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Abstract—We describe a cognitive architecture (LIDA) that 

affords attention, action selection and human-like learning 
intended for use in controlling cognitive agents that replicate 
human experiments as well as performing real-world tasks. 
LIDA combines sophisticated action selection, motivation via 
emotions, a centrally important attention mechanism, and 
multimodal instructionalist and selectionist learning. Empirically 
grounded in cognitive science and cognitive neuroscience, the 
LIDA architecture employs a variety of modules and processes, 
each with its own effective representations and algorithms. LIDA 
has much to say about motivation, emotion, attention, and 
autonomous learning in cognitive agents. In this paper we 
summarize the LIDA model together with its resulting agent 
architecture, describe its computational implementation, and 
discuss results of simulations that replicate known experimental 
data. We also discuss some of LIDA’s conceptual modules, 
propose non-linear dynamics as a bridge between LIDA’s 
modules and processes and the underlying neuroscience, and 
point out some of the differences between LIDA and other 
cognitive architectures. Finally, we discuss how LIDA addresses 
some of the open issues in cognitive architecture research. 
 

Index Terms—Autonomous agent, Cognitive model, 
Computational model, Cognitive architecture, LIDA, Agent 
architecture, Perceptual learning, Episodic learning, Procedural 
learning, Action-perception cycle, Cognitive cycle, Neural 
correlates, Affordance, Attention, Action selection, Emotions 

I. INTRODUCTION 

s social psychologist Kurt Lewin so succinctly pointed 
out “There is nothing so practical as a good theory” [1, p. 

169]. Artificial intelligence pioneer Allen Newell strongly 
supported the need for systems-level theories/architectures, 
asserting that “You can’t play 20 questions with nature and 
win” [2]. More recently, memory researcher Douglas 
Hintzman, echoing Newell in decrying the reliance on 
modeling individual laboratory tasks, stated that “Theories 
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that parsimoniously explain data from single tasks will never 
generalize to memory as a whole…” [3]. Cognitive architects 
Langley, Laird and Rogers argue that “Instead of carrying out 
micro-studies that address only one issue at a time, we should 
attempt to unify many findings into a single theoretical 
framework, then proceed to test and refine that theory” [4]. In 
line with these views, this paper presents a summary account 
of our systems-level conceptual LIDA cognitive model 
(LIDA C) together with its implemented computational 
cognitive architecture (LIDAI) as a candidate for the unified 
theoretical framework called for above. Discussing LIDA’s 
contributions to the open issues in cognitive modeling listed 
by Langley et al, [4], as well as its answers to previously 
suggested criteria for models of human cognition [5], we 
argue that LIDA is a plausible candidate for a unified 
theoretical framework of cognition. 

The fundamental principle guiding LIDA is that every 
autonomous agent [6], be it human, animal or artificial (e.g., 
software agent, robot), must frequently and continually sense 
its environment, interpret what it senses, and then act. 
Ecological psychologists and cognitive neuroscientists refer to 
this as the action-perception cycle [7, 8]. An agent must select 
appropriate actions to further its goals, depending on 
affordances in its environment. Thus, action selection is 
central to cognition (see the action selection paradigm [9]) and 
is the overriding task of every broad cognitive architecture, 
e.g., SOAR [10], ACT-R [11], CLARION [12], etc.  

For more sophisticated cognitive agents, action selection 
requires the agent to understand its current circumstances (i.e. 
the context), that is, the frequently recurrent transformation of 
sensory data into an internal model of its current situation. 
Many such cognitive agents gain from (or are burdened with) 
multiple sensory systems that produce huge amounts of data 
from their complex, dynamic environments. There is often too 
much information to attend to at once. A cognitive 
architecture controlling one of these agents would benefit 
from some mechanism for attention [13, 14] that would 
choose the most salient portion of the current situation for the 
agent to attend to while selecting its next action. Indeed, it has 
been argued that attentional mechanisms are vital for handling 
real-world complexity, since the number of combinations of 
memory items, percepts, and possible actions can be 
extremely high, but agents have limited resources for selecting 
a suitable action [4, 15]. However, explicit general attentional 
mechanisms are not commonly included in cognitive 
architectures [4], although some architectures model some 
aspects of attention, such as visual attention [16, 17], eye-
movements [18, 19], and multi-tasking [20, 21]. Attention in 
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LIDA is the process of bringing content to consciousness, 
following [22]. It is general in the sense that it is independent 
from modality, can theoretically focus on perceived, 
remembered, or imagined content, and is thus able to model a 
wide variety of paradigms using the same mechanism (see the 
LIDA I Attention [23] and Attentional Blink [24] agents in 
Section X). 

