is a deep outcome of linear logic proof theory, putting to the foreground the
role of polarity in logic. It resulted in important advances in various fields ranging from
proof-search (the original motivation for Andreoli’s study [1] of focalization) and the ability
to define synthetic connectives and hypersequentialized calculi [10, 11] to game semantical
analysis of logic.

In particular, Focalization deeply influenced Girard’s Ludics [12] which is a pre-logical
framework which aims to analyze various logical and computational phenomena at a foun-
dational level. For instance, the concluding results of Locus Solum are a full completeness
theorem with respect to focalized multiplicative–additive linear logic (MALL). Another char-
acteristics of ludics is that types are built from untyped proofs (called designs). More specif-
ically, types (called behaviours) are sets of designs closed under a certain closure operation.
This view of types as sets of proofs opens a new possibility to discuss focalization and other
properties of proofs at the level of types.

The purpose of this abstract is to show that Ludics is suitable for analyzing Focalization
and that this interactive analysis of Focalization is fruitful. In particular, our study of Fo-
calization in Ludics was primarily motivated by the concluding remarks of the third author’s
paper on Computational Ludics [17] where focalization on data designs was conjectured to
correspond to the tape compression theorem of Turing Machines.

Still, for the very reason that Ludics abstracts over Focalization (being built on hyper-
sequentialized calculi) it is not clear whether an analysis of Focalization can (or shall) be
pursued in Ludics: an obstacle is, however, that ludics is already fully focalized, so that
there seems not to be room to discuss and prove focalization internally. This can be settled
by using a dummy shift operator. For instance, a compound formula L⊕ (M ⊗N) of linear
logic can be expressed in ludics in two ways; either as a flat behaviour ⊕ ⊗ (L,M,N) built
by a single synthetic connective ⊕⊗ from three subbehaviours L,M,N , or as a compound
behaviour L⊕ ↑ (M ⊗ N), which consists of three layers: M ⊗ N (positive), ↑ (M ⊗ N)
(negative), and L⊕ ↑ (M ⊗N) (positive).

Focalization can then be expressed as a mapping from the latter to the former behaviour.
Hence we can deal with it as if it were an algebraic law, which may be compared with
other logical isomorphisms such as associativity, distributivity, etc. To be precise, however,
focalization is not an isomorphism but is an assymmetric relation. In this paper, we think

1

of it as a retraction L⊕ ↑ (M ⊗N) −→ ⊕⊗ (L,M,N) which comes equipped with a section
⊕⊗ (L,M,N) −→ L⊕ ↑ (M ⊗N).

The aim of our current work is to promote this “algebraic” view of focalization in the set-
ting of ludics. Furthermore, the retraction-section pair can be naturally lifted by applications
of logical connectives (Theorem 4.4). Hence we also have focalization inside a compound be-
haviour (or inside a context). This would allow us to recover the original focalization theorem
as a corollary to our “algebraic” focalization, though we leave it as future work.

2 Focalization in linear logic

Linear logic comes from a careful analysis of structural rules in sequent calculus resulting in
a very structured proof theory, in particular regarding dualities. A fundamental outcome of
those dualities is Andreoli’s discovery [1] of focalization, providing the first analysis of polar-
ities in linear logic. Andreoli’s contribution lies mainly in the splitting of logical connectives
in two groups – positive (⊗,⊕,0,1,∃, !) and negative (`,&,>,⊥,∀, ?) connectives.

The underlying meaning of this distinction comes from proof-search motivations. The
introduction rules for negative connectives `,&,>,⊥,∀ are reversible: in the bottom–up
reading, the rule is deterministic, i.e., there is no choice to make and provability of the
conclusion implies provability of the premisses. On the other hand, the introduction rules for
positive connectives involve choices: e.g., splitting the context in ⊗ rule, or choosing between
⊕L and ⊕R rules, resulting in the possibility to make erroneous choices during proof-search.
Still, positive connectives satisfy a strong property called focalization[1]: let us consider a
sequent ` F0, . . . , Fn containing no negative formulas, then there is (at least) one formula
Fi which can be used as a focus for the search by hereditarily selecting Fi and its positive
subformulas as principal formulas up to the first negative subformulas.

