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Abstract— In this paper, an exact asymptotic pairwise error
probability (PEP) is derived for a half-duplex cooperative sys-
tem employing an amplify-and-forward (AF) protocol. When
compared with the PEP of a traditional multiple-input multiple-
output (MIMO) system, the “diversity gain” for the cooperative
system is no longer just a simple exponential function of the
signal-to-noise ratio (SNR), rather, it involves the logarithm of
the SNR. The termdiversity gain functionis used to designate this
characteristic of the PEP. The coding gain, on the other hand, is
found similar to that for the MIMO system and is proportional
to the determinant of the autocorrelation of the error matrix.
Based on our analysis and observations, we propose a design of
unitary precoder for the cooperative system to achieve the full
diversity gain function. For the case of a 4-QAM signal being
transmitted, we further optimize the coding gain, and arrive at
a closed-form optimum precoder. Simulations indicate that our
proposed precoder designs greatly improve the performance of
the cooperative system.

Index Terms— Cooperative system, half-duplex, amplify-and-
forward (AF), pairwise error probability, diversity gain function,
precoder.

I. I NTRODUCTION

Diversity techniques have been employed in practical wire-
less communication systems to overcome the effects of chan-
nel fading. Among the various forms of the diversities, spatial
diversity which is often implemented by transmitting signals
between geographically separated transmitting and receiving
antennas is most commonly used since it can be readily
combined with the other forms (such as time, frequency) of
diversity. The gain in employing spatial diversity is usually
measured by the product of the number of transmitter and
receiver antennas. However, while having multiple transmitter
and receiver antennas is often desirable to obtain higher diver-
sity gain, this is often impractical in some applications such as
mobile communications for which installing multiple antennas
would increase the size and complexity of the wireless units.
To overcome this limitation, another form of spatial diversity
called cooperative diversity, has recently been proposed for
mobile wireless communications. Here, a strategy is used such
that the in-cell mobile users share the use of their antennas to
create a virtual array through distributed transmission and sig-
nal processing. The fundamental idea of a cooperative system
can be traced back to the literature of relay systems [1], [2].
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Applications of the idea to wireless communication systems
are, however, more recent (e.g. [3]–[10]). New cooperative
protocols such as protocols with low-complexity and protocols
achieving optimal diversity-multiplexing tradeoff [11] have
been proposed [6]–[8]. These protocols can be generally clas-
sified into two types, Amplify-and-Forward (AF) and Decode-
and-Forward (DF) protocol. In an AF protocol, the relay nodes
retransmit a scaled version of the signal received from the
source node to the destination node. In a DF protocol the
relay nodes decode the message first, re-encode it and then
transmit it to the destination.

In this paper, we focus our consideration on an AF protocol
over a half-duplex cooperative system, where the source and
relay nodes either transmit or receive the signal, but do not do
both at the same time. Such a system has a lower complexity
and is easier to implement than a full-duplex system. The AF
protocol we study was first proposed in [6]. In this paper, we
analyze the pairwise error performance of the AF half-duplex
relay system in which maximum likelihood (ML) detector is
used. For the Alamouti coded AF protocol, an upper bound of
the pairwise error probability (PEP) has already been presented
in [5]. Here, we derive anexactexpression for the asymptotic
PEP. We observe that, unlike in the case of a traditional MIMO
system, the “diversity gain” of the AF half-duplex cooperative
system is not simply an exponential function of signal to noise
ratio (SNR) as it is in conventional MIMO systems. Rather, it
involves the logarithm function of the SNR. We designate this
characteristic thediversity gain functionof the AF half-duplex
cooperative system. On the other hand, for this AF system, the
coding gain is found to be proportional to the determinant
of the autocorrelation of the coding error matrices, which
is similar to the case of conventional MIMO system. From
the expression of the PEP, we design aunitary precoder to
achieve the maximum diversity gain function. We then further
optimize the precoder to maximize the minimum of the coding
gain. Simulations indicate that our proposed precoders not
only significantly improve the performance over the system
for which no precoder is used, but also outperform the system
for which Alamouti’s code is employed.

By considering an orthogonal space-time modulated relay
system equipped with 2 relays [12] and examining a system
with multiple relays [13], [14], thelogSNR factor in the
diversity gain function has also been observed. However, for
the two systems considered in [12]–[14], transmission between
the source and destination is not permitted, whereas such direct
transmission is scheduled to occur in the substantially different
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Fig. 1. A single relay system

configuration considered in this paper. It should be pointed out
that the AF protocol [6] considered here has been shown to
achieve the optimal diversity-multiplexing tradeoff [11] for a
single antenna relay system if Gaussian codes of sufficient
length is used. It should also be pointed out that this protocol
has been extended to a multiple antenna relay system [15]
for which space-time block codes are constructed to achieve
the diversity-multiplexing tradeoff by the principle of non-
vanishing determinant.

Notations: Bold upper- and lower-case letters denote
respectively matrices and column vectors, with(·)T and
(·)H denoting their transpose and conjugate-transpose re-
spectively. A length P vector s is expressed ass =
[s(1), s(2), · · · , s(P )]T , with ‖s‖ standing for its 2-norm.
IK denotes aK ×K identity matrix and0 stands for an all-
zero matrix of appropriate dimensions.E[·] is the expectation
operator. Notationf(x) , O

(
g(x)

)
, g(x) > 0 denotes that

there exists a positive constantc such that|f(x)| ≤ cg(x)
whenx is large.

II. SYSTEM MODEL

In this paper, we focus on the AF protocol proposed in [6],
which is also referred as anon-orthogonal AF protocol. We
first introduce the system model in this section.

A. Single relay

In a single relay system as represented in Fig 1, the relay
node R assists the transmission from the source node S to
the destination node D. We assume that all the nodes are
equipped with one transmitter antenna. The channel gain from
the source to destination is denoted byhsd whereas those from
the source to the relay and from the relay to the destination
are denoted byhsr and hrd respectively. We consider a sym-
metric relay network, where all channel gains are assumed
to be independent and identically distributed (IID) zero mean
circularly Gaussian with unit variance, and remain unchanged
during the period of observation. We assume that the original
information signals are equally probable from a constellation
setS composed of quadrature amplitude modulation (QAM)
signals which are processed by aunitaryprecoder before being
transmitted from the source node. The transmission of the
signal is carried out block by block, each block being of
length 2P, P ≥ 1. Therefore, there is also a data receiving
period for the relay node before it forwards the received
data block to the destination. We denote the original data
block by s = [sT

I sT
II ]

T , where sI = [s(1), · · · , s(P )]T ,
sII = [s(P + 1), · · · , s(2P )]T , with s(i) being the original
information symbol at theith time instant,i = 1, · · · , 2P .