Handcrafting sophisticated cognitive agents “living” in 
complex environments is often prohibitively expensive, if not 
impossible. Thus, many of the cognitive architectures employ 
some form of learning (e.g. [10, 12]). Some of these learning 
mechanisms suffer from being either unimodal or supervised. 
Supervised learning has two major drawbacks. Often, a large 
and expensive training set, which is sometimes unavailable, is 
required. Also, the designer must know in advance what sort 
of representations must be learned. Unimodal learning, mostly 
procedural (i.e., learning of new productions), often ignores 
other critical aspects of the agent’s cognitive processes, such 
as perception. Cognitive architectures with more human-like, 
unsupervised, and multimodal learning mechanisms are 
needed to permit continual, effective selectionist 
(reinforcement) and instructionalist (new representations) 
learning by a cognitive agent. 

The LIDA1 model, described below, provides an example of 
a cognitive architecture combining sophisticated action 
selection, motivation and learning, a centrally important 
attention mechanism, and multimodal instructionalist and 
selectionist learning [25]. Empirically grounded in cognitive 
neuroscience, the LIDA architecture is neither symbolic nor 
connectionist, but blends crucial features of each. It employs a 
variety of modules2 and processes, each with its own effective 
representations and algorithms. Most of these involve 
multiple, interactive, memory systems. 

Every animal with a nervous system learns about the 
structure of its world by encoding entries into memory 
systems [26]. The later retrieval of some of these memories 
facilitates adaptive responses to a changing environment. 
Thus, every systems-level cognitive model used for studying 
human and animal minds, as well as artificial minds, must 
concern itself with learning and memory. Memory can be 
partitioned into multiple, interactive memory systems in 
various ways useful for different purposes [27-29]. In the 
LIDA model we categorize memory according to the type of 
structures learned, its function, and its duration. The result is a 
bevy of interactive memory systems: sensory, perceptual 
(recognition), spatial, episodic (two varieties), attentional, 
procedural, and sensory-motor, as depicted in Figure 1. 
Memory and learning play a central role in the LIDA model. 
Learning is mostly conceptual as of yet, due to the only 
recently released LIDAI computational framework. That being 
said, LIDAI implementations exist for most memory modules, 
 

1 LIDA is an acronym for Learning Intelligent Distribution Agent 
(Learning IDA), where IDA is a software personnel agent hand-crafted for the 
US Navy that automates the process of finding new billets (jobs) for sailors at 
the end of a tour of duty. LIDA adds learning to IDA and extend its 
architecture in many other ways  

2 While the LIDA model seems modular, it makes no commitment to 
modularity in the underlying neural mechanisms. 

and for some learning mechanisms (see Sections VI and XI). 
In order to distinguish the conceptual ideas of the LIDA 

model from the mechanisms that have already been 
implemented computationally, we will use the following 
subscript notation: LIDAC for the conceptual model, LIDAI 
for the implemented parts, and LIDA without a subscript to 
refer to both. For example, “LIDA accounts for functional 
consciousness” implies that a functional consciousness 
mechanism is part of both the conceptual and the 
computational model (although strongly simplified in the 
latter); whereas “LIDAC can model feelings” means that 
feelings are part of the conceptual but not the computational 
model. 

Though aspects of the LIDA model have previously been 
described in several short papers, [30-38], this paper provides 
a summative account by integrating the various components of 
the model. Additional contributions include: (a) a discussion 
of the design principles underlying the LIDA model, (b) a 
brief description of the software implementation of the LIDAI 
Framework, (c) a short account of four LIDAI-based software 
agents that replicate experimental results, (d) a more detailed 
description of LIDAC’s use of feelings and emotions as 
motivators, (e) a discussion of the relationship of the LIDAC 
conceptual model and the underlying neural architecture of 
brains, and (f) a comparison between LIDA and some of the 
more popular cognitive architectures. 

It is imperative to note that LIDA is not intended to model 
brains. That is, as a cognitive model, the LIDA model is 
concerned with the functional organization of cognitive 
processes at the conceptual and computational level at which 
they are studied in cognitive science. Though the model must 
be empirically validated by both psychological and 
neuroscientific studies, it makes no attempt to model the 
underlying neural anatomy or mechanisms. That does not 
mean, however, that the model is not inspired by neural 
mechanisms that are known, such as in visual or spatial 
cognition. 