This property induces the following strategy of proof–search called focalization discipline:

Sequent Γ contains a negative formula Sequent Γ contains no negative formula
choose any negative formula (e.g. the choose some positive formula and decompose
leftmost one) and decompose it using it (and its subformulas) hereditarily until

the only possible negative rule we get to atoms or negative subformulas

A sequent calculus proof is called focussing if it respects the focalization discipline. It
is proven in [1] that if a sequent is provable, then it is provable with a focussing proof: the
focalization discipline is therefore a complete proof-search strategy. Other approaches to
focalization consider proof transformation techniques [15, 16]

A very important consequence of focalization is the possibility to consider synthetic con-
nectives [11, 4]: a synthetic connective is a maximal cluster of connectives of the same
polarity. They are built modulo commutativity and associativity of binary connectives and
some syntactical isomorphism [13] of linear logic. For multiplicative— additive—linear logic
(MALL) the underlying syntactical isomorphism in action is the distributivity of ⊗ with
respect to ⊕, namely (A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C) and its dual.

3 Ludics in three pages

Syntax. We recall the term syntax for designs introduced in [17] which uses a process
calculus notation inspired by the close relationship between ludics and linear π-calculus [8].

Designs are built over a given signature A = (A, ar), where A is a set of names a, b, c, . . .
and ar : A −→ N assigns an arity ar(a) to each name a. Let V be a countable set of variables

2

V = {x, y, z, . . .}. Over a fixed signature A, a (proper) positive action is a with a ∈ A, and a
(proper) negative action is a(x1, . . . , xn) where x1, . . . , xn are distinct variables and ar(a) = n.
In the sequel, an expression of the form a(~x) always stands for a negative action.

The positive (resp. negative) designs P (resp. N) are coinductively generated by the
following grammar (where ar(a) = n and ~x = x1, . . . , xn):

P ::= Ω
∣∣ z

∣∣ N0|a〈N1, . . . , Nn〉, N ::= x
∣∣ ∑ a(~x).Pa,

Designs may be considered as infinitary λ-terms with named applications and superimposed
abstractions. P,Q, . . . (resp. N,M, . . ., resp. D,E, . . .) denote positive (resp. negative, resp.
arbitrary) designs. Any subterm E of D is called a subdesign of D. Ω is used to encode partial
sums: given a set α = {a(~x), b(~y), . . . } of negative actions, we write a(~x).Pa+b(~y).Pb+ · · · to
denote the negative design

∑
α a(~x).Ra, where Ra = Pa if a(~x) ∈ α, and Ra = Ω otherwise.

A design D may contain free and bound variables. An occurrence of subterm a(~x).Pa
binds the free-variables ~x in Pa. Variables which are not under the scope of the binder a(~x)
are free. fv(D) denotes the set of free variables occurring in D. Designs are considered up to
α-equivalence, that is up to renaming of bound variables (see [17] for further details).

A positive design which is neither Ω nor z is either of the form (
∑
a(~x).Pa)|a〈N1, . . . , Nn〉

and called a cut or of the form x|a〈N1, . . . , Nn〉 and called a head normal form. The head
variable x in the design above plays the same role as a pointer in a strategy does in Hyland-
Ong games and an address (or locus) in Girard’s ludics. On the other hand, a variable x
occurring in a bracket (as in N0|a〈N1, . . . , Ni−1, x, Ni+1, . . . , Nn〉) does not correspond to a
pointer nor address but rather to an identity axiom (initial sequent) in sequent calculus, and
for this reason is called an identity.

A design D is said: total, if D 6= Ω; linear (or affine), if for any subdesign of the form
N0|a〈N1, . . . , Nn〉, the sets fv(N0), . . . , fv(Nn) are pairwise disjoint.

Normalization. The reduction relation −→ is defined on positive designs as follows:(∑
a(x1, . . . , xn).Pa

)
|a〈N1, . . . , Nn〉 −→ Pa[N1/x1, . . . , Nn/xn].

We denote by −→∗ its transitive closure. Given two positive designs P,Q, we write P ⇓ Q if
P −→∗ Q and Q is neither a cut nor Ω. We write P ⇑ if there is no Q such that P ⇓ Q.

