INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 5, Issue 1, January (2014), pp. 177-181 © IAEME: <u>www.iaeme.com/ijaret.asp</u> Journal Impact Factor (2013): 5.8376 (Calculated by GISI) <u>www.jifactor.com</u>

CANONICAL-LAPLACE TRANSFORM AND ITS VARIOUS TESTING FUNCTION SPACES

N.V. Kalyankar, S.B.Chavhan

Yeshwant Mahavidyalaya Nanded-431602

ABSTRACT

The linear canonical transform is a useful tool for optical analysis and signal processing. In this paper we have defined canonical-Laplace transform and have also established some testing functions spaces using Gelfand-shilov technique.

Index Terms: Canonical Transform, Fourier Transform, Fractional Fourier Transform, Laplace Transform, Testing Function Space.

1. INTRODUCTION

The Fourier analysis is undoubtedly the one of the most valuable and powerful tools in signal processing, image processing and many other branches of engineering sciences [6],[7].the fractional Fourier transform, a special case of linear canonical transform is studied through different analysis .Almeida[1],[2].had introduced it and proved many of its properties. The fractional Fourier transform is a generalization of classical Fourier transform, which is introduce from the mathematical aspect by Namias at first and has many applications in optics quickly[5]. The definition of Laplace transform with parameter p of f(x) denoted by L[f(x)] = F(p)

$$L\left[f(x)\right] = \int_{0}^{\infty} e^{-px} f(x)$$

And definition of canonical transform with parameter s of f(t) denoted by

$$\{CTf(t)\}(s) = \frac{1}{\sqrt{2\pi i b}} e^{\frac{i}{2}\left(\frac{d}{b}\right)s^{2}} \int_{-\infty}^{\infty} e^{-i\left(\frac{s}{b}\right)t} e^{\frac{i}{2}\left(\frac{d}{b}\right)t^{2}} f(t)$$

International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

The definition of canonical-Laplace transform is given in section 2. S-type spaces using Gelfand-shilov technique are developed in section 3.Section 4 is devoted for the results on countable union s-type space. The notation and terminology as per Zemanian [8],[9]. Gelfand-Shilov [3],[4].

2. DEFINITION CANONICAL CANONICAL-LAPLACE TRANSFORMS

The definition of Laplace transform with parameter p of f(x) denoted by L[f(x)] = F(p)

$$L\left[f(x)\right] = \int_{0}^{\infty} e^{-px} f(x)$$

The definition of Laplace transform with parameter s of f(t) denoted by

$$\{CTf(t)\}(s) = \frac{1}{\sqrt{2\pi i b}} e^{\frac{i(d)}{b}s^2} \int_{-\infty}^{\infty} e^{-i(\frac{s}{b})t} e^{\frac{i(a)}{2(b)}t^2} f(t)$$

The definition of conversional canonical -Laplace transform is defined as

$$CL\{f(t,x)\}(s,p) = \frac{1}{\sqrt{2\pi i b}} e^{\frac{i}{2}\left(\frac{d}{b}\right)s^{2}} \int_{-\infty}^{\infty} e^{-i\left(\frac{s}{b}\right)t} e^{\frac{i}{2}\left(\frac{d}{b}\right)t^{2}} e^{-px} f(t,x) dx dt$$

3. VARIOUS TESTING FUNCTION SPACES

3.1 The space $CL_{a,b,\gamma}$

It is given by

$$CL_{a,b,\gamma} = \left\{ \phi : \phi \in E_+ / \sigma_{l,k,p} \phi(t,x) = \sup | t^l D_t^k D_x^p \phi(t,x) | \le C_{kp} A^l J^{l\gamma} \right\}$$

The constant $C_{k,p}$ and A depend on ϕ .

3.2 The space $CL_{ab,\beta}$

 $CL_{ab,\beta}$ this space is given by

$$CL_{a,b,\beta} = \left\{ \phi.\phi \in E_+ \mid \rho_{l,k,p}\phi(t,x) = \sup \left| t^l D_t^k D_x^p \phi(t,x) \right| \le C_{l,p} B^k k^{k\beta} \right\}$$

The constants $C_{l,p}$ and B depend on ϕ .

3.3 The space $CL_{a,b,\beta}^{\gamma}$

This space is formed by combining the condition (3.1) and (3.2) $CL_{a,b,\beta}^{\gamma} = \left\{ \phi : \phi \in E_{+} / \xi_{l,k,p} \phi(t,x) = \sup_{l_{i}} \left| t^{l} D_{t}^{k} D_{x}^{p} \phi(t,x) \right| \le C A^{l} l^{l\gamma} B^{k} k^{k,\beta} \right\}$

l, k, p = 0, 1, 2..... Where A,B,C depend on ϕ .