TABLE I

SCHEME 1: AN AF PROTOCOL FITTED WITH A SINGLE RELAY

Time slots Operation

1st P -time-slots S→ R, D
2nd P -time-slots S→ D, R → D

The covariance ofs is assumed to be an identity matrix, i.e.
E[ssH ] = I2P . The precoded data blockx = [xT

I xT
II ]

T ,
xI = [x(1), · · · , x(P )]T , andxII = [x(P + 1), · · · , x(2P )]T ,
can be expressed as

x =
(

xI

xII

)
= F

(
sI

sII

)
(1)

whereF is a2P×2P unitary matrix representing the precoder.
For an AF half-duplex system with a single relay, several

transmission schemes have been proposed [5]–[7]. However,
they can be considered under the general description of the
non-orthogonal AF protocol the operation of which is shown in
Table 1. The source transmitsxI to both destination and relay
node during the firstP -time-slots (the shortest relay length is
P = 1), and in the secondP -time-slots, the source transmits
xII to the destination and the relay node simply amplifies and
forwards what it receives from the firstP -time-slots to the
destination. This single relay transmission method is referred
to as Scheme 1 in this paper. The input-output relation can be
expressed as

r(p) =
√

Ephsd x(p) + v(p) (2)

r(P + p) =
√

Ephsd x(P + p)

+ hrdb
(√

Ephsr x(p) + w(p)
)

︸ ︷︷ ︸
received at relay

+v(P + p) (3)

where forp = 1, 2, · · · , P , x(·) and r(·) denote respectively
the transmitted signal at the source and the received data
at the destination,v(·) and w(·) denote respectively the IID
zero-mean circularly Gaussian noise with varianceσ2 received
at the destination and at the relay node,Ep is the average
power for transmitting a symbol at each node, andb is the
amplification coefficient at the relay node. If the channel gain
hsr is known at the relay node, thenb is chosen [6], [7]

to be b =
√

Ep

|hsr|2Ep+σ2 . On the other hand, if instead of
true knowledge ofhsr, only the second order statistics of
hsr is known at the relay node,b can be chosen asb =√

Ep

E[|hsr|2]Ep+σ2 =
√

Ep

Ep+σ2 , with hsr being Gaussian having
zero-mean and unit-variance. We assume the latter constraint
in the paper. Writing (2) and (3) in a matrix form, we have

r1 =
√

Ep

(
hsdIP 0

bhsrhrdIP hsdIP

)(
xI

xII

)

+
(

0 0
bhrdIP 0

)(
wI

wII

)
+

(
vI

vII

)

=
√

EpH1x + n1 (4)

where r1 = [r(1), r(2), · · · , r(2P )]T , x = Fs =[
xT

I xT
II

]T
, the noise vectorsvI ,vII and wI ,wII are

respectively the IID zero-mean Gaussian noise in the direct
and relay paths at the 1st and 2ndP -time-slots, and the
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Fig. 2. Scheme M: A multiple relay system

subscript1 indicates that the quantities are associated with
Scheme 1. This renders the equivalent noise at the destination
n1 being the sum of the two components such thatn1 =
[vT

I (bhrdwI + vII )T ]T andn1 ∼ N (0, σ2Σ1) with

Σ1 =
(

IP 0
0 (1 + b2|hrd|2)IP

)
(5)

and

H1 =
(

hsd IP 0
bhsrhrdIP hsdIP

)
(6)

being the channel matrix. For convenience in the analysis of
PEP, we rewriteH1x as

H1x = X1h1 (7)

whereX1 is the signal matrix andh1 is the equivalent channel
vector such that

X1 =
(

xI 0
xII xI

)
and h1 =

(
hsd

bhsrhrd

)
. (8)

B. Multiple Relays

A half-duplex transmission system fitted with multiple
relays is shown in Fig 2. There areN relay nodes which
assist the transmission from the source node to the destination.
Again, we assume that all nodes equipped with a single an-
tenna. We denote the channel from the source to the destination
by hsd as in the case of single relay, the channel from the
source to thenth relay node byhsrn , and the channel from
the nth relay to the destination byhrnd, n = 1, · · · , N . We
also consider a symmetric system here, all channel gains are
also assumed to be IID zero mean circularly Gaussian with
unit variance, and remain unchanged during the period of
observation. We focus on the multiple relay scheme that is
also proposed in [6]. In this scheme, referred to as Scheme N
in this paper, the relays take turns to assist the transmission
from the source to the destination. At any instant, only one
relay is active. The signal transmission between the source and
the activerelay at any instant assumes the mode of Scheme 1
as described in the Section II-A.

The original data symbols are assumed to be equally
probable from the constellation setS and processed by a
unitary precoder before being transmitted. Our analysis is in

fact valid for any block length, however, for simplicity of
consideration, we assume that the block length between the
source and each active relay is of2 (each frame length is one
symbol, i.e.,P = 1). For all theN relays, the total signal
block length is therefore2N . We denote the original data
vector by s = [s(1), · · · , s(2N)]T , with covariance being
E[ssH ] = I2N , and s(i), i = 1, · · · , 2N , being the original
data symbol to be transmitted at theith instant. The precoded
signal vector isxN = FNs, whereFN is a 2N × 2N unitary
matrix, andxN = [x(1), · · · , x(2N)]T . The received signals
at the destination are:

r(1) =
√

Ephsdx(1) + v(1)

r(2)=
√

Ephsdx(2)+bhr1d
(√

Ephsr1x(1)+w(1)
)
+v(2)

r(3) =
√

Ephsdx(3) + v(3)

r(4)=
√

Ephsdx(4)+bhr2d
(√

Ephsr2x(3)+w(3)
)
+v(4)

...

r(2N − 1) =
√

Ephsdx(2N − 1) + v(2N − 1)

r(2N) =
√

Ephsdx(2N)

+ bhrN d
(√

EphsrN x(2N − 1)+w(2N − 1)
)
+v(2N)

(9)

wherex(·) and r(·) denote respectively the transmitted pre-
coded signal at the source and the received data at the
destination,v(·) and w(·) denote respectively the IID zero-
mean circularly Gaussian noise with varianceσ2 received at
the destination and at the relay nodes. The relay nodes are
assumed to have knowledge of the second order statistics of
the channel from source to relays, therefore the amplifying co-

efficientsb for all relay nodes are the same, i.e.,b =
√

Ep

Ep+σ2 .
Using similar arguments as in the previous subsection, the
transmission model in (9) can be written in a compact matrix
form,

rN =
√

EpXNhN + nN (10)

where subscriptN denotes entities associated with theN -
relay system,rN is the received vector given byrN =
[r(1), · · · , r(2N)]T , XN is the 2N × (N + 1) transmitted
signal matrix, andhN is the (N + 1) × 1 equivalent channel
vector respectively given by

XN =




x(1) 0 · · · · 0
x(2) x(1) 0 · · · 0
x(3) 0 0 0 · · ·
x(4) 0 x(3) 0 · · ·

...
. . .

. . .
x(2N − 1) 0 · · · 0 0

x(2N) 0 · · · 0 x(2N − 1)




(11)

and hN = [hsd, bhsr1hr1d, bhsr2hr2d, · · · , bhsrN hrN d]
T (12)

andnN is the2N×1 noise vector such thatnN ∼ N (0, σ2ΣN)
with ΣN given by
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ΣN =




1 0 · · · 0
0 1 + b2|hr1d|2 · · · 0
.. .

