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Abstract

In this paper, we present a novel framework for
the modeling of cell-migration, and more specifically
the migration of human keratinocytes. The model
decouples the embodiment of an artificial cell into
two elements. A cell-body is implemented by two sets
of springs forming a membrane and a supporting
cortical-cytoskeleton, which allows for cell-body rigid-
ity and flexibility. The leading-edge, a structure spread-
ing around the cell-body, is simulated with a stochastic
cellular-automata. It defines the migratory forces that
pull the cell-body according to its local spread around
the cell. The overall movement of the leading-edge
depends on stochastic interaction with the environment
and guides the whole cell movement through spatio-
temporal integration of local forces. We demonstrate
that our cell migration model allows for spontaneous
symmetry-breaking and directed cell movement and
has in-built obstacle-avoidance, closely mimicking the
migration of living cells. The model is extended to
simulate chemotactic behavior, the artificial cell can
sense and move along a gradient with its trajectory
depending on the cell shape, stiffness and leading-edge
dynamics. In summary, we have developed a novel
cell migration model with emergent properties, wherein
local forces create an integrated cell movement. The
presented interplay of the distributed physical and an
informational embodiment is not limited in reach to
the example of cell migration, but can of interest for
design of perception-action loops and sensor evolution
in general.

1. Introduction

In the context of robotics and artificial life,
perception-action loops are generally viewed as an

arbitrarily complex mapping from sensory input to a
motor output [1], [2]. The sensory input is a repre-
sentation of the environment, which, through filters
and classifiers of any possible form, is processed into
a motor action. Living cells also respond to environ-
mental cues through perception and action. They can
sense light, chemical or electrical signals, or other
cells, and react accordingly. Most of the sensing resides
at the membrane, where protein-complexes respond to
the signal and then either trigger an internal signaling
cascade and/or some local reaction. Eventually, this
causes changes in motion of the whole cell through re-
organization of changed dynamics of the cytoskeleton
or individual cellular motors. These perception-action
loops can be highly distributed and multi-layered, as
the whole membrane of a cell can act as a highly
distributed sensor, and often as an agent of motion as
well.

The study of cell motility and cell migration is a
long standing topic. Various modes of cell movement
are known so far [3]: movement through rotating or
beating flagella in bacteria [4] or spermatozoa [5],
respectively; Crawling or gliding has been investigated
in slime-molds [6] and single-celled protozoa [7], [8].
Parallel to the many modes of cell movement in various
organisms, a plethora of mathematical models has been
developed to describe them. ODE- and PDE-based
models have been developed to simulate molecular
motors [9], [10] or cilia motion[11]. There are cellular
automata-based models of neural stem cell migration
[12], cellular Potts models [13] or complex finite-
element methods [14] to study chemotaxis. The Cell
Migration Consortium (http://www.cellmigration.org/)
contains a large collection of models, that give a good
overview on the current biological knowledge and
mathematical modeling approaches.

Here, we present a cellular-automata based model

http://www.cellmigration.org/


of keratinocyte cell migration in two dimensions that
captures the physical properties of movement along a
gradient of physicochemical cues and obstacle avoid-
ance. Keratinocytes are the cells that make up 95% of
the epidermis, the top layer of the human skin. When
the skin is injured these cells start migrating to close
the wound. Three types of signals are known to direct
keratinocytes during wound healing: chemical signals
mediated by soluble molecules [15], receptor activation
on the cell surface through direct cell contact [16],
[17], and electrical field gradients [18]. The goal of
our modeling approach is to understand how the above
environmental signals are translated into a directed cell
movement. The experimental data is based on individ-
ually plated keratinocytes moving in two dimensions
on a coated surface (Fig. 1). Isolated keratinocytes
randomly polarize and start “crawling”. When mov-
ing, the cells develop a protruding leading-edge, the
lamellipodium, that moves ahead of the rather rigid
cell-body. The lamellipodium is a thin, highly dynamic
structure. It contains an interwoven mesh of actin
fibers, which are part of the cytoskeleton, that pushes
and pulls the cell membrane and thereby determining
the cell morphology. If a chemical or electric cue is
applied, the keratinocyte changes direction along the
gradient of the stimulus by turning and reorganizing
its lamellipodium. How the keratinocytes senses the
chemical or electrical gradient and turn accordingly is
still unclear.