The normal form function J K : D −→ D is defined by corecursion as follows:

JP K = z if P ⇓ z;

= x|a〈J ~NK〉 if P ⇓ x|a〈 ~N〉;
= Ω if P ⇑;

J
∑
a(~x).PaK =

∑
a(~x).JPaK; JxK = x.

A fundamental property of normalization is associativity :

JD[N1/x1, . . . , Nn/xn]K = JDK[JN1K/x1, . . . , JNnK/xn].

Orthogonality. In the rest of this work, we restrict ourselves to the special subclass of total,
cut-free, linear and identity-free designs (corresponding to [12]). Since we work in a cut-free
setting, we can simplify our notation: we often identify an expression like D[N/x] with its
normal form JD[N/x]K. Thus, we improperly write D[N/x] = E rather than JD[N/x]K = E.

A positive design P is closed if fv(P) = ∅, atomic if fv(P) ⊆ {x0} for a certain fixed
variable x0. A negative design N is atomic if fv(N) = ∅. Two atomic designs P,N of

3

opposite polarities are said orthogonal (written P⊥N) when P [N/x0] = z. If X is a set
of atomic designs of the same polarity, then its orthogonal set is defined by X⊥ := {E :
∀D ∈ X, D⊥E}. Although possible, we do not define orthogonality for nonatomic designs.
Accordingly, we only consider atomic behaviours which consist of atomic designs.

An (atomic) behaviour X is a set of atomic designs of the same polarity such that X⊥⊥ =
X. A behaviour is positive or negative according to the polarity of its designs. We denote
positive behaviours by P,Q,R, . . . and negative behaviours by N,M,K

There are the least and the greatest behaviours among all positive (resp. negative) be-
haviours with respect to set inclusion (with z− =

∑
a(~x).z):

0+ := {z}, 0− := {z−}, >+ := 0−⊥, >− := 0+⊥.

A positive sequent Γ is of the form x1 : P1, . . . , xn : Pn, where x1, . . . , xn are distinct
variables and P1, . . . ,Pn are (atomic) positive behaviours. We denote by fv(Γ) the set
{x1, . . . , xn}. A negative sequent Γ,N is a positive sequent Γ enriched with an (atomic)
negative behaviour N, to which no variable is associated. We define:
• P |= x1 : P1, . . . , xn : Pn if fv(P) ⊆ {x1, . . . , xn} and
P [N1/x1, . . . , Nn/xn] = z for any N1 ∈ P⊥1 , . . . , Nn ∈ P⊥n .

• N |= x1 : P1, . . . , xn : Pn,N if fv(N) ⊆ {x1, . . . , xn} and
P [N [N1/x1, . . . , Nn/xn]/x0] = z for any N1 ∈ P⊥1 , . . . , Nn ∈ P⊥n , P ∈ N⊥.

Clearly, N |= N iff N ∈ N, and P |= y : P iff P [x0/y] ∈ P. Furthermore, associativity
implies the following quite useful principle called closure principle:

P |= Γ, x : P⇐⇒ ∀N ∈ P⊥, P [N/x] |= Γ, N |= Γ,N⇐⇒ ∀P ∈ N⊥, P [N/x0] |= Γ.

Logical connectives and behaviours. We next describe how behaviours are built by
means of logical connectives in ludics.

An n-ary logical connective α is a pair (~xα, {a1(~x1), . . . , am(~xm)}) where ~xα = x1, . . . , xn
is a fixed sequence of variables called the directory of α (cf. [12]) and {a1(~x1), . . . , am(~xm)}
is a finite set of negative actions, called the body of the connective, such that the names
a1, . . . , am are distinct, the variables ~x1, . . . , ~xm are taken from ~xα and the order in which
the variables occur in ~xi is the same order in which they occur in ~xα restricted to ~xi. To
enlighten the notation, we often identify a logical connective with its body and so in many
occasion we abuse the notation, writing expression like a(~x) ∈ α . Given a name a, an n-ary
logical connective α and behaviours N1, . . . ,Nn, P1, . . . ,Pn we define:

α〈N1, . . . ,Nn〉 :=
(⋃

a(~x)∈α{x0|a〈Ni1 , . . . , Nim〉, Ni1 ∈ Ni1 , . . . , Nim ∈ Nim}
)⊥⊥

α(P1, . . . ,Pn) := α〈P⊥1 , . . . ,P⊥n 〉⊥,
where indices i1, . . . , im are determined by the vector ~x = xi1 , . . . , xim given for each a(~x) ∈ α.