The LIDA model is partly computational and partly 
conceptual. This paper is organized to reflect this distinction. 
The first part of the paper describes the underlying theory with 
an emphasis on the aspects that have been computationally 
implemented and tested (Sections II, III, and IV). Section II 
explores the relationship between the LIDA model and other 
psychological and neuroscientific theories; Section III focuses 
on LIDA’s cognitive cycles, the high-level, but very brief 
processes out of which we hypothesize all cognition is 
composed. Section IV is devoted to decision making and 
action selection. 

The next three sections provide brief discussions about 
some of the conceptual aspects of LIDA that have been 
designed, partially implemented, but not yet systematically 
tested. Section V describes how LIDA handles higher-level, 
multicyclic, cognitive processes. Section VI introduces 
LIDA’s ideas about learning, a centrally important part of the 
model. Section VII describes the use of feelings and emotions 
as motivators and facilitators of learning in the LIDA model. 
Further, Section VIII discusses how the high-level conceptual 
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LIDA model can be grounded in cognitive neuroscience, and 
tentatively outlines functional correspondences to neural 
correlates. 

We then turn to concrete implementations of LIDA 
architecture via a description of the LIDAI computational 
framework (Section IX) and descriptions of four studies that 
use the computational framework to replicate human 
experimental data (Section X).  

The last few sections focus on some of the broader issues 
stemming from the LIDA architecture. Section XI places 
LIDA in the context of other cognitive architectures, while 
Section XII discusses how LIDA might address some of the 
open issues in cognitive architectures that were raised in a 
review article by Langley et al. [4]. Finally, section XIII 
contains a brief conclusion. 

II. LIDA MODEL, ITS RELATIONS, AND DESIGN PRINCIPLES  

The LIDA model is a conceptual and partially implemented 
computational model that makes an attempt to cover a large 
portion of human cognition. It is largely based on Baars’ 
Global Workspace Theory (GWT) [22, 39, 40], a conceptual 
theory of the role of consciousness3 (specifically the 
attentional component4) in cognition. Originally conceived as 
a neuropsychological model of conscious and unconscious 
processes [22], GWT has been broadened in LIDA into a 
higher-level theory of human cognitive processing [31]. Now 
supported by considerable empirical evidence [40], GWT 
views the nervous system as a distributed parallel system with 
many different specialized processes. Coalitions of these 
processes enable an agent to make sense of the sensory data 
coming from the current environmental situation. Other 
coalitions, filtering and using this understanding, compete for 
attention in what Baars calls the global workspace. The 
contents of the winning coalition are broadcast globally, and 
are proposed to be phenomenally conscious. This conscious 
broadcast serves to recruit other unconscious processes to be 
used to select an appropriate response to the current situation. 
GWT is therefore a theory of how consciousness functions 
within cognition. The broadcast must be global to allow 
simultaneous learning into multiple memories with diverse 
functions. 

This description of GWT is from the point of view of what 
happens during a single LIDA cognitive cycle (see the 
subsection Cognitive Cycles below). Viewing its contents over 
multiple successive cognitive cycles, the global workspace can 
be thought of as a fleeting memory system that enables access 
between brain functions that are otherwise separate (Baars, 
2002). From this view it seems to be “… a theater of mental 
functioning. Consciousness in this metaphor resembles a 

 
3 The LIDA model treats of functional consciousness, that is, 

consciousness as described in GWT (referring to information that is 
"broadcast" in the global workspace and  made available to cognitive 
processes such as action selection, as opposed to only locally available, non-
conscious information). It makes no commitment to phenomenal (subjective) 
consciousness. 

4 Following Baars (1988, p369), we think of attention as the process of 
bringing content to consciousness. 

bright spot on the stage of immediate memory, directed there 
by a spotlight of attention under executive guidance. Only the 
bright spot is conscious, while the rest of the theater is dark 
and unconscious.” The hypothesized primary functional 
purpose of consciousness is to integrate, provide access, and 
coordinate the functioning of very large numbers of 
specialized networks that otherwise operate autonomously and 
unconsciously [41]. 

Besides GWT, the LIDA model implements and fleshes out 
a number of psychological and neuropsychological theories, 
including situated and grounded cognition [42, 43], perceptual 
symbol systems [42, 44], working memory [45, 46], memory 
by affordances [47], long-term working memory [48], and 
Sloman’s H-CogAff cognitive framework [49]. This includes 
a broad array of cognitive modules and processes (discussed in 
Section III). 

The LIDA computational architecture, derived from the 
LIDA cognitive model, employs a variety of modules that are 
designed using quite distinct computational mechanisms 
drawn from AI. These include variants of the Copycat 
Architecture [50, 51], Sparse Distributed Memory (SDM) [52, 
53], the Schema Mechanism [54, 55], the Behavior Net [56, 
57], and the Subsumption Architecture [58]. 