Most modeling approaches for cell migration focus
on the mechanical characteristics of the actin dynamics
that determine the cell movement [19]. However, there
is still a lack of experimental data due to the difficulty
to quantify the actin and membrane dynamics. Here,
we develop a model for keratinocyte movement within
an in silico environment that links external stimuli to
whole cell movements, while retaining the possibility
of complex dynamics. From this model we then want to
extract ideas about how an external cue is transformed
into the observed motion of keratinocytes, e.g. the
perception-action loop that guides it.

Our artificial cell model needs to be rotationally in-
variant and must show spontaneous symmetry breaking
properties. Moreover, the cell-body and the leading-
edge ought to have a flexible cell morphology to mimic
the spatial adaptation of a keratinocyte to external
physical forces like pressure or stress. The sensory
inputs are integrated locally along the cell membrane
to allow for a differential sensing of chemical gradients
on the cell surface [21]. For model optimization and
fitting to experimental data, the model needs to have as
few parameters as possible. Its output should ideally
correspond to biologically quantifiable variables and

Figure 1. An human keratinocyte migrating on a
coated surface. The cell-body is outlined in green,
the flattened lamellipodium forming the leading-
edge is highlighted in red. The keratinocyte is
moving from left to right. Also see Video 1 on [20].

readouts. Previously developed cell migration models
that are based on frameworks such as the cellular Potts
model [22], Braitenberg vehicles [23], or agent-based
systems [24] do not conform to all criteria above.

The model reduces the migrating keratinocyte to
two main components: the cell-body and the leading-
edge. The former is implemented by a connected-
spring model moving on a discrete spatial grid under
the influence of noise (Section 2.2). This cell-body
“senses” the environment through a highly dynamical
“leading-edge”, whose size and location is updated in
a cellular-automata-like fashion [25]. It spreads on a
2D grid according to a set of stochastic update rules
that depend on the environment (Section 2.3).

Taken together, we present a novel model for cell
migration that is able to show symmetry breaking,
sense the environment and can follow chemical gra-
dients.

2. Model

2.1. Environment

The cell-body and the leading-edge are embedded
in a well defined environment, the space in which the
cell can move. It is defined on a discrete grid G

G = { all (x, y) ∈ Z+2
, where x ≤ xmax, y ≤ ymax},

which defines the positions of all elements of the
artificial cell and the environment.

For all of the experiments presented here, the 2D-
grid is bounded with Dirichlet boundary conditions.
We use a discrete and uniform pseudo-synchronous
update of the system, where all elements of the system
are updated once each time-step, but in a random order.



2.2. The cell-body

Elements of Smem
Elements of Scyto

Figure 2. A cell-body with n = 8. The solid lines
denote the springs constituting the membrane, the
dashed lines the cortical cytoskeleton.

The cell-body is simulated as a deformable
connected-spring model that allows the cell to change
its shape and to respond to external forces and shear
stresses. This mimics the opposing forces in real cells
that determine the cell morphology: the contractile
force of the lipid membrane of the cell and the actin cy-
toskeleton, that supports and changes the cell specific
morphology by pushing against the cell membrane.
If no forces are applied the cell-body relaxes to a
circular shape, and will elongate if the leading-edge
exerts a pulling force while moving along the surface.
Three assumptions are defining our spring-model: (i)
no damping, (ii) high “viscosity” (the displacement is
directly proportional to the force applied, no inertia)
and (iii) a Gaussian noise term added to the force vec-
tor to include a random component in the movement
of the cell-body (similar to [26]).

We define a spring ρ by two points in space and two
parameters:

ρ =

{
(pleft, pright) ∈ G2

(k, l) ∈ R+2 ,

with pleft and pright being the grid positions of the left
and right ends of the spring and k and l denoting the
elasticity and the equilibrium length, respectively.