A behaviour is logical if it is inductively built as follows:

P := α〈N1, . . . ,Nn〉, N := α(P1, . . . ,Pn) (with α an arbitrary logical connective)

Notice that the orthogonal of a logical behaviour is again logical.
Usual MALL connectives can be defined as follows (∗ is a 0-ary name):

&

:= {℘(x1, x2)}, ⊗ :=

&

, ↑↑ := {↑(x1)}, ⊥ := {∗}, • := ℘, ↓ := ↑,
& := {π1(x1), π2(x2)}, ⊕ := &, ↓↓ := ↑↑, > := ∅, ιi := πi.

With these logical connectives we can build (semantic versions of) usual linear logic types
(we use infix notations such as N⊗M rather than the prefix ones ⊗〈N,M〉):

N⊗M = •〈N,M〉⊥⊥ N⊕M = (ι1〈N〉 ∪ ι2〈M〉)⊥⊥ ↓↓ N =↓〈N〉⊥⊥ 0 = ∅⊥⊥
P

&

Q = •〈P⊥,Q⊥〉⊥ P & Q = ι1〈P⊥〉⊥ ∩ ι2〈Q⊥〉⊥ ↑↑ P =↓〈P⊥〉⊥ >> = ∅⊥

4

Material and winning designs. Given a behaviour X and D ∈ X, there is a “minimal
portion” of D which is needed to interact with designs of X⊥. It is called material part of D
in X. Formally, we define by corecursion the intersection ∩ on designs as follows:

• P ∩ Ω = Ω ∩ P = Ω;

• x|a〈 ~Ni〉 ∩ x|a〈 ~Mi〉 = x|a〈 ~Ni ∩Mi〉 if Ni ∩Mi are defined for every 0 ≤ i ≤ n;

•
∑
a(~x).Pa ∩

∑
a(~x).P ′a =

∑
a(~x).(Pa ∩ P ′a) if Pa ∩ P ′a is defined for every a ∈ A;

• D ∩ E is not defined otherwise.

The material part of D in X is formally defined as: |D|X :=
⋂
{E ⊆ D : E ∈ X} and is a

design of X [12, 17]. A design D ∈ X is said material if D = |D|X, winning if material and
daimon-free. |X| (resp. Xw) denotes the set of material (resp. winning) designs of X.

Internal completeness. In [12], Girard proposes a purely monistic, local notion of com-
pleteness, called internal completeness. It means that we can give a precise and direct de-
scription to the elements in logical behaviours without using the orthogonality and without
referring to any proof system. Logical connectives easily enjoy internal completeness [17]:

• α〈N1, . . . ,Nn〉 =
⋃
a(~x)∈α a〈Ni1 , . . . ,Nim〉 ∪ {z}.

• α(P1, . . . ,Pn) = {
∑
a(~x).Pa : Pa |= xi1 : Pi1 , . . . , xim : Pim for every a(~x) ∈ α}.

In the last equation, Pb can be arbitrary when b(~x) /∈ α. For example:

P & Q = {π1(x0).P + π2(x0).Q+ · · · : P ∈ P and Q ∈ Q},

where the irrelevant components of the sum are suppressed by “· · · .” Up to incarnation (i.e.
removal of irrelevant part), P & Q, which has been defined by intersection, is isomorphic to
the cartesian product of P and Q: a phenomenon called mystery of incarnation in [12].