. ..

0 · · · 1 0
0 · · · 0 1 + b2|hrN d|2




. (13)

III. PAIR-WISE ERRORPERFORMANCEANALYSIS

We now present the results of the performance analysis
for the half-duplex systems with a single relay as well as
with multiple relays described in the previous section. The
criterion on which the performance of the systems is analyzed
is the pairwise error probability (PEP) which is explained
as follows: Consider that a ML detector is employed at the
receiver after the noise is pre-whitened. Then, in either case
of single or multiple relay, for a given channel realization
hm, m = 1, N (m = 1 corresponds to the single relay system
andm = N to multiple relay systems), and an original symbol
block s ∈ S2P or s ∈ S2N , the PEP is defined as the
probability of deciding in favor ofs′ 6= s, s′, s ∈ S2P or
S2N , and is given by

Pem(s → s′|hm) = Q
(dm(s, s′)

2

)
, m = 1, N (14)

where as shown in [16] theQ(x) function is

Q(x) =
1√
2π

∫ ∞

x

e−
z2
2 dz =

1
π

∫ π
2

0

exp
(− x2

2 sin2 θ

)
dθ (15)

and dm(s, s′) is the Euclidean distance betweens and s′ at
the ML detector. This distancedm(s, s′) is a function of the
error vectore representing the difference betweens ands′ at
the transmitter, where

e = s− s′. (16)

We begin by examining the system with a single relay (m = 1)
and then move on to the case with multiple relays (m = N ).

A. Single relay

In the case of a single relay, at the receiver, after the
received signal has been processed by the noise whitener, the
distance measured1(s, s′) between the two signal vectors can
be expressed as

d2
1(s, s

′) =
Ep

σ2
(s− s′)HFHHH

1 Σ−1
1 H1F(s− s′)

= ρ eHFHHH
1 Σ−1

1 H1F e

wheree is given by (16), andρ = Ep/σ2 represents the signal-
to-noise ratio (SNR). (Note thatρ is not the SNR defined
by the equivalent noise at destination receiver). Denoteu =
[uT

I uT
II ]

T = x − x′, then u = Fe = F(s − s′). We can
re-write the above measure for single relay as

d2
1(s, s

′) = ρ hH
1 UH

1 Σ−1
1 U1 h1 (17)

whereU1 is the error matrix after precoding such that

U1 =
(

uI 0
uII uI

)
= X1 −X′

1 (18)

with ui = xi − x′i , i = I, II, and X1 and X′
1 as defined

in (8). Using (14), (15), and (17), theaveragepairwise error
probability is given by

Pe1(s → s′) = Eh1

[
Q

(d1(s, s′)
2

)]

=
1
π

∫ π
2

0

Eh1

[
exp

(
− ρ

hH
1 UH

1 Σ−1
1 U1h1

8 sin2 θ

)]
dθ.

(19)

We now present an asymptotic pairwise error expression of a
single relay in the following theorem, the proof of which is
given in Appendix I:

Theorem 1:Supposedet(UH
1 U1) 6= 0 whereU1 is given

by (18). Then at high SNR, the average PEP for the single
relay system is given by

Pe1(s → s′)=
6

det(UH
1 U1)

(ρ−2 ln ρ)+O
(| ln det(UH

1 U1)|
ρ2

)
.

(20)

The terms 1
6 (det(UH

1 U1)) and (ρ−2 ln ρ) are respectively
designated thecoding gainand thediversity gain functionof
the system. ¤
Comparing the result in Theorem 1 with the asymptotic
PEP for a conventional MIMO system [17], the following
observations are noted:
• An upper bound of the PEP for a conventional MIMO

system is often characterized by thediversity gainwhich
is defined as the slope at which the PEP decreases with
the logarithm of SNR. However, as we observe from
Theorem 1, the “diversity gain” for an AF single relay
system is no longer simply a power function of SNR. It
also involves a function of the logarithm of SNR. This is
because the channel matrix contains a term of the product
of two independent channel gains which is not IID Gaus-
sian as in the case for a conventional MIMO system. We
therefore have changed the designation here todiversity
gain functionto fully characterize the diversity behavior
of the relay system. Thislog SNR factor in the diversity
gain function had also be noted in [12]–[14] as mentioned
in Section I.

• Theorem 1 indicates that the coding gain of the AF single
relay system has a form similar to that of a conventional
MIMO system. The condition to fully reach the diversity
gain function is to have non-zero coding gain, i.e.,

det(UH
1 U1) = ‖uI‖4 + β 6= 0 (21)

where
β = ‖uI‖2‖uII‖2 − uH

II uIuH
I uII . (22)

We note thatβ ≥ 0 by the Schwartz Inequality andβ =
0 iff uI = αuII for someα. Similar to a MIMO system,
this condition can be regarded as arank criterion [17],
i.e., the auto-correlation matrix of the error must be full
rank to achieve the full diversity function. However the
auto-correlation matrix of the error in the single relay
system, unlike that in a conventional MIMO system,
is lower triangular in its structure because the channel
matrix in (6) is lower triangular in structure with equal
diagonal elements.
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B. Multiple relays

From the description in Section II-B, the input-output relation
of the multiple relay system is given byrN =

√
EpXNhN +nN

whereXN is given by (11). Thus, for this multi-relay system,
the error matrix is given by,

UN = XN −X′
N

=




u(1) 0 · · · 0
u(2) u(1) 0 · · ·
u(3) 0 0 0 · · ·
u(4) 0 u(3) 0 · · ·

...
. ..

.. .
u(2N − 1) 0 · · · 0 0

u(2N) 0 · · · 0 u(2N − 1)




(23)

with u(i) = x(i)− x′(i), i = 1, 2, · · · , 2N . The analysis for
such a system withN relays is similar to the system with a
single relay, and its PEP is given by the following theorem,
the proof of which is shown in Appendix II.

Theorem 2:Suppose that det(UH
N UN) =

ξ
∏N

n=1 |u(2n− 1)|2 6= 0, where UN is given in (23)
andξ =

∑N
n=1 |u(2n− 1)|2. Then, at high SNR, the average

PEP of the multiple relay system is

PeN(s → s′)=
(2N + 1)!!2(N+1)

(N + 1)! det(UH
N UN)

ρ−(N+1) lnN ρ

+O
( | ln det(UH

N UN)|
ρ(N+1)

lnN−1 ρ
)

(24)

where(2N + 1)!! = 1 · 3 · · · (2N + 1). ¤
In this case, the diversity gain function is given by
ρ−(N+1) lnN ρ, while the coding gain is given by

(N+1)!
(2N+1)!!2(N+1) det(UH

N UN). Parallel to Theorem 1, we

can look upon the conditiondet(UH
N UN) 6= 0 in Theorem 2

as a rank criterion under whichfull diversity gain function
can be achieved.