The cell-body itself is defined by n nodes N that
are connected in total by 2n springs. Based on their
function, the springs are divided into two sets. The
first set of springs, Smem, defines the cell-body’s
membrane, the border between the inside and outside
of the cell-body. Smem is composed of n circularly
connected springs of equal elasticity kmem, and equi-
librium length lmem. To consolidate the shape of the
cell-body without introducing additional forces (e.g.
torsional forces) or further constraints (e.g. limit angles
between springs), an additional set of springs has been
added to emulate the cortical-cytoskeleton. This set
of springs, Scyto, is also composed with n springs
of equal elasticity kcyto, and of equilibrium length
lcyto = 2 lmem. The springs of Scyto connect the far
ends of all the connected pairs of springs of Smem. For

rotational symmetry, each node ηi ∈ N is connected to
four springs with two from Smem and two from Scyto

(Fig. 2).

Elements of Smem
Elements of Scyto

Figure 3. Sum of forces for at the node η. The solid
lines denote the springs constituting the mem-
brane, the dashed ones the cortical cytoskeleton.
The force in orange are the forces generated by
the springs and the one in red represents the force
generated by the leading-edge. The black vector is
the resulting force.

At each time step t of a simulation a force balance
is computed for each node η ∈ N (dropping the index
i of η for simplicity)

~Fη(t) = ~F edge
η (t) +

4∑
s=1

~F sη (t),

where ~F edge
η (t) is the force generated at time t by

the leading-edge at the respective node η (see section
2.3). ~F sη (t) denotes the force generated at time t by
one of the four springs ρs attached to the node η under
consideration. These forces are calculated with

~F sη (t) = ks(l
s
η − ls)~usη(t),

where ks and ls are kmem and lmem, if ρs ∈ Smem

or kcyto and lcyto, if ρs ∈ Scyto, and ~usη(t) is a unitary
vector pointing in the negative direction along ρsη . lsη
denotes the length of ρsη at time t. Note that, if there is
no force of the leading-edge exerted on the cell-body
(all ~F edge

η (t) = 0) the sum of all ~F sη (t) will be zero,
as the forces at opposite ends of all springs cancel out.

As we consider high viscosity, the expected discrete
displacement, ~δη(t) of η, is proportional to the force

~δη(t) ∝ ~Fη(t).

This determines the new expected position πη(t+1)
of η, after the update

πη(t+ 1) = pη(t) + ~δη(t),

with pη(t) ∈ G, and πη(t+1) ∈ R2. To account for
noise and discretization we define a neighborhood ωpη
for every element pη of G as



ωpη = {all q ∈ G|d > ‖pη − q‖},

where d is a neighborhood radius and || ∗ || defines
the Euclidean distance. This neighborhood defines
all allowed “moves” of the node η from its current
position pη . To determine the true position of η at
t + 1, we compute a probability distribution over
the neighborhood of pη(t) depending on the expected
position πη(t+1), and then randomly choose one new
position pη(t+1) in this neighborhood. The probability
of each possible true position is defined as

Pq =
1

PN
exp

[
−‖q − πη(t+ 1)‖2

2

]
,∀q ∈ ωpη ,

where PN is normalizing the probability distribution
such that ∑

∀q∈ωpη

Pq = 1.

This distribution is then used to pick one element of
ωpη (t) as the next true position pη(t+ 1) of the node
η.

2.3. The leading-edge

The leading-edge of migrating, living cells spreads
in their front and pulls the cell forward. It acts under
the influence of the cell-body and the environment and
has a permanent structural turnover, at times randomly
retracting or ruffling. Hence, the leading-edge denotes
a dynamic structure that defines what the cell senses
and that translates this perception into a set of forces
acting on the periphery of the cell-body.

Here, we model the leading-edge as a subset L(t) of
G that is attached to the cell-body. The shape and size
of the leading-edge depends on the cell-body itself and
the environment, and changes dynamically. To define
L(t) at time t three subsets of G are needed. The
subsets comprise the grid elements of the inside and
outside of the cell-body, denoted as I(t) and O(t),
as well as the grid points on the border (membrane)
between inside and outside, B(t). A points-in-polygon
algorithm generates this partition of G by checking
if the points of the grid lie inside or outside of the
polygon defined by Smem. If one of the springs is
“crossing” a grid point, it is considered in B.