4 An analysis of Focalization in Ludics

Focalized logical behaviours. In the rest of the paper, we shall be interested in how
to transform a positive logical behaviour P = α〈ˆ(β〈Y1, . . .Ym〉),X2, . . . ,Xn〉 into a be-
haviour Q = αβ〈Y1, . . . ,Ym,X2, . . . ,Xn〉, where Xi,Yj are negative logical behaviours
and α = (~xα, {a1(~x1), a2(~x2), . . .}) with ~xα = x1, . . . , xn, β = (~yβ, {b1(~y1), b2(~y2), . . .} with
~yβ = y1, . . . , ym such that ~xα and ~yβ are disjoint. Q is called the focalized behaviour associated
to P (relative to α, β) while αβ is the synthetic connective associated to α, β.

The choice of having ˆ(β〈Y1, . . .Ym〉) as X1 and not, for example as Xj, is of course
completely arbitrary and aims at making the presentation simpler. On the other hand, while
X2, . . . ,Xn are arbitrary, ˆ(β〈Y1, . . .Ym〉) has always this special form, with the negative
connective ˆ as prefix: focalization roughly asserts that such dummy actions occurring in
designs of P can always be removed by considering synthetic connectives.

In the remaining of this section, and unless otherwise stated, P and Q will respectively
denote α〈ˆ(β〈Y1, . . .Ym〉),X2, . . . ,Xn〉 and αβ〈Y1, . . . ,Ym,X2, . . . ,Xn〉.

Synthetic connectives. In order to define the focalized behaviour Q we shall define prop-
erly the synthetic connective αβ, by specifying its directory and its body:

• The directory of αβ is ~zαβ := y1, . . . , ym, x2, . . . , xn. Hence, αβ has arity n+m− 1.

5

• The body of αβ consists of the set of negative actions ab(~z) defined as follows. First no-
tice that our definition of logical connectives ensures that if some action a(xa1 , . . . , xaka

)
in α is such that x1 ∈ xa1 , . . . , xaka

, then x1 = xa1 . Thus, for any a(xa1 , . . . , xaka
) in

the body of α and b(yb1 , . . . , yblb) in the body of β, we define a new action ab as:

ab(xa1 , . . . , xaka
) if x1 /∈ xa1 , . . . , xaka

,
ab(yb1 , . . . , yblb , xa2 , . . . , xaka

) if x1 = xai
.

To sum up, we can associate to α〈ˆ(β〈Y1, . . .Ym〉),X2, . . . ,Xn〉 its focalized behaviour
(relative to α, β) αβ〈Y1, . . .Ym,X2, . . . ,Xn〉. The following examples illustrate this:

(a) Let P be ⊗〈ˆ(´〈Y〉),X〉 (written as ˆ´Y ⊗ X in infix notation). Since ` and ˆ are
respectively (x1x2, {℘(x1, x2)}) and (y, {ˆ(y)}) with x1, x2, y distinct, we have `ˆ =
({yx2, ℘ˆ(y, x2)}) and Q = `ˆ〈Y,X〉 = ⊗´〈Y,X〉. Note that ⊗´ and ⊗ are isomorphic.

(b) Let P be ⊕〈ˆ(⊗〈Y1,Y2〉),X〉 (written ˆ(Y1 ⊗Y2)⊕X in infix notation). Since & and
` are respectively (x1x2, {π1(x1), π2(x2)}) and (y1y2, {℘(y1, y2)}) we have that &` =
(y1y2x2, {π1℘(y1, y2), π2℘(x2)}) and finally Q = &`〈Y1,Y2,X〉 = ⊕ ⊗ 〈Y1,Y2,X〉.
Notice that in this case π2℘(x2) is just π2(x2), with an irrelevant change of name.

Now we show how to obtain Q from P interactively, by means of interactive functions.

Interactive functions. Given two positive (resp. negative) logical behaviours F, G, an
interactive function (i–function for short) F : F −→ G is any design F |= F⊥, x0 : G (resp.
F |= G, x0 : F⊥). We write F (P) for P [F/x0] if P ∈ F (resp. F (M) for F [M/x0] if M ∈ F)
and F a i–function. We also write F (F) for {F (D) : D ∈ F}. Observe that since our setting
is fully linear, i–functions have to be intended as “linear” functions. Two examples follow:

(a) A very important i–function is the fax [12] (or η-expanded identity) recursively defined
as i(x0) :=

∑
i(x0)a with i(x0)a := a(y1, . . . , yk).x0|a〈i(y1), . . . i(yk)〉.

i(x0) plays the role of the identity function for designs: i(x0)(D) = D for any D.