Please note that whenever we mention that our model 
accounts for some mental phenomenon, and use terms from 
cognitive science, we do not mean to imply that LIDAI is able 
to account for the full psychological complexity underlying 
these terms. Rather, we mean to say that these mental 
phenomena fit into and are part of the LIDAC model. If 
implemented as part of LIDAI, their computational 
counterparts are functionally similar but very simple 
abstractions as is the case with most computational models. 

It is important to emphasize some design principles that 
underlie the LIDA model (but are not necessarily unique to 
LIDA – see Section XI for comparisons with other cognitive 
architectures). Six such principles are discussed below. The 
first four principles have been implemented in the 
computational LIDA framework, while the last two are still 
conceptual. 

Principles of grounded cognition. First, the model adheres 
to the principles of grounded cognition [42], which emphasize 
the importance of modal representations, situated action, and 
perceptual simulation. Instead of representing knowledge as 
amodal symbols in a semantic memory, the representations in 
the model, which resemble perceptual symbols [42, 44], are 
grounded in primitive sensors and actuators (see the 
Understanding phase in Section III, and vector representations 
in Section IX). Current LIDAI agents are not physically 
embodied5, but interact with simulated environments, which 
can still implement the structural coupling between agent and 
environment which embodiment requires [59]. LIDA’s 
predecessor, IDA, a software agent operating in a real-world 
virtual environment that included unstructured email 
correspondence with humans, was claimed to be embodied in 
this restricted sense [60]. There are now a large number of 

 
5 Work is underway to physically embody LIDA on a PR2 humanoid robot 
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theoretical arguments [44, 61] as well as empirical findings 
[62, 63] (and many others - see [42] for a detailed review) in 
favor of a grounded as opposed to a symbolic or cognitivist 
view of cognition. Despite having gained increasing 
acceptance in cognitive science and cognitive neuroscience, 
only a surprisingly small number of cognitive architectures are 
fully grounded, in the sense of using only modal 
representations (see [64] and Section XI). 

Asynchronous operation. Second, with the exception of 
two serial decision points controlled by triggers (to be 
described below), the model operates entirely asynchronously. 
That is, no process waits for its turn to proceed, but rather 
each process operates whenever its conditions are satisfied. 
LIDA I’s asynchronous processes implement concurrent and 
distributed information processing, features which are vitally 
important when dealing with highly complex perceptual inputs 
with limited resources [65]. 

Functional consciousness. Third, the model includes an 
explicit functional consciousness mechanism that plays a 
major role in perceptual filtering, action selection, and 
learning (the LIDA model makes no commitment on the 
subject of phenomenal consciousness on the part of either 
animals or artificial agents [66]). Functional consciousness 
plays an important role as a perceptual filter by enabling the 
agent to focus on only the most salient information. It helps 
action selection by allowing the agent to recruit resources in 
order to choose what to do next and to efficiently solve 
problems. The usefulness of consciousness as viewed by GWT 
in enabling multiple networks in the brain to cooperate and 
compete has been previously argued for - see [41, 67] for 
examples. Some experimental data we computationally model, 
such as the Allport experiment [68], are difficult to account for 
without a functional consciousness mechanism. Moreover, the 
model assumes that functional consciousness is a necessary 
condition for learning (see Profligacy in learning below). 

Cognitive cycles. Fourth, the Cognitive Cycle Hypothesis, 
that emerges from the LIDA model claims that human 
cognition functions by means of continual iteration of similar 
flexible cognitive cycles each taking approximately 200-300 
ms [69] (similar concepts have been proposed in neuroscience 
[7, 8] and cognitive science [70]). However, because of 
cascading, cycles potentially occur at a rate of five to ten 
cycles per second. These cycles can cascade; that is, several 
cycles may have different processes running simultaneously. 
This cascading must, however, respect the serial nature of 
conscious processing that is necessary to maintain the stable, 
coherent image of the world that consciousness provides [71, 
72]. Higher-level cognitive processes operate across multiple 
cycles. This view is consistent with emerging evidence from 
cognitive neuroscience [73, 74]. Building higher-level 
cognitive processes from cognitive cycles acting as “cognitive 
atoms” should prove a useful strategy for developing cognitive 
software agents, because of the computational efficiency of 
asynchronous and partially overlapping processes when 
dealing with complex information [65]. See Section X for the 
neuroscientific plausibility of this concept and its usefulness in 
accounting for experiments dealing with subjective 