IV. PRECODER DESIGN AND PERFORMANCE

The previous section addresses the performance of both
the single relay and the multi-relay systems. In this section,
we develop the design of the precoders at the transmitter of
these relay communication systems so that their PEP can be
improved. The results of our analysis in the previous section
suggest that as long as the rank criterion is satisfied, the
PEP of both the single-relay and the multi-relay systems will
depend on the diversity gain function (which is a function of
the SNRρ) and the coding gain (which is a function of the
error matrix). Therefore, our design of the precoder can be
carried out by ensuring that: (i) the rank criterion is satisfied
to achieve full diversity which implies that the determinant
of the corresponding autocorrelation of the error matrix must
be non-zero, and then (ii) the minimum of coding gain is
maximized. Now, the PEP of a signal constellation depends
on which pair of points is being addressed. For any signal
constellation, the worse-case PEP dominates the performance.
Thus, our design should minimize the worse case PEP of the
relay communication system by maximizing the minimum of
the determinant of the error correlation matrix, provided that

the rank criterion is satisfied. (The principles of satisfying
these two criteria can be viewed as a parallel to those in
the design of space-time codes for a conventional MIMO
channel [17]). In the following, we discuss the designs of the
precoders under consideration of these two criteria.

A. Precoder design for full diversity

Single Relay SystemFrom the discussion on Theorem 1, the
condition to achieve the full diversity gain function (the rank
criterion of (21)) is re-written here as

‖uI‖4+ β 6=0 (25)

whereβ = ‖uI‖2‖uII‖2 − uH
II uIuH

I uII . As noted before,β is
non-negative but can be equal to zero (whenuI ∝ uII ). Thus,
a necessary and sufficient condition for the rank criterion for
Scheme 1 can be written as

‖uI‖4 6= 0. (26)

A sufficient condition to guarantee (26) is given by:|u(k)|2 =
0, ∀k ∈ [1, 2P ] if and only if s = s′, s, s′ ∈ S2P . A
precoder which ensures this condition can be readily obtained
by applying the design scheme in [18]–[23] as stated in the
following Lemma:

Lemma 1:Define the Cyclotomic ring [24] asZ[ζr] =
{∑r

i=1 ciζ
i
r : ci ∈ Z, i = 1, · · · , r−1}, whereZ denotes the

integer ring{· · · , 0, ±1, ±2, · · · } andζr = exp( j2π
r ). Let

L =
∏K

k=1 `nk

k , where`k is prime,nk is a positive integer for
k = 1, · · · ,K. Form the integerL1 = L2

∏K
k=1 `mk

k , where
mk ≥ 1 with L2 being prime toL and letQ = LL1. Define
the L× L precoder matrix

Fod = WH
L diag(1, ζQ, · · · , ζL−1

Q ) (27)

whereWL is a normalized discrete Fourier transform matrix
of sizeL. If q = Fodp, p ∈ ZL[ζL1 ] andp 6= 0, then all the
entries in vectorq are nonzero. ¤

The proof of Lemma 1 can be found in [23]. It tells us
that matrixFod precodes vectorp in such a way that all the
components of the precoded vectorq are non-zero unlessp
is a zero vector. Obviously if our precoderF for Scheme 1
is chosen asFod in (27) with L = 2P , then the condition
in (26) is guaranteed by carefully choosingL1, L2 andQ in
Lemma 1. Let us look at a simple example:

Example 1:ConsiderP = 1. It is obvious that for this
value of P , we haveL = 2, K = 1 and n1 = 1. Then, any
odd number will be prime toL and thus,L2 = 1, 3, 5, · · · .
If we chooseL2 = 1, m1 = 2, then we can formL1 =
L22m1 = 4 and henceQ = LL1 = 8. Now, for L = 2,

WL = 1√
2

(
1 1
1 −1

)
. Then, for anye = [e(1) e(2)]T =

(s− s′)T ,

u = Fode =
1√
2

(
1 ej π

4

1 −ej π
4

)
e. (28)

Thus, u(1) = e(1) + ej π
4 e(2) and u(2) = e(2) − ej π

4 e(2).
For any square QAM constellation,e(1), e(2) are rational
complex numbers. Sinceej π

4 is irrational, hence,u(1) = 0 ⇔
e(1) = e(2) = 0.
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Fig. 3. BER performance for single relay Scheme 1 (with and without
precoder) and Scheme with Alamouti code

Let us examine the effect of such a precoder on the
performance of the single relay communication system.

Example 2:For the single relay system operating in the
mode of Scheme 1, we compare the bit error rate (BER)
of the system without a precoder to that equipped with the
proposed precoder in (27). We employ a data block length
of 2, and BPSK is used for transmitting the signal. We also
evaluate the BER performance of the scheme proposed in [5]
where the Alamouti code [25] is used. This scheme requires
4 time slots to transmit2 symbols. In the 1st and 3rd time
slots, the source transmits two symbols to the relay node
and there is no transmission to the destination. In the 2nd
and 4th time slots, both the source and the relay transmit
their symbols to the destination (this scheme can actually be
considered as a special case of Scheme 1). In this case, the
transmission procedure is similar to that of a MIMO system
with 2 transmitter antennas and one receiver antenna thus
Alamouti’s code can be applied. For this Alamouti coded
relay scheme, we employ 4-QAM signalling so that the
transmission is carried out at the same bit rate as Scheme 1.
The BER performance of these different single-relay schemes
are shown in Fig. 3. It can be seen that in comparison to the
system without percoding, the designed precoder provides
approximately a 6dB gain at moderate-to-high SNR. It
can also be observed that the proposed scheme outperforms
the Alamouti coded relay scheme at moderate-to-high SNRs.

Multiple Relay System From Theorem 2, the rank criterion
for Scheme N is given by

det(UH
N UN) = ξ

N∏
n=1

|u(2n− 1)|2 6= 0. (29)

Similar to Scheme 1, a sufficient condition for (29) is:
|u(k)|2 = 0, ∀k ∈ [1, 2N ] if and only if s = s′, s, s′ ∈ S2N .
Therefore, a precoder of the form given by (27) withL = 2N
will also satisfy the rank criterion for Scheme N, i.e., a
precoder of size2N achieving full diversity for the multiple

4 6 8 10 12 14 16 18 20 22 24 26 28 30
10
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10
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B
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Multiple relay−with precoder

Fig. 4. BER performance for Scheme N(2-relays) with and without precoder

relay system can take on the form,

Fod = WH
2N diag(1, ζQ, · · · , ζL−1

Q ) (30)

where W2N , L, and Q are defined in Lemma 1. It can
be seen that the precoder proposed above for the multiple
relay system has the same form as that for the single-relay
system. Both satisfy the respective rank criteria so that full
diversity can be achieved. To illustrate how the precoder for
the multiple-relay system performs, we now present some
computer simulation results.

Example 3:Fig. 4 shows the BER performance comparison
for the systems with multiple relays. We compare the perfor-
mance of the 2-relay systems with and without the precoder.
Here, the precoder for the system is given by (30) withN = 2
andQ = 16. The signals are transmitted using QPSK. It can be
observed that the precoded scheme again provides substantial
gain over the unprecoded scheme.