(b) We define uαβ : Q −→ P as uαβ :=
∑

αβ uab +
∑

c 6∈αβ i(x0)c with uab, for any ab ∈ αβ,
defined as (abbreviating yb1 , . . . , yblb by y and i(yb1), . . . , i(yblb) by i(y)):

uab := ab(xa1 , . . . , xaka
).x0|a〈i(xa1), . . . , i(xaka

)〉 if x1 6= xa1

uab := ab(y, xa2 . . . , xaka
).x0|a〈ˆ(y).y|b〈i(y)〉, i(xa2), . . . , i(xaka

)〉 if x1 = xa1 .

uαβ, which sends designs in Q to designs in P, will be important in analyzing the interac-
tive focalization process of the focalizing-design f. The role of uαβ is to break a synthetic
connective αβ into its more atomic connectives α and β.

Section-retraction pairs. Given two logical behaviours of the same polarity F,G, a
section-retraction pair from G to F is a pair of i-functions (g, f) with g : G −→ F, the
section, and f : F −→ G, the retraction, such that f ◦ g = i(x0). A section-retraction pair is
strict if it sends a daimon-free design to a daimon-free one. Section-retraction pairs can be
considered in a context:

Theorem 4.1. Any (strict) section-retraction pairs between Pi and Qi (i=1, ..., n) can be
extended to a (strict) section-retraction pair between α(P1, . . . , Pn) and α(Q1, . . . , Qn) for any
logical connective α. The same holds for the positive case.

Then, Focalization can be expressed as the existence of a section-retraction pair from Q
to P with uαβ as section.

6

The focalizing-design f. We now introduce the i-function fαβ : P −→ Q, which will be
the retraction associated with uαβ and shall interactively build the focalized designs. fαβ is
defined as fαβ :=

∑
αβ fab +

∑
c 6∈αβ i(x0)c with, for any ab ∈ αβ, fab being defined as:

fab := a(xa1 , . . . , xaka
).x0|ab〈i(xa1), . . . , i(xaka

)〉 if x1 6= xa1 ,

fab := a(x1, xa2 , . . . , xaka
).x1|´〈∑β b(y).x0|ab〈i(y), i(xa2), . . . , i(xaka

)〉〉 if x1 = xa1 .

Theorem 4.2. fαβ(P) = Q. Moreover, winning conditions are preserved: fαβ(Pw) ⊆ Qw

(actually, fαβ(Pw) = Qw).
uαβ(|Q|) = |P|. Moreover, winning conditions are preserved: uαβ(Qw) ⊆ Pw.

Composing fαβ and uαβ. To establish that (uαβ, fαβ) is a section-retraction pair from Q
to P, we shall study the composition of the two i-functions fαβ ◦ uαβ. We have:

Proposition 4.3. fαβ ◦ uαβ = i(x0).

Proof. By definition of fαβ and uαβ, it is immediate that

fαβ ◦ uαβ = Jfαβ(uαβ)K = Juαβ[fαβ/x0]K = J
∑

αβ uab[
∑

αβ fab/x0]K +
∑

c/∈αβ i(x0)c.

Moreover, since J
∑

αβ uab[
∑

αβ fab/x0]K =
∑

αβJuab[fab/x0]K, the left member of the sum can
be further decomposed and we have two cases: if ab(~z) is ab(xa1 , . . . , xaka

), we have that:

Juab[fab/x0]K = ab(xa1 , . . . , xaka
).Jfab|a〈i(xa1), . . . , i(xaka

)〉K
= ab(xa1 , . . . , xaka

).x0|ab〈Ji(i(xa1))K, . . . , Ji(i(xaka
))K〉

= ab(xa1 , . . . , xaka
).x0|ab〈i(xa1), . . . , i(xaka

)〉
= i(x0)ab.