reportability. 
Profligacy in learning. Fifth, each of the various modes of 

learning in the model follows the principle of profligacy. This 
means that new representations are added to the various 
memories at the slightest justification, that is, whenever they 
come to consciousness, and are left to survive by 
reinforcement or they simply decay away. Such a principle is 
often referred to as generate and test because multiple 
representations are generated but very few survive [75]. While 
many cognitive architectures (including ACT-R) follow a 
roughly similar principle, LIDA has specific descriptions of 
memory systems that provide wide-ranging conceptual 
explanations. Examples are the more fine-grained subdivision 
of memory systems (Fig. 1), and the cognitively plausible 
auto-associative implementation of memory which can 
account for effects such as the tip-of-the-tongue effect or the 
remember-know distinction. Most of these memory systems 
have been implemented computationally (see Section XI), but 
learning is conceptual and not yet part of LIDAI, with the 
exception of procedural learning, which has been implemented 
computationally in LIDA’s predecessor [76], and perceptual 
associative learning, which is currently being implemented in 
a LIDA-based infant vervet monkey agent that learns predator 
alarm calls. 

Feelings and emotions. Finally, the model does not have 
any built-in drives or specific motivators. Instead, artificial 
feelings and emotions implement the motivation needed for an 
agent to select appropriate actions with which to act on its 
environment. They also serve as primary learning facilitators 
by regulating the amount of reinforcement assigned to any 
entity in the system (see Section VII). 

III.  THE LIDA  COGNITIVE CYCLE 

The LIDA model and its ensuing architecture are grounded 
in the LIDA cognitive cycle. The agent’s “life” can be viewed 
as consisting of a continual sequence of these cognitive cycles. 
Each cycle consists of three phases, an understanding phase, 
an attending phase, and an action selection phase. LIDA’s 
cognitive cycles closely resemble action-perception cycles in 
neuroscience [8, 77], and also bear some similarity to 
execution cycles in other cognitive architectures [10, 16, 70]. 
A cognitive cycle can be thought of as a cognitive “moment”. 
As will be described in Section V below, higher-level 
cognitive processes are composed of many of these cognitive 
cycles, each a cognitive “atom.”  

Just as atoms have inner structure, the LIDA model 
hypothesizes a rich inner structure for its cognitive cycles [31, 
78]. During each cognitive cycle, the LIDA agent first makes 
sense of its current situation as best as it can by updating its 
representations of both external (coming through the senses) 
and internally generated features of its world. This is the 
understanding phase of the cycle. By a competitive process to 
be described below, it then decides what portion of the 
represented situation is most in need of attention. This portion 
is broadcast to the rest of the system, making it the current 
contents of consciousness, and enabling the agent to choose an 
appropriate action to execute. This is the attending phase. 
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These broadcast conscious contents facilitate the recruiting of 
internal resources, potential actions, from which the action 
selection mechanism chooses. This is the action phase. Figure 

1 shows the process in more detail. It starts in the upper-left 
corner and proceeds roughly clockwise. 

Understanding phase. The cycle begins with sensory 
stimuli from sources in the agent’s external and internal 
environment being intercepted in sensory memory (e.g., the 
iconic buffer). Low-level feature detectors in sensory memory 
begin the process of making sense of the incoming stimuli. 
Recognized low-level features pass activation to higher-level 
features, such as objects, categories, relations, events, 
situations, etc., represented as nodes in the Perceptual 
Associative Memory (PAM). PAM nodes are connected by 
links, which can represent, for instance, correspondence, 
membership, spatial or causal relationships, as well as 
affordances, in the case of an object-action link or a category-
action link [79]. These PAM nodes, and the links between 
them, are the building blocks of node structures in the 
Workspace that are similar to Barsalou’s [42, 44] perceptual 
symbols6 and serve as modal representations in the model (the 
LIDA model does not contain amodal representations). These 
entities, recognized preconsciously and represented by PAM 
node structures, make up the percept that is passed 
asynchronously to the Workspace, where a model of the 
agent’s current situation, called the Current Situational Model 
(CSM), is assembled (updated). This percept serves as a cue to 
two forms of episodic memory (the memory for events), 
transient [80] and declarative (autobiographical and semantic). 
LIDA I uses auto-associative, content-addressable Sparse 

 
6Barsalou has confirmed that our PAM node implementations are similar to 

his perceptual symbols in personal correspondence. 