The dynamics of the leading-edge are defined by the
”spreading” and the ”detachment” rules. ”Spreading”
means that at each time-step t, every element in the
neighborhood of an element e ∈ L(t) has a finite
probability of being added to or remaining in L at time
t+1. ”Detachment” allows for each element e ∈ L to

be removed from the leading-edge at a subsequent time
step t+1 with a certain probability. The leading-edge
is initialized at t = 0 as L(t = 0) = B(t = 0). At
every time step t > 0, Alg. 1 is applied, wherein the
functions pspread and pdetach denote the probability for
each grid point j within the neighborhood of L(t) to
be added or detached from the leading-edge

pspread[j,L(t)] = pbasal
spread

[
1− 2‖j − center[L(t)]‖

wmax

]
and

pdetach[j,L(t)] = pbasal
detach

2‖j − center[L(t)]‖
wmax

,

where pbasal
detach and pbasal

spread in [0, 1] denote the spread-
ing, and detachment parameters respectively. wmax is
a shape parameter that controls the average width of
the leading-edge. ’center’ refers to the location of
the center of mass of the leading-edge. Effectively,
the probability of spreading is proportional to the
basal probability pbasal

spread and decreases with increasing
distance from the center of mass of the leading-edge.
pspread[j,L(t)] becomes 0 at a distance of wmax/2
from the center of mass. Conversely, the probability
of detaching increases, when moving away from the
center of mass.

Without other environmental influences, the leading-
edge is a circular structure with decreasing density
away from its center, being empty ”under” the cell-
body. Note, how the latter condition induces symmetry-
breaking. At t = 0, the centers of the cell-body and the
leading-edge coincide. Due to initial random spreading
of the leading-edge, a preferential growth direction of
L will be induced from the centre of mass of the
leading-edge.

The leading-edge acts on each node η of the cell-
body positioned at pη through the force ~Fedge

~F edge
η =

1

|Gη|
∑
e∈Lη

−−−−→
e− pη,

where Lη are elements of L within the radius v of
pη , and |Gη| denote the total number of grid points
within the radius v of pη . Through this normalization
the force ~F edge

η lies between [0, 1] and scales propor-
tional to the number of grid points belonging to the
leading edge within the local neighborhood of η. The
vector sum ensures that the force ~F edge

η is directed
locally towards highest density of Lη . Summing over
all nodes of the cell-body, this will induce a coordi-
nated, global pulling behavior of the leading-edge on
the cell-body.



Data: Lt, Bt+1, It+1

Result: Lt+1

initialize Lt+1 with Lt;
add Bt+1 to Lt+1;
#spreading rule
foreach e ∈ Lt+1 do

get neighborhood n;
foreach j ∈ n do

get a random number r ∈ [0, 1];
if r < pspread(j,Lt) then

add j to Lt+1;
end

end
end
#detachment rule
foreach j ∈ Lt+1 do

get a random number r ∈ [0, 1];
if r < pdetach(j,Lt) then

remove j from Lt+1;
end

end
remove It+1 from Lt+1;

Algorithm 1: Rule-set describing the spreading of
the leading-edge. pspread and pdetach are two functions
returning a probability depending on the position of
j and the shape of the leading-edge at the preceding
time step.

3. Experiments

In the following, we will demonstrate the intrinsic
capabilities of the cell migration model by three in
silico experiments, also showing how to implement
complex cell behavior. We will first show spontaneous
symmetry-breaking and obstacle avoidance by the cell
movement. Also we will modify the pspread function
to demonstrate its influence on gradient-climbing ca-
pabilities.

3.1. Parameters and implementation

For these experiments we have empirically chosen a
set of parameters that result in stable cell movement.
An rough empirical analysis confirms model stability
over a wide range of parameters, but many parameters
lead to biologically unreasonable shapes of the cell-
body, migration speed or directness of movement.
However the purpose of these experiments is not to
study the effect of the varying parameters on the
characteristics of the cell, rather it is to show the
variety of behavior of one particular set of parameters.

Videos for selected experimental runs for all of these
setups can be found on [20].

The grid G is chosen to be 500 pixels high and
wide (xmax = 500 and ymax = 500), with non-
periodic Dirichlet boundaries. We will be using an
twelve-sided cell-body with the parameters: n = 12,
kmem = 0.16, lmem = 16, kcyto = 0.04, and
lcyto = 2 lmem = 32. The used neighborhood radius
is d = 2, and the Gaussian used to compute the
stochasticity of movement has σ = 1. The leading-
edge will have pbasal

spread = pbasal
detach = 0.7, and wmax = 60,

and the size of the locality v = 10. For all experiments
the cell will be initialized at the center of the grid
(x(t = 0) = 250, and y(t = 0) = 250).

The first experiment is designed to verify whether
the symmetry-breaking is working as expected. The
cell is initialized with the above parameters at t = 0
and the simulation is run for 300 time-steps. We repeat
this experiment 500 times. We then plot the distribution
of angles of displacement over all the 300 time-points
(Fig. 4(a)) and the distribution of displacements (Fig.
4(b)).

A second experiment has been designed to show
the built-in obstacle avoidance. For this purpose we
have filled the grid with obstacles (positions of the
grid that are removed from all neighborhoods) and ran
500 simulations for 5000 time-steps (Fig. 5).

The final experiment is to show how more com-
plex behavior can be implemented. A linear gradient
spreads out for 300 pixels from the point at Cgrad =
(x = 100, y = 100). The values of the gradient
decrease linearly from 1, at Cgrad, to 0 at all positions
p, where ‖Cgrad − p‖ ≥ 300. In this environment we
ran two series of 500 cells. One set of standard cells
do not climb the gradient, and one set where pspread
has been modified to:

pgradient
spread [j,L(t)] = pspread + (1− pbasal

spread)G(j),

where G(j) is the value of the gradient at position j.
Cell migration is simulated for 200 time-steps without
any gradient (so as not to mix the effects from the
initial symmetry-breaking, and the actual gradient-
climbing), and then 3000 time-steps more with the
gradient turned on. The trajectories of these two ex-
perimental setups have then been plotted (Fig. 6(a)),
as well as their displacement from the center of the
gradient (Fig. 6(b)).

4. Results

In the first simulation (Fig. 4), we verified that
the artificial cell, as implemented in section 2, shows
symmetry-breaking, which is an important property



Control experiment: angle distribution
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Figure 4. Symmetry-breaking: 500 experimental
runs of a cell moving randomly through the grid,
Video 2-3 on [20]. 4(a) Distribution of the an-
gles: the angles of displacements from the centre
over the first 300 time-step of 500 independent
cell migration simulations. 4(b) Distribution of the
distances: the distance from the centre after 300
time-steps of 500 independent cell migration simu-
lations.

for the design of further experimental setups. The
histogram in Fig. 4(a) confirms rotational invariance
of the averaged cell movement from the uniform dis-
tribution of all the angles. Additionally, the asymmetry
of the histogram in Fig. 4(b) indicates successful
symmetry-breaking, as all the cells have moved away
from the center of the grid. .

The model as presented here has already built-in
obstacle avoidance. As a cell approaches an obsta-
cle, the leading-edge width becomes smaller, which
decreases the distance between the centers of mass
of the cell-body and leading-edge. As a result, the
probability of a novel formation of the leading-edge
away from the obstacle is increasing. This is shown
in Fig. 5. The overlaid cell-body trajectories from 500
simulations runs never touch any of the obstacles in the
environment, as the cell-body ”senses” the approaching
obstacle through its receding leading-edge.

As a less direct method of sensing, we investigated
how the leading-edge dynamics in the artificial cell

0 500

500

x (in pixels)

y (in pixels)

Figure 5. Cells in an obstacle course: 500 super-
posed trajectories of cells on a grid with obstacles.
The time flow is from dark to light and the width of
the trajectory represents the size of the cell-body,
Video 5 on [20].

could perform gradient-following. Therefore, we added
a term to pspread to increase the probability of spreading
for higher values of a gradient, which gives the cell the
ability to sense and climb this gradient (Fig. 6). Figure
6(a), shows the heterogeneity of the cell migration
behavior. The uniform black background denotes the
trajectories of the cells without the additional term.
They move randomly within the grid with a higher
probability of staying close to the edges. Because of
the mechanism of the symmetry-breaking, cells tend
to move parallel to the wall. The red trajectories show
cells capable of sensing the gradient in the envi-
ronment. They are consistently attracted and circling
around to the highest level of the gradient (Video 4 on
[20]). Also note the few simulation runs were the cells
to not follow the gradient immediately. In these cases,
the cells happen to leave the area of the gradient and
continue to move in a random fashion. However, once
within its reaches again, they start their tactic behavior.
Fig. 6(b) quantifies the strength and consistency of the
effect. 99% of measurements are within 70 grid points
around the center of the gradient (orange cross in Fig.
6(a)). The sensitivity of the gradient climbing effect
is quite remarkable, considering that the maximal
difference of pgradient

spread between opposite ends of the cell-
body is one order of magnitude smaller than pbasal

spread.
Taking 21 grid points as the average width of the cell-
body, one obtains pgradient

spread = 0.021 versus pbasal
spread = 0.7.

The reason for this sensitivity is explained through the
small, yet additive forces all acting on the many nodes
of the cell-body, which results in a consistent, long-
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Figure 6. Gradient-climbing: 500 runs of cells
showing gradient-climbing behavior, Video 3-4 on
[20]. 6(a) Trajectories: in black, the trajectories of
500 cells for 3000 time steps that do not climb the
gradient, Video 3; in red, 500 cells that do, Video
4. The orange cross signifies the centre of the
gradient. 6(b) Distances: boxplot of the distances
from the center of the gradient after the 3000 time-
steps; ”cont.” and ”gradient” denote cells that do
not follow or follow gradient-climbing, respectively.

term bias towards the center of the gradient.

5. Conclusion

In this paper we have presented a new approach
to the modeling of keratinocyte cell migration. We
have developed a phenomenological framework, in
which we have decoupled the physical movement from
the sensing by defining a connected-spring model of
the cell-body and an environment-sensing leading-edge
that progresses on a discrete grid, thereby pulling along
the cell-body. This model, as we presented in section
2, contains all the properties we set out to implement
in the introduction.

Its features have a close resemblance to in vitro
crawling cells [27]: a rather rigid cell-body that con-
tains most of the organelles that is moved through

a highly dynamic and flexible lamellipodial structure.
We showed that the model is rotationally symmetric
in its function, with either the stochastic cell-body
dynamics or the environment breaking this symmetry
spontaneously. The cell-body can change its morphol-
ogy under the influence of the leading-edge. The local
integration of the leading-edge at the nodes imitates the
way information at the membrane is possibly processed
in living cells.

We presented experiments showing the cell model
working as expected, in particular, that this imple-
mentation includes obstacle-avoidance. We then have
presented a modified version of the artificial cell that
is very efficiently following gradients.

The model has a very reduced number of parameters
(in this implementation seven), all of which are directly
relatable to physiological properties of the cell (kcyto
and kmem are elasticities, lmem the length of the springs
...). We also managed to design a model that is visually
appealing, and understandable by biologists. When
working at the interface between computer-sciences
and biology it is always important to find a common
language to exchange ideas and concepts, having a cell
model that is directly understandable helps to generate
such a language.

With these properties, we achieve a useable model
in which small imbalances in the leading-edge distri-
bution will direct and shape the motion of the artificial
cell.

This modeling framework will allow to further
investigate into keratinocyte motion, to understand
the physicochemical basis of their perception-action
loop, i.e. how environmental information and external
signals are integrated and processed to form a pre-
cise cellular response. The goal is to find, in silico,
different pspread(j,Lt) and pdetach(j,Lt) functions that
link environmental cues to motion, thereby replicating
results from in vivo experiments, from which testable
hypotheses can be deduced.

Lastly we note that our modeling approach is not
limited to the simulation of cell migration alone. Its
high level of modularity and the distributed nature of
the perception-action loop should make it applicable
to a wide variety of artificial-life problems. Also the
stochastic nature of the leading-edge should allow
highly complex non-linear dynamics and emergent
behaviors, that could be exploited in a large variety
of future theoretical analysis.
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