Otherwise, if ab(~z) = ab(yb1 , . . . , yblb , xa2 . . . , xaka
), writing x for xa2 , . . . , xaka

, we have that

Juab[fab/x0]K = ab(y,x).Jfab|a〈ˆ(y).y|b〈i(y)〉, i(x)〉K
= ab(y,x).J

(ˆ(y).y|b〈i(y)〉
)
|´〈∑β b(y).x0|ab〈i(y), i(i(x))〉〉K

= ab(y,x).J
(∑

β b(y).x0|ab〈i(y), i(i(x))〉
)
|b〈i(y)〉K

= ab(y,x).x0|ab〈Ji(i(y))K, Ji(i(x))K〉 = ab(y,x).x0|ab〈i(y), i(x)〉
= i(x0)ab.

Finally, we have obtained that Jfαβ(uαβ)K = i(x0).

Focalization theorem. We can now conclude with the focalization theorem:

Theorem 4.4 (Focalization Theorem). For any logical connectives α and β, there is a strict
section-retraction pair from αβ〈Y,X〉 to α〈ˆ(β〈Y〉),X〉 which is the pair (uαβ, fαβ).

An important thing to notice is that theorem 4.1 applies to (uαβ, fαβ) and that the section-
retraction pair is strict. This will allow to carry the building of synthetic connectives inside
contexts and to ensure we will obtain proofs through the full completeness. fαβ is thus a
retraction from P to Q which will map proofs to proofs with synthetic connectives. Moreover,
uαβ ◦fαβ : P −→ P is an interactive function from P to P which preserves winning conditions:
given a proof (winning design), it shall build a focused version of that proof.

7

5 Conclusion and future works

We have considered in this abstract how Focalizationcan be considered from the point of view
of ludics itself. In order to do so, we considered interactive functions which have the ability
to make a cluster of two positive logical connectives which are separated by a single trivial ↑
logical connective (that it to merge them in a single synthetic connective), while preserving
winning conditions.

Our present work naturally leads to directions that whe shall develop in future works:

• A natural direction is to obtain a proof of the focalization theorem for MALL by
combining the results in the present paper with the full-completeness results of Ludics.

• Extending our results to the case of the exponential [2] seems of interest not only be-
cause our current analysis is restricted to the linear case, but also because it might
clarify several elements of the proof–theory of the exponentials (and their bipolar be-
haviour).

• The initial motivation of our work was to find an analogous to the tape compression
theorem for Turing Machines. We also plan to develop this line of work in the future.

References

[1] Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput.
2(3) (1992) 297–347.

[2] Basaldella, M., Faggian, C.: Ludics with Repetitions (Exponentials, Interactive Types and
Completeness) In LICS. (2009)

[3] Curien, P.-L.: Abstract Böhm trees. Math. Struct. in Computer Science 8 (1998) 559–591.
[4] Curien, P.-L.: Introduction to linear logic and ludics, part II. (2005)
[5] Curien, P.-L.: Notes on game semantics (2006) Manuscript.
[6] Curien, P.L., Herbelin, H.: Abstract machines for dialogue games. (2007)
[7] Faggian, C.: Travelling on designs. In: CSL. (2002) 427–441.
[8] Faggian, C., Piccolo, M.: Ludics is a model for the finitary linear pi-calculus. In: TLCA.

(2007) 148–162.
[9] Girard, J.-Y.: A New Constructive Logic: Classical Logic. MSCS 1(3) (1991) 255–296.

[10] Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In Berger, U.,
Schwichtenberg, H., eds.: Computational Logic. Springer-Verlag (1999) 215–272.

[11] Girard, J.-Y.: On the meaning of logical rules II : multiplicatives and additives. Foundation
of Secure Computation, Berger and Schwichtenberg edts (2000) 183–212.

[12] Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. MSCS 11 (2001)
301–506.

[13] Laurent, O.: Étude de la polarization en logique. PhD thesis, Univ. Aix-Marseille II (2002).
[14] Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130 (2004) 79–123.
[15] Laurent, O.: A proof of the focalization property of Linear Logic. Unpublished note, 2004
[16] Miller, D. and Saurin, A.: From proofs to focused proofs: a modular proof of focalization

in Linear Logic In: CSL. (2007) 405–419.
[17] Terui, K.: Computational ludics (2008) To appear in Theor. Comput. Sci.

8