Distributed Memory [52] implementations to store and cue 
episodic, declarative and spatial memories. Responses to the 
cue consist of local associations, that is, remembered events 

from these two memory systems that were associated with the 
various elements of the cue. In addition to the current percept 
and the CSM, the Workspace contains recent percepts and the 
models assembled from them that have not yet decayed away. 
The Workspace also contains the Conscious Contents Queue, 
a list containing a series of a few tens of very recent conscious 
contents, which helps the agent to deal with time-related 
concepts [81]. A new model of the agent’s current situation is 
assembled from the percepts, the associations, and the 
undecayed parts of the previous model. This assembling 
process will typically require structure-building codelets7. 
These structure-building codelets are small, special-purpose 
processors, each of which has some particular type of structure 
it is designed to build. These codelets are continually 
monitoring the Workspace for opportunities to fulfill their 
particularly specified task. They may draw upon perceptual 
memory and even sensory memory to enable the recognition 
of relations and situations, and of analogies and similarities 
(inspired by [50, 51]). The newly assembled model constitutes 
the agent’s understanding of its current situation within its 
world. It has made sense of the incoming stimuli and the 
understanding phase is complete. 

Attending phase. For an agent operating within a complex 
environment, this current model may well be much too rich for 
the agent to consider all at once in deciding what to do next. It 
needs to selectively attend to a portion of the model. Portions 

 
7 In the computational model, the term codelet refers generally to any 

small, special-purpose processor or running piece of software code. Codelets 
correspond to processors in Global Workspace Theory. 

Figure 1 LIDA Cognitive Cycle Diagram 
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of the model compete for attention. These competing portions 
take the form of coalitions of structures from the model. Such 
coalitions are formed by special-purpose attention codelets, 
whose function is to bring certain perceptual structures of 
concern to the particular attention codelet into the Global 
Workspace (hence the name Global Workspace Theory). The 
coalition containing the most salient (important, urgent, 
insistent, novel, threatening, promising, arousing, unexpected) 
perceptual structures wins the competition. In effect, the agent 
has decided on what to attend. A representation of the contents 
of the winning coalition is then broadcast globally bringing its 
contents to consciousness and, thereby, completing the 
attending phase of the cycle. 

Action and learning phase. One major purpose of all this 
processing is to help the agent choose what to do next, the 
other being the several forms of learning. Though the contents 
of this conscious broadcast are available globally (facilitating 
different modes of learning in the conceptual model – see 
Section VI), the primary recipient is Procedural Memory, 
which stores templates (“schemes8”) of possible actions 
including their contexts and possible results. It also stores an 
activation value for each such template which attempts to 
measure the likelihood of an action taken within its context 
producing the expected result. Templates whose contexts 
intersect sufficiently with the contents of the conscious 
broadcast instantiate copies of themselves with their variables 
specified to the current situation. Instantiated templates 
remaining from previous cycles may also continue to be 
available. These instantiations are passed to the action 
selection mechanism, which chooses a single action from one 
of these instantiations. The chosen action then goes to 
sensory-motor memory, where it is executed by an appropriate 
algorithm (motor plan). The action taken affects the 
environment, or an internal representation, or both, and the 
cycle is complete.  

Concurrently with action selection and execution, the 
contents of the conscious broadcast is used to update each of 
several memories (Perceptual Associative (recognition), 
Transient Episodic, Attentional, Procedural), both by adding 
new items and by reinforcing existing items. 

IV. TYPES OF DECISION MAKING AND ACTION SELECTION 

The previous sections focused on one form of action 
selection. Here, we discuss alternate variants, many of which 
have been implemented in the computational architecture.  

Volitional decision making (volition for short) is a higher-
level cognitive process for conscious action selection. To 
understand volition it must be carefully distinguished from 1) 
consciously mediated action selection, 2) automatized action 
selection, 3) alarms, and 4) the execution of actions. In each of 
the latter three, the actual selection (or execution) is performed 
unconsciously. Consciously planning a driving route from a 
current location to the airport is an example of deliberative, 
volitional decision making. Choosing to turn left at an 
appropriate intersection along a familiar route requires 

 
8LIDA I’s Procedural Memory is based on Drescher’s [48] Scheme Net. 

information about the identity of the cross street acquired 
consciously, but the choice itself is most likely made 
unconsciously - the choice was consciously mediated even 
though it was unconsciously made. While driving along a 
straight road with little traffic, the necessary slight adjustments 
to the steering wheel are typically automatized actions 
selected completely unconsciously, one action called by the 
previous [82]. They are usually not even consciously 
mediated, though unconscious sensory input is used in their 
execution. If a car cuts in front of the driver, often he or she 
will have turned the steering wheel and pressed the brake 
simultaneously with becoming conscious of the danger. An 
alarm mechanism has unconsciously selected appropriate 
actions in response to the challenge [49]. The actual turning of 
the steering wheel, how fast, how far, the execution of the 
action, is also performed unconsciously though with very 
frequent sensory input.  