B. Precoder design for maximizing coding gain in single relay
— the2× 2 case

In the previous section, we have outlined how the precoder
of a relay system can be designed to reach full diversity gain
function. Here, we examine how the precoder can further
be designed to obtain a high coding gain. To maximize the
coding gain one has to take into account all the possible
pairs of symbol in a signal constellation. In general, it is
very complicated [17] to consider this criterion for arbitrary
block length and size of constellation. Hence, we consider a
simple case of the single relay system in which the data block
length is of 2, i.e., P = 1 and the transmitting signals are
from 4-QAM constellation. In this case, the coding gain is
proportional to the factordet(UH

1 U1) = |u(1)|4. We now
seek an optimal2 by 2 unitary precoder to maximize the
minimum of the coding gain.
A general2 by 2 unitary matrix group can be expressed as
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[26],

Fc =
(

ejα1 0
0 ejα2

)(
cos θ ejφ sin θ

−e−jφ sin θ cos θ

)
(31)

whereα1, α2, θ ∈ [0, 2π], andφ ∈ [0, π]. Now, the value of
|u(1)|4 = |e(1) cos θ + e(2)ejφ sin θ|4 does not depend on the
choice ofα1 andα2. Therefore,θ andφ are the variables for
the optimization problem. The optimal values ofθ andφ are
given by the following theorem, the proof of which is provided
in Appendix III.

Theorem 3:For the single relay transmission system having
a data block length of2 and transmitting 4-QAM signals,
the optimal precoderFoc as given in (31) that maximizes the
minimum coding gain has values ofθ andφ given respectively
by

θ0 = sin−1




√
3−√3

6




φ0 = π/12 (32)

and the corresponding maximum value of the minimum coding
gain is given byC0 = 2

3 (1− 1√
3
)2. ¤

Remarks on the2× 2 optimal precoder:

• While Theorem 3 clearly indicates that the chosen values
of θ0 and φ0 in (32) maximize the minimum coding
gain, these values also enable the AF system to achieve
full diversity gain function even though the matrixFoc

does not conform to the structure ofFod in (27). This
is because the structure ofFod is only sufficient (but not
necessary) to achieve full diversity gain function.

• In a MIMO transmission system with2 transmission
antennas and one receiver antenna, a standard diagonal
space-time code [18], [22], [27], [28] uses unitary matrix

Fst = 1√
2

(
1 ejφ

1 −ejφ

)
generating the code words. To

maximize the minimum of coding gain for this MIMO
system, the value ofφ = π/4 has been suggested [18],
[22], [27], [28]. This happens to be the design in (28) to
achieve full diversity for a single relay system with data
block length of2. Apparently the design is not optimized
for coding gain for the relay system. A simple evaluation
shows that the corresponding coding gain is equal to0.02,
a value far inferior to that ofC0 = 2

3 (1− 1√
3
)2 = 0.357

given by Theorem 3 using the optimum precoderFoc

for maximizing the coding gain. In fact, the form of
Fst corresponds to the choice ofθ = π

4 , and α1 =
0, α2 = φ+π in Fc of (31). In such a case, maximizing
the minimum coding gain, we arrive at a precoderFost

having the optimum value ofφ = φost = π/6 and the
corresponding coding gain equal to 0.048 (calculations
of these coding gains are given in Appendix III). This
precoder is clearly better than the choice ofφ = π/4
in Fst, but is still much inferior to the value given in
Theorem 3. The above discussion illustrates thatthe
optimum designs for space-time block coding in a MIMO
system may, in general, not be directly applicable to the
optimum design in a relay transmission system.

16 18 20 22 24 26 28 30 32 34 36
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Fig. 5. BER performance of Scheme 1 with precoders of different coding
gains

We now illustrate the effect of the optimized coding gain
precoder on the performance of the single-relay system which
employs a data block length2 and compare it with that of the
various precoders.

Example 4: In this example, we test by simulations the
performance of the following single-relay systems operating
in the mode of Scheme 1: i) without precoder (the precoder
is actually an identity matrix), ii) with optimum coding gain
precoderFoc, the values ofθ0 andφ0 as given in Theorem 3
are used. iii) with precoderFst which provides optimum
coding gain for the MIMO system and full diversity for the
relay system, the value ofφ = π/4 is used, and iv) with
precoderFost, the value ofφ = π/6 is used. In all the
tests, the signals are transmitted in 4-QAM through the relay
system with added white Gaussian noise. Fig. 5 shows the
BER performance. Among the precoded relay systems, the one
employingFost is slightly better than that usingFst, while the
system employingFoc provides the best performance, being
superior to both the other precoded systems by a margin
of nearly 2dB in the high SNR region. On the other hand,
the unprecoded transmission suffers badly in performance,
needing more than 8dB SNR compensation for a BER of
10−4.

Example 5: In this example, we compare the performance
of Scheme 1 equipped with the optimal coding gain precoder
Foc with two other schemes: the scheme described in Exam-
ple 2 which uses the Alamouti’s code, and the scheme pro-
posed in [7] calledan orthogonal AF protocol. The orthogonal
scheme can also be considered as a special case of Scheme 1,
it differs from Scheme 1 in that there is no transmission from
the source node at all in the 2ndP -time-slots. It has the
same symbol rate as the Alamouti coded scheme. Therefore,
to compare their performance under the same bit rate, we
transmit 4-QAM signals for Scheme 1 and 16-QAM signals
for the other two schemes. Fig. 6 shows the comparison of
the performance. The performance of Scheme 1without a
precoder is also plotted for completeness of comparison. It
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Fig. 6. BER performance of Scheme 1 (with and without optimal precoder),
Alamouti’s coded scheme, and the orthogonal scheme

can be seen that Scheme 1 equipped with the optimal coding
gain precoder yields the best performance among all schemes.
It should be noted that all the schemes in this example achieve
full diversity as defined in Section IV-A. The advantage of
Scheme 1 with the optimal2 × 2 precoder over the other
schemes comes from achieving the optimum coding gain.

V. CONCLUSION

In this paper, we have analyzed the performance of an AF
half-duplex relay transmission system equipped with a single
antenna. We have focused on a non-orthogonal AF protocol
in which the source transmits the first half data block to both
the destination and the relay in the firstP time-slot, and
during the secondP time-slots, sends the second half data
block to the destination while the relay simply amplifies and
forwards what it receives in the firstP time-slots. This is
referred to as Scheme 1 in the paper. We have also analyzed the
multiple relay system, Scheme N, which is the multiple relay
version of Scheme 1. The exact asymptotic expressions of the
pairwise error probabilities of both schemes have been derived.
The diversity gains and the coding gains of the systems have
been identified. While the diversity gains have been shown
to be the product of a power function and log function of
SNR, the coding gains have been shown to be proportional
to the determinant of the autocorrelation of the coding error
matrices. These results are obtained over a symmetric relay
system where all the channel gains are IID Gaussian with
zero mean and unit variance. However our analysis can be
extended to cases in which channel gains are independent yet
have difference variances.

