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ABSTRACT  

 

The linear canonical transform is a useful tool for optical analysis and signal processing. In 

this paper we have defined canonical-Laplace transform and have also established some testing 

functions spaces using Gelfand-shilov technique. 

 
Index Terms: Canonical Transform, Fourier Transform, Fractional Fourier Transform, Laplace 

Transform, Testing Function Space. 

 

1. INTRODUCTION   
 

The Fourier analysis is undoubtedly the one of the most valuable and powerful tools in signal 

processing, image processing and many other branches of engineering sciences [6],[7].the fractional 

Fourier transform, a special case of linear canonical transform is studied through different analysis 

.Almeida[1],[2].had introduced  it and proved many of its properties . The fractional Fourier 

transform is a generalization of classical Fourier transform, which is introduce from the 

mathematical aspect by Namias at first and has many applications in optics quickly[5]. The 

definition of Laplace transform with parameter p of ( )f x denoted by ( ) ( )L f x F p=  
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The definition of canonical-Laplace transform is given in section 2. S-type spaces using 

Gelfand-shilov technique are developed in section 3.Section 4 is devoted for the results on countable 

union s-type space.
 
 The notation and terminology as per Zemanian [8],[9]. Gelfand-Shilov [3],[4]. 

 

2. DEFINITION CANONICAL CANONICAL-LAPLACE TRANSFORMS  
 

The definition of Laplace transform with parameter p of ( )f x denoted by ( ) ( )L f x F p=  
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 The definition of Laplace transform with parameter s of ( )f t denoted by
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The definition of conversional canonical -Laplace transform is defined as 
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3. VARIOUS TESTING FUNCTION SPACES   
 

3.1 The space , ,a b
CL γ  

It is given by 

 ( )
( )

, , , ,
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The constant Ck,p and A depend on φ . 

 

3.2 The space ,abCL β  

 ,abCL β this space is given by 

 ( ) ( ){ }, , , , ,. / , sup ,                         a b

l k p k k

l k p t x l pCL E t x t D D t x C B kβ

βφ φ ρ φ φ+= ∈ = ≤  

The constants
,l p

C  and B depend on φ . 

 

 

3.3 The space , ,a b
CLγ

β    

 This space is formed by combining the condition (3.1) and (3.2) 

 

 

, , 0,1, 2............l k p =  Where A,B,C depend on φ . 

 

3.4 The space: ,

, ,

m
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It is defined as, 
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For any 0>µ  where m is the constant, depending on the functionφ . 
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3.5 The space
, , ,a b n

CL β  : 

 This space is given by 
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For any 0δ >  where n the constant is depends on the functionφ . 

 

3.6 The space 
,

, , ,

m

a b n
CL

γ
β  : 

 This space is defined by combining the conditions in (3.4) and (3.5). 

( ) ( ){
( ) ( ) }

1

, sup

, , , , ,: / , ,

                                   .              (3.6)

m l k p

a b n l k p I t x

l k l k

CL E t x t D D t x

C m n l k

γ
β

γ β
µδ

φ φ ξ φ φ

µ δ

+= ∈ =

≤ + +
 

 

4. RESULTS ON COUNTABLE UNION S-TYPE SPACE  

 

Proposition 4.1: If 1 2m m< then 
1 2
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The space  ,
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CLγ  can be expressed as union of countable normed spaces.  

 

Proposition 4.2: 
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1 2γ γ<  and 1 2β β<  then 1
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5. CONCLUSION  
 

In this paper canonical-Laplace is generalized in the form the distributional sense, and proved 

results on countable union s-type space.
  

Also discussed the  topological structure of some testing 

function spaces.
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