Though heavily influenced by the conscious broadcast (the 
contents of consciousness), action selection during a single 
cognitive cycle in the LIDA model is not performed 
consciously. A cognitive cycle is a mostly unconscious 
process. When speaking, for example, a person usually does 
not consciously think in advance about the structure and 
wording of the next phrase, and is occasionally even surprised 
at what comes out. When approaching the intersection in the 
example above, no conscious thought need be given to the 
choice to turn left. Consciousness serves to provide 
information on which such action selection is based, but the 
selection itself is done unconsciously after the conscious 
broadcast [36]. We refer to this very typical single-cycle 
process as consciously mediated action selection.  

LIDA’s predecessor IDA had computational 
implementations for all of the described decision-making 
types [30, 67]. In LIDAI, computational development is still 
underway. Consciously mediated action selection and action 
execution are currently implemented as discussed below. 
Section V describes LIDAC’s conceptual designs for the other 
types. 

 

V. HIGHER-LEVEL COGNITIVE PROCESSES AND LEVELS OF 

CONTROL IN LIDA C 

As mentioned before, LIDA aims to be a conceptual as well 
as computational cognitive architecture. However, not all parts 
of the conceptual model have yet been implemented 
computationally. Sections V, VI and VII describe important 
parts of the conceptual model that have not yet been fully 
implemented. These include higher-level processes (this 
section), learning (section VI), and feelings and emotions 
(section VII). 

Higher-level cognitive processing in humans includes 
deliberation, volition, metacognition, reasoning, planning, 
problem solving, language comprehension, and language 
production. In the LIDAC model such higher-level processes 
are distinguished by requiring multiple cognitive cycles for 
their accomplishment. They can be implemented by one or 
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more behavior streams9, that is, streams of instantiated 
schemes and links from Procedural Memory. Recall that 
actions (as we use the term) in the LIDA model, and in 
humans, include internal actions such as those used in 
reasoning and other higher-level cognitive processing, acting 
on internal representations instead of the external 
environment. See [34, 83, 84] for descriptions of how high-
level decision making and problem solving have been 
implemented in LIDAI. Here we focus on deliberative 
volitional decision making as one higher-level cognitive 
process. 

Deliberative Volitional Decision Making Section IV 
described different forms of decision making. We now return 
to a consideration of deliberative, volitional decision making. 
In 1890, William James introduced his ideomotor theory of 
volition [For a recent review see 85, 86]. James postulated 
proposers, objectors, and supporters as actors in the drama of 
acting volitionally. He might have suggested the following 
scenario in the context of dealing with a feeling of thirst. The 
idea of drinking orange juice “pops into mind,” that is, it is 
propelled to consciousness by a proposer; motivated by a 
feeling of thirst and a liking for orange juice, the idea becomes 
the contents of consciousness. “No, it's too sweet,” asserts an 
objector. “How about a beer?” says a different proposer. “Too 
early in the day,” says another objector. “Orange juice is more 
nutritious,” says a supporter. With no further objections, 
drinking orange juice is volitionally selected. 

Baars incorporated ideomotor theory directly into his GWT 
[22]. The LIDAC model fleshes out volitional decision making 
via ideomotor theory within GWT [30] as follows. An idea 
“popping into mind” in the LIDAC model is accomplished by 
the idea being part of the conscious broadcast during a 
cognitive cycle, that is, part of the contents of consciousness 
for that cognitive moment. These contents are the information 
(structures) contained within the winning coalition for that 
cycle. This winning coalition was gathered by some attention 
codelet (see Section III above). Ultimately, this attention 
codelet, by forming a coalition that wins the contest, is 
responsible for the idea “popping into mind.” Thus we 
implemented the characters in James’ scenario as attention 
codelets, with some acting as proposers, others as objectors, 
and others as supporters, the content of each “popping into 
mind” if it wins the competition and is broadcast.  

But how does the conscious thought of “Let’s drink orange 
juice,” lead to a let’s-drink-orange-juice node in the 
Workspace? Like every higher-order cognitive process in the 
LIDA C model, volition occurs over multiple cycles, and is 
implemented by a behavior stream in the action selection 
module. This volitional behavior stream is an instantiation of a 
volitional scheme in Procedural Memory. Whenever a 
proposal node in its context is activated by a proposal in the 
conscious broadcast, this volitional scheme instantiates itself. 
The instantiated volitional scheme, the volitional behavior 
stream, is incorporated into the action selection mechanism, 
the behavior net. The first (internal) behavior in this volitional 

 
9 A stream is a sequence with its order only partially specified.  

behavior stream sets up the deliberative process of volitional 
decision making as specified by ideomotor theory, including 
writing the let’s-drink-orange-juice node to the Workspace10. 
Note that a single proposal with no objection can be quickly 
accepted and acted upon.  