3.4 The space: $CL_{a,b,\beta}^{\gamma,m}$

It is defined as,

$$CL_{a,b,\beta}^{\gamma,m} = \left\{ \phi : \phi \in E_{+} / \sigma_{l,k,p} \phi(t,x) =_{l_{1}}^{\sup} \left| t^{l} D_{t}^{k} D_{x}^{p} \phi(t,x) \right| \le C_{k,p,\mu} \left(m + \mu \right)^{l} l^{l\gamma} \right\}$$

For any $\mu > 0$ where m is the constant, depending on the function ϕ .

International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

3.5 The space $CL_{a,b,\beta,n}$:

This space is given by $CL_{a,b,\beta,n} = \left\{ \phi : \phi \in E_+ / \rho_{l,k,p} \phi(t,x) =_{l_1}^{\sup} \left| t^l D_t^k D_x^p \phi(t,x) \right| \le C_{l,p,\delta} \left(n + \delta \right)^k k^{k\beta} \right\}$ For any $\delta > 0$ where *n* the constant is depends on the function ϕ .

3.6 The space $CL_{a,b,\beta,n}^{\gamma,m}$:

This space is defined by combining the conditions in (3.4) and (3.5). $CL_{a,b,\beta,n}^{\gamma,m} = \left\{ \phi : \phi \in E_{+} / \xi_{l,k,p} \phi(t,x) =_{l_{1}}^{\sup} \left| t^{l} D_{l}^{k} D_{x}^{p} \phi(t,x) \right| \\ \leq C_{u\delta} \left(m + \mu \right)^{l} \left(n + \delta \right)^{k} J^{l\gamma} k^{k\beta} \right\}$ (3.6)

4. RESULTS ON COUNTABLE UNION S-TYPE SPACE

Proposition 4.1: If $m_1 < m_2$ then $CL^{a,b}_{\gamma,m_1} \subset CL^{a,b}_{\gamma,m_2}$. The topology of $CL^{a,b}_{\gamma,m_1}$ is equivalent to the topology induced on $CL^{a,b}_{\gamma,m_1}$ by $CL^{a,b}_{\gamma,m_2}$.

Proof: For $\phi \in CL^{a,b}_{\gamma,m_1}$ and $\delta_{l,k,p}(\phi) \leq C_{k,\mu}(m_1+\mu)^l l^{l\gamma}$ $\leq C_{k,\mu,p}(m_2+\mu)^l l^{l\gamma}$ Thus, $CL^{a,b}_{\gamma,m_1} \subset CL^{a,b}_{\gamma,m_2}$

The space $CL^{a,b}_{\gamma,}$ can be expressed as union of countable normed spaces.

Proposition 4.2: $CL^{a,b}_{\gamma} = \bigcup_{i=1}^{\infty} CL^{a,b}_{\gamma,m_1}$ and if the space $CL^{a,b}_{\gamma}$ is equipped with strict inductive limit topology $S_{a,b,m}$ defined by injective map from $CL^{a,b}_{\gamma,m_1}$ to $CL^{a,b}_{\gamma}$ then the sequence $\{\phi_n\}$ in $CL^{a,b}_{\gamma}$ converges to zero.

Proof: we show that $CL_{\gamma}^{a,b} = \bigcup_{i=1}^{\widetilde{U}} CL_{\gamma,m_{i}}^{a,b}$ Clearly $\bigcup_{i=1}^{\widetilde{U}} CL_{\gamma,m_{i}}^{a,b} \subset CL_{k}^{a,b}$ for proving the other inclusion, let $\phi \in CL_{\gamma}^{a,b}$ then $\delta_{l,k,p} (\phi(t,x)) = \int_{I_{i}}^{\sup} |t^{l} D_{t}^{k} D_{x}^{p} \phi_{n}(t,x)|$ $\leq C_{k,n} A^{l} l^{l\gamma},$ (4.1)

where A is some positive constant, choose an integer $m = m_A$ and $\mu = 0$ such that $C_{k,p}A^l \le C_{k,p}(m+\mu)^l$.

Then (4.1) we get $\phi \in CL^{a,b}_{\gamma,m_1}$ implying that $CL^{a,b}_{\gamma} = \bigcup_{i=1}^{\infty} CL^{a,b}_{\gamma,m_1}$

Proposition 4.3: If $\gamma_1 < \gamma_2$ and $\beta_1 < \beta_2$ then $CL^{a,b,\beta_1}_{\gamma_1} \subset CL^{a,b,\beta_2}_{\gamma_2}$ and the topology of $CL^{a,b,\beta_i}_{\gamma_i}$ is equivalent to the topology induced on $CL^{a,b,\beta_1}_{\gamma_1}$ by $CL^{a,b,\beta_2}_{\gamma_2}$.

Proof: Let $\phi \in CL^{a,b,\beta_1}_{\gamma_1}$

International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 - 6480(Print), ISSN 0976 - 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

$$\begin{aligned} \xi_{l,k,p}\left(\phi\right) &= \sup_{l_1} \left| t^l D_t^k D_x^p \phi(t,x) \right| \\ &\leq CA^l l^{l\gamma_1} B^k k^{k\beta_1} \\ &\leq CA^l l^{l\gamma_2} \cdot B^p k^{p,\beta_2} \quad \text{where} l, k, p = 0, 1, 2, 3 \end{aligned}$$
Hence $\phi \in CL^{a,b,\beta_2}_{\gamma_2}$. Consequently, $CL^{a,b,\beta_1}_{\gamma_1} \subset CL^{a,b,\beta_2}_{\gamma_2}$. The topology of $CL^{a,b,\beta_1}_{\gamma_1}$

Is equivalent to the topology $T_{\gamma_2}^{a,b,\beta_2}$ / $CL_{\gamma_2}^{a,b,\beta_2}$

It is clear from the definition of topologies of these spaces.

Proposition 4.4: $CL^{a,b} = \bigcup_{\gamma,\beta=1}^{\infty} CL^{a,b,\beta_i}_{\gamma_i}$ and if the space $CL^{a,b}$ is equipped with the strict $CL^{a,b}$ inductive limit topology defined by the injective maps from $CL^{a,b,\beta_i}_{\gamma_i}$ to $CL^{a,b}$ then the sequence $\{\phi_n\}$ in $CL^{a,b}$ converges to zero iff $\{\phi_n\}$ is contained in some $CL_{\gamma_i}^{a,b,\beta_i}$ and converges to zero.

Proof:
$$CL^{a,b} = \bigcup_{\gamma_i\beta_i=1}^{\omega} CL^{a,b,\beta_i}_{\gamma_i}$$

Clearly $\bigcup_{\gamma_i\beta_i=1}^{\omega} CL^{a,b,\beta_i}_{\gamma_i} \subset CL^a$

Clearly

For proving other inclusion, let $\phi(t, x) \in CL^{a,b}$ then

 $\eta_{l,k,p}\left(\phi\right) =_{I_{1}}^{\sup} \left| t^{l} D_{t}^{k} D_{x}^{p} \phi(t,x) \right|,$

is bounded by some number. We can choose integers γ_m and β_m such that

 $\eta_{l,k,p}\left(\phi\right) \leq C A^{l} l^{l,\gamma} B^{k,m}, k^{k,\beta,m}$

 $\therefore \phi \in CL^{a,b,\beta_i}_{\gamma_i} \text{ for some integer } \gamma_i \text{ and } \beta_i$

Hence $CL^{a,b} \subset \bigcup_{\gamma_i\beta_i=1}^{\infty} CL^{a,b,\beta_i}_{\gamma_i}$ Thus $CL^{a,b} = \bigcup_{\gamma_i\beta_i=1}^{\infty} CL^{a,b,\beta_i}_{\gamma_i}$

5. CONCLUSION

In this paper canonical-Laplace is generalized in the form the distributional sense, and proved results on countable union s-type space. Also discussed the topological structure of some testing function spaces.

REFERENCES

- [1] Almeida Lufs B., "The fractional Fourier transform and time frequency," representation IEEE trans. On Signal Processing, Vol. 42, No. 11, Nov. 1994.
- Almeida Lufs B., "An introduction to the Angular Fourier transform," IEEE, 1993. [2]
- Gelfand I.M. and Shilov G.E., "Generalized Functions," Volume I Academic Press, New [3] York, 1964.
- Gelfand I.M. and Shilov G.E., "Generalized Functions," Volume II, Academic Press, New [4] York, 1967.
- [5] Namias Victor., "The fractional order Fourier transform and its application to quantum mechanics," J. Inst Math. Apptics, Vol. 25, P. 241-265, 1980.
- Tatiana Alieva and BastiaansMartin j., "on fractional of fourier transform moment," IEEE [6] signal processing letters, Vol. 7, No.011, Nov 2000.

International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

- [7] Tatiana Alieva and BastiaansMartin j., "Winger distribution and fractional fourier transform for 2-dimensional symmetric beams," JUSA A, Vol. 17, No.12, Dec 2000, P.2319-2323.
- [8] Zemanian A.H., "Distribution theory and transform analysis," McGraw Hill, New York, 1965.
- [9] Zemanian A.H., Generalized integral transform," Inter Science Publisher's New York, 1968.