Our derived PEP analysis results suggest that two criteria
can be used for the precoder design: One being the rank cri-
terion to achieve the maximum diversity gain, and the second
being the coding gain criterion to obtain an optimum gain. We
have shown that a precoder to satisfy the first criterion can be
obtained by employing a currently available design scheme in
MIMO systems. To obtain a general precoder with arbitary

size (greater than2 × 2) that satisfies the second criterion
proves to be a hard problem. In this paper, we have focused
on the case of a single relay, data block length of2 and the
transmitted signal being in 4-QAM. For this case, we derived
a closed form optimum precoder over the2×2 unitary matrix
class. Simulations show that the proposed designs significantly
improve the BER performance of the relay systems.

APPENDIX I
PROOF OF THEOREM1

From (19), the average PEP for the single relay system can
be written as,

Pe1(s → s′)=
1
π

∫ π
2

0

Eh1

[
exp

(
− ρ

hH
1 UH

1 Σ−1
1 U1h1

8 sin2 θ

)]
dθ

(33)

whereh1 = T
(

hsd

hsr

)
, andT = diag(1, bhrd). Taking the

expected value in (33) with respect tohsd and hsr first, we
obtain

Pe1(s → s′) =
1
π

∫ π
2

0

Ehrd

[ 1
det(I2+ ρ

8 sin2 θ
THUH

1 Σ−1
1 U1T)

]
dθ

(34)

where we have used the fact that given a complex circularly
distributed Gaussian random column vectorz ∼ N (0,Σ), and
a Hermitian matrixA, thenE[exp(−zHAz)] = 1

det(I+ΣA) .
Let y = |hrd|2. The probability distribution function ofy is
e−

y
2

2 , sincehrd is zero-mean Gaussian. Then (34) becomes

Pe1(s → s′)

=
1
2π

∫ π
2

0

∫ ∞

0

e−
y
2

det(I2 + ρ
8 sin2 θ

UH
1 Σ−1

1 U1TTH)
dydθ (35)

where we have used the fact thatdet(I+CD) = det(I+DC).
The determinant in (35) can be evaluated such that,

(
det(I2 +

ρ

8 sin2 θ
UH

1 Σ−1
1 U1TTH)

)−1

=
1
µ2

(1 +
A1

y + λ1
+

A2

y + λ2
) (36)

where

µ = 1 +
ρ||uI ||2
8 sin2 θ

,

λ1 =
1

2b2

(
a1 +

√
a2
1 − 4a2

)
,

λ2 =
1

2b2

(
a1 −

√
a2
1 − 4a2

)
,

A1 =
1
b4 (1− a2)− 1

b2 (2− a1)λ1

λ2 − λ1
,

A2 =
− 1

b4 (1− a2) + 1
b2 (2− a1)λ2

λ2 − λ1
,

a1 = 1 +
1
µ2

(
1 +

ρ||u||2
8 sin2 θ

+
ρ2β

64 sin4 θ

)
,

a2 =
1
µ2

(
1 +

ρ||u||2
8 sin2 θ

)
,

with ||u||2 = ||uI ||2 + ||uII ||2,
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β = ||uI ||2||uII ||2 − uH
II uIuH

I uII .

The pairwise error probability can thus be re-written as,

Pe1(s → s′)

=
1
2π

∫ π
2

0

1
µ2

∫ ∞

0

(1 +
A1

y + λ1
+

A2

y + λ2
)e−

y
2 dydθ

=
1
2π

∫ π
2

0

1
µ2

(
2 + A1J(λ1) + A2J(λ2)

)
dθ (37)

whereJ(ν) =
∫∞
0

e−
u
2

u+ν du. Given the assumption‖uI‖4+β 6=
0, then at high SNR,λ1, λ2, A1, andA2 can be asymptotically
expressed as,

λ1 = (1 +
β

||uI ||4 ) + O(
1

||uI ||4 ρ−1) (38)

λ2 =
8‖u‖2 sin2 θ

(||uI ||4 + β)
ρ−1 + O

( 1
||uI ||4 + β

ρ−2
)

(39)

A1 =
−β2

||uI ||4(||uI ||4 + β)
+ O

( 1
||uI ||4 + β

ρ−1
)

(40)

A2 =
||uI ||4

(||uI ||4 + β)
+ O

( 1
||uI ||4 + β

ρ−1
)

(41)

where we have used the factb−2 = 1 + O(ρ−1). From
Section IV-A, we know‖uI‖4 = 0 if and only if ‖uI‖4+β = 0.
Therefore all the quantities in (38) - (41) exist. The asymptotic
behavior ofJ(ν) whenρ →∞ depends onν. From [29],J(ν)
can be expressed as

J(ν) =
∫ ∞

0

e−u

u + ν/2
du = e

ν
2

∫ ∞

ν
2

e−u

u
du = e

ν
2 Ei(

ν

2
)

where Ei(x) =
∫∞

x
e−u

u du = −(
γ + ln x +

∑∞
n=1

(−1)nxn

n!n

)
,

and γ is the Euler constant. Ifν = c1ρ
−1 + O(c2ρ

−2), 0 <
c1, c2 < ∞, then whenρ is large,

J(ν) = −
(
1 + O(c1ρ

−1)
)(

γ + ln(
c1 + O(c2ρ

−1)
2

)

− ln ρ +
∞∑

n=1

(−1)−n
(
c1ρ

−1 + O(c2ρ
−2)

)n

2nn!n

)

= ln ρ + O(| ln c1|). (42)

Combining (38)-(41), and (42) with (37) results in

Pe1(s → s′)

=
32

π(||uI ||4 + β)
ρ−2 ln ρ

∫ π
2

0

sin4θdθ +O
( | ln(||uI ||4+β)|

ρ2

)

=
6

(||uI ||4 + β)
ρ−2 ln ρ + O

( | ln(||uI ||4 + β)|
ρ2

)
(43)

=
6

det(UH
1 U1)

ρ−2 ln ρ + O
( | ln det(UH

1 U1)|
ρ2

)
(44)

¤

APPENDIX II
PROOF OFTHEOREM 2

The pairwise error probability for the multiple relays can
be expressed as

PeN(s→s′)=
1
π

∫ π
2

0

EhN

[
exp(−ρ

hH
N UH

N Σ−1
N UNhN

8 sin2 θ

]
dθ (45)

where UN is given in (23), andhN is given by hN =
TN [hsd, hsr1 , · · · , hsrN ]T with TN being an(N+1)×(N+
1) matrix such thatTN = diag(1, bhr1d, bhr2d, · · · , bhrN d).
Taking expectation with respect tohsd, hsr1 , · · · , hsrN in (45),
we have

PeN(s → s′)

=
1
π

∫ π
2

0

Ehr1d,··· ,hrN d

[ 1
det(IN+1+ ρ

8 sin2 θ
TH

N UH
N Σ−1

N UNTN)

]
dθ.

(46)

Similar to the proof of Theorem 1, we letyn = |hrdn |2, n =
1, 2, · · · , N . Then, the PEP in (46) can be accordingly ex-
pressed as,

PeN(s → s′)

=
1

2Nπ

∫ π
2

0

∫ ∞

0

· · ·
∫ ∞

0

f1e
− y1

2 dy1

N∏

k=2

gke−
yk
2 dy2 · · · dyNdθ

(47)

where

f1 =
1 + b2y1

b2y1µ1

(
1 + ρ

8 sin2 θ
(ξ+ε)

)
+1+ ρ

8 sin2 θ
(ξ+ε+|u(2)|2)

gk =
1 + b2yk

1 + b2ykµk
, k = 2, · · · , N

ξ =
N∑

n=1

|u(2n− 1)|2,

µn = 1 +
|u(2n− 1)|2ρ

8 sin2 θ
, n = 1, · · · , N (48)

ε =
N∑

i=2

|u(2i)|2
1 + b2yiµi

. (49)

Rewriting f1 as f1 = 1
µ1v1

(1 +
1

b2
− q1

b2

y1+
q1
b2

), where v1 = 1 +
ρ

8 sin2 θ
(ξ + ε) andq1 = 1

µ1v1

(
v1 + |u(2)|2ρ

8 sin2 θ

)
, then, the integral

with respect toy1 in (47) becomes,

I1 =
∫ ∞

0

f1e
− y1

2 dy1 =
1

µ1v1

(
2 + (

1
b2
− q1

b2
)J(

q1

b2
)
)
. (50)

Sinceyn ≥ 0 andµn > 0, n = 1, 2, · · · , N , then from (49),
we have 0 ≤ ε ≤ ∑N

i=2 |u(2i)|2. Given the assumption∏N
n=1 |u(2n− 1)|2 6= 0 (this implies ξ 6= 0), then at high

SNR, we have

1
µ1

=
8 sin2 θ

|u(1)|2 ρ−1 + O
( 1
|u(1)|2 ρ−2

)

1
v1

=
8 sin2 θ

ξ
ρ−1 + O

(1
ξ
ρ−2

)

q1 =
8
(
ξ + |u(2)|2) sin2 θ

|u(1)|2ξ ρ−1 + O
( 1

ξ|u(1)|2 ρ−2
)
.

Putting these quantities into (50), then, at high SNR, we have

I1 =
(8 sin2 θ)2ρ−2

|u(1)|2ξ
(

ln ρ + O
(| ln(ξ|u(1)|2)|)

)
. (51)

Next we calculate the integral ofyk, k = 2, 3, · · · , N − 1:

Ik =
∫ ∞

0

gke−
yk
2 dyk
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=
∫ ∞

0

1
µk

(
1 +

1
b2 − 1

b2µk

yk + 1
b2µk

)
e−

yk
2 dyk

=
1
µk

(
2 + (

1
b2
− 1

b2µk
)J(

1
b2µk

)
)
. (52)

Under the assumption
∏N

n=1 |u(2n− 1)|2 6= 0, then at high
SNR we have

Ik =
8 sin2 θ

|u(2k − 1)|2 ρ−1
(

ln ρ + O
(| ln |u(2k − 1)|2|)

)
. (53)

From (51) and (52), the PEP in (47) can be written as,

PeN(s → s′) =
1

2Nπ

∫ π
2

0

(8 sin2 θ)(N+1)

ξ
∏N

n=1 |u(2n− 1)|2
ρ−(N+1) lnNρdθ

+ O
(∣∣ ln

(
ξ
∏N

n=1 |u(2n− 1)|2)∣∣
ρN+1

lnN−1ρ
)
.

Since
∫ π

2

0

sin2(N+1) θdθ =
1 · 3 · 5 · · · (2N + 1)
2 · 4 · 6 · · · 2(N + 1)

π

2
(54)

then, we can write

PeN(s → s′) =
1 · 3 · 5 · · · (2N + 1)2(N+1)

(N + 1)!ξ
∏N

n=1 |u(2n− 1)|2
ρ−(N+1) lnNρ

+ O
(∣∣ ln

(
ξ
∏N

n=1 |u(2n− 1)|2)
∣∣

ρN+1
lnN−1ρ

)

=
(2N + 1)!!2(N+1)

(N + 1)! det(UH
N UN)

ρ−(N+1) lnNρ

+ O
( | ln det(UH

N UN)|
ρN+1

lnN−1ρ
)
.

¤

APPENDIX III
PROOF FOR THE OPTIMAL PRECODERFOC

Let the set of 4-QAM signals beS = {c + dj : c, d = ±1},
and letSd = {a + bj : a, b = 0,±2} be the possible set of
difference of elements inS. The error vector after precoded
by Fc in (31) is

(
u(1)
u(2)

)
= Fc

(
e(1)
e(2)

)
= Fce. (55)

Then, the coding gain is given byC = 1
6 |u(1)|4 =

1
6 |e(1) cos θ + e(2)ejφ sin θ|4, θ ∈ [0, 2π], φ ∈ [0, π]. Now,
let G(e, θ, φ) = |e(1) cos θ+e(2)ejφ sin θ|2. Then, the coding
gain criterion can be fulfilled by seeking the optimal values
of θ and φ to maximize the minimum ofG(e, θ, φ) over all
non-zero error vectors. First we show that it is sufficient to
considerφ, θ ∈ [0, π

4 ]. Let

Go = max
θ∈[0,2π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ).

Then, we have

Go = max{ max
θ∈[0,π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ), max
θ∈[π,2π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ)}

(56)

For e ∈ S2
d , ande 6= 0, we have

|e(1) cos θ̃ + e(2)ejφ sin θ̃|2
θ̃∈[π,2π]
φ∈[0,π]

= |e(1) cos(2π − θ) + e(2)ejφ sin(2π − θ)|2θ∈[0,π]
φ∈[0,π]

= |e(1) cos θ − e(2)ejφ sin θ|2θ∈[0,π]
φ∈[0,π]

.

We note that when[e(1) e(2)]T covers all possible values in
S2

d , [e(1) − e(2)]T also covers the same values. Therefore
we have,

max
θ∈[0,π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ) = max
θ∈[π,2π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ). (57)

From (56), the feasible setθ ∈ [0, 2π] can be reduced toθ ∈
[0, π]; i.e.;

Go = max
θ∈[0,π]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ).

Similarly, the feasible setθ, φ ∈ [0, π] can be further reduced
to θ, φ ∈ [0, π

4 ]. The reason is as follows:

Go = max{ max
θ∈[0, π

2 ]

φ∈[0,π]

min
e∈S2

d

e 6=0

G(e, θ, φ)} (58)

= max{ max
θ∈[0, π

2 ]

φ∈[0, π
2 ]

min
e∈S2

d

e 6=0

G(e, θ, φ)} (59)

= max{ max
θ∈[0, π

4 ]

φ∈[0, π
4 ]

min
e∈S2

d

e 6=0

G(e, θ, φ)}. (60)

Eq. (58) holds because fore ∈ S2
d , e 6= 0,

|e(1) cos θ̃ + e(2)ejφ sin θ̃|2
θ̃∈[ π

2 ,π]
φ∈[0,π]

= | − e(1) cos θ + e(2)ejφ sin θ|2
θ∈[0, π

2 ]
φ∈[0,π]

(61)

and (59) holds because

|e(1) cos θ + e(2)ejφ̃ sin θ|2
θ∈[0, π

2 ]

φ̃∈[ π
2 ,π]

= |e(1) cos θ + je(2)ejφ sin θ|2
θ∈[0, π

2 ]
φ∈[0, π

2 ]

(62)

Eq. (60) holds because of the following equalities,

|e(1) cos θ + e(2)ejφ̃ sin θ|2
θ∈[0, π

2 ]

φ̃∈[ π
4 , π

2 ]

= |e(1) cos θ + e(2)ej(π/2−φ) sin θ|2
θ∈[0, π

2 ]
φ∈[0, π

4 ]

= |e∗(1) cos θ − je∗(2)ejφ sin θ|2
θ∈[0, π

2 ]
φ∈[0, π

4 ]

(63)

|e(1) cos θ̃ + e(2)ejφ sin θ̃|2
θ̃∈[ π

4 , π
2 ]

φ∈[0, π
4 ]

= |e(1) cos(π/2− θ) + e(2)ej(φ) sin(π/2− θ)|2θ,φ∈[0, π
4 ]

= |e∗(2) cos θ + e∗(1)ejφ sin θ|2θ,φ∈[0, π
4 ] (64)

where∗ denotes the conjugate of a complex quantity. There-
fore, with the regions of search forθ and φ both reduced to
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[0, π
4 ], the optimization problem becomes

Go = max
θ∈[0, π

4 ]

φ∈[0, π
4 ]

min
e∈S2

d

e 6=0

G(e, θ, φ). (65)

Let us first examinemine∈S2
d,e 6=0 G(e, θ, φ) for θ, φ ∈ [0, π

4 ].
We note that fore(1) and e(2) being from the setSd of
difference of 4-QAM signals, we have the following three
cases:
Case 1: |e(1)| = |e(2)| = r, where, depending the magnitude
of e(1) ande(2), r is either equal to 2 or2

√
2. The function

G(e, θ, φ), in this case, can be written as

G1(e, θ, φ) =
{

r2(1± sin 2θ cos φ) if e(1) = ±e(2)
r2(1∓ sin 2θ sin φ) if e(1) = ±je(2)

(66)

Case 2: e(1)e(2) = 0, thenG(e, θ, φ) can be written as

G2(e, θ, φ) =
{

r2 cos2 θ if e(1) = 0
r2 sin2 θ if e(2) = 0 (67)

Case 3: |e(1)| 6= |e(2)|, e(1)e(2) 6= 0, thenG(e, θ, φ) can be
written as

G3(e, θ, φ) =





4
(
1± sin2 θ ± sin 2θ(cos φ± sin φ)

)
if |e(1)| = 2, |e(2)| = 2

√
2

4
(
1± cos2 θ ± sin 2θ(cos φ± sin φ)

)
if |e(1)| = 2

√
2, |e(2)| = 2

(68)

From (66), (67) and (68), the corresponding minimum coding
gains over non-zero error vectors in Cases 1, 2 and 3, i.e.,
mine∈S2

d,e 6=0 Gi(e, θ, φ), i = 1, 2, 3 are respectively

g1 = min
e∈S2

d,e6=0
G1(e, θ, φ) = 4(1− sin 2θ cos φ)

g2 = min
e∈S2

d,e6=0
G2(e, θ, φ) = 4 sin2 θ

g3 = min
e∈S2

d,e 6=0
G3(e, θ, φ)=4

(
1+sin2 θ−sin 2θ(cos φ+sin φ)

)
.

Then (65) becomesGo = maxθ,φ∈[0, π
4 ] min{g1, g2, g3}. Since

g2 is not a function ofφ, we then have

Go = max
θ∈[0, π

4 ]
min{g2, max

φ∈[0, π
4 ]

min{g1, g3}}. (69)

Furthermore, sinceg1 is an increasing function ofφ and g3

is a decreasing function ofφ for φ ∈ [0, π
4 ], then the second

term in (69),maxφ∈[0, π
4 ] min{g1, g3} is achieved at the point

whereg1 = g3. The condition forg1 = g3 is given by

sin θ = 2 cos θ sin φ. (70)

Therefore, we have

max
φ∈[0, π

4 ]
min{g1, g3} = g1|sin θ=2 cos θ sin φ (71)

= 4(1− sin θ
√

4 cos2 θ − sin2 θ)
= g̃1. (72)

Now (69) becomes,

Go = max
θ∈[0, π

4 ]
min{g2, g̃1}. (73)

We observe thatg2 is an increasing function ofθ ∈ [0, π
4 ] and

that g̃1 is decreasing ifθ ∈ [0, θ1] and increasing ifθ ∈ (θ1,
π
4 ],

where θ1 = sin−1
√

2
5 . Therefore forθ ∈ [0, θ1] the value

of maxθ∈[0,θ1] min{g2, g̃1} is obtained wheng2 = g̃1. The
solution to makeg2 = g̃1, θ ∈ [0, θ1] hold is

θo = sin−1

√
3−√3

6
. (74)

The corresponding value ofg2 at θ = θo is

g2|θ=θo
= g̃1|θ=θo

= 2(1− 1√
3
). (75)

Furthermore, sincẽg1|θ=θo |θ=θo > g̃1|θ= π
4

, then the optimal
value of Go in (73) for θ ∈ [0, π

4 ] is Go = g̃1|θ=θo
= 2(1 −

1√
3
). Inserting (74) into (70), we have the optimal value ofφ

given by

sin2 φo =
2−√3

4
, or φo =

π

12
, (76)

and the maximum of minimum coding gain isCo = 1
6G2

o =
2
3 (1− 1√

3
)2 = 0.3573.

Next let us look at the case thatFc takes the form
1√
2

(
1 ejφ

1 −ejφ

)
= Fst as described in the remark after

Theorem 3. Then

Gost = max
φ∈[0, π

4 ]
min
e∈S2

d

e 6=0

G(e, θ, φ)|θ= π
4
. (77)

This is a special case ofFc whenθ is fixed at π
4 . The optimal

φ in this case is given by the condition in (70) withθ = π
4 , i.e.,

sin θ = 2 sin φ cos θ|θ= π
4

. Solving this equation and inserting
the solution to (77), we obtain the optimalφ and Gost such
that,

φost =
π

6
, Gost = (4− 2

√
3).

The maximum of the worst coding gain over non-zero error
vectors in this case is given byCost = G2

ost/6 = 2
3 (2−√3)2 =

0.0479 (the worst case occurs whene = [2 + 2j − 2]T ).
Furthermore, ifφ is assigned the value ofπ4 as in the MIMO
space-time code design, then minimum of|u(1)|2 happens
when e = [2 + 2j − 2]T , in this caseG = (6 − 4

√
2),

the worst coding gain is then16 (6− 4
√

2)2 = 0.0196. ¤
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