This volitional decision-making process might oscillate 
with continuing cycles of proposing and objecting as in Eric 
Berne’s “what if” game [87]. To counter such endless 
oscillations, the LIDAC model proposes three hypothetical 
mechanisms: reducing the activation of proposer codelets each 
time they reach consciousness, reducing the time allocated for 
the process by a “timekeeper codelet” at each restart, and a 
metacognitive process monitoring the process and choosing an 
alternative if it has gone on for too long (see [30] for details). 

In addition to volition, deliberative processing is also 
involved in other higher-level cognitive processes such as 
planning, scheduling, and problem solving. Deliberative 
information processing and decision making allows an agent 
to function flexibly within a complicated niche in a complex, 
dynamic environment. Such deliberative processes in humans, 
and in some other animals, are typically performed in an 
internally constructed virtual reality. An internal virtual reality 
for deliberation requires a short-term memory in which 
temporary structures can be constructed with which to 
“mentally” try out possible actions without actually executing 
them. In the LIDAC model the virtual window of the 
perceptual scene in the Workspace serves just such a function 
[79]. In many cases, the action selected during almost all 
cognitive cycles consists of building or adding to some 
representational structures in the Workspace during the 
process of some sort of deliberation11. 

VI. LEARNING IN LIDA C 

The conscious broadcast has two primary roles:  recruitment 
of resources, and learning. Global Workspace Theory’s multi-
modal learning requires that the broadcast be global, making 
learning critical to any understanding of GWT, which LIDA 
models. Learning is also critical to understanding the role 
played by feelings and emotions in the LIDAc model (see 
section VII). 

Learning in the LIDA model can only occur after 
information has been attended to, that is, broadcast from the 
Global Workspace. The LIDAC model realizes several 
fundamental learning mechanisms (modes), each in two types, 
which underlie much of human learning. The two types are 
instructionalist (i.e., learning by the creation of new 
representations) and selectionist (i.e., learning by the 
reinforcement of existing representations) [25]. The modes of 
learning in the model include perceptual, episodic, and 
procedural.  

 
10 Alternatively, this node could arrive in the Workspace with the percept 

of the following cycle as a result of internal sensing of the internal speech. In 
LIDA, this is only an implementation matter, making no functional difference. 
In humans this is an empirical matter to be decided by experiment. Thus the 
design decision for LIDA becomes a cognitive hypothesis. 

11 Internal actions are part of the LIDAC model, but have not been 
implemented yet. 
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Perceptual learning is learning to recognize objects, 
categorizations, relationships, events, etc. As new objects, 
categories, and the relationships among them and between 
them and other elements of the agent’s ontology are learned, 
nodes (objects and categories) and links (relationships) are 
added to PAM, but not before the conscious broadcast (Figure 
1). Episodic learning is the encoding of information into 
episodic memory, the associative, content-addressable, 
memory for events - the what, the where, and the when [88, 
89]. 

Procedural learning is the encoding of procedures for 
executing behaviors into Procedural Memory. It is the learning 
of new actions and action sequences with which to accomplish 
new tasks. Here we must distinguish between action selection 
and action execution. LIDA’s Procedural Memory is 
composed of schemes concerned with the selection of actions. 
Algorithms (motor plans) for their execution are found in 
Sensory-Motor Memory. The Procedural Memory has been 
implemented in LIDAI, and a procedural learning 
implementation was available in IDA [76]. 

Instructionalist learning refers to learning by the addition of 
new representations. For perceptual learning, such new 
representations are produced in the Workspace by structure-
building codelets. If a new representation is part of a winning 
coalition in the Global Workspace, it becomes part of the 
conscious broadcast and is learned. In the current 
implementation, for perceptual learning these new 
representations will consist of nodes and links in PAM, for 
procedural learning of schemes in Procedural Memory, and for 
episodic learning of vectors in Transient Episodic Memory. 

Each node in PAM and each scheme in Procedural Memory 
has both a base-level and a current activation. The current 
activation measures the present relevance or saliency of the 
node or scheme. Their base-level activation measures their 
overall usefulness. Occurring during each conscious 
broadcast, selectionist learning reinforces the base-level 
activation of every node and scheme in the conscious content 
of the broadcast. For episodic learning, such reinforcement 
happens automatically by means of internal mechanisms of 
sparse distributed memory (SDM) [52], the computational 
mechanism we use to model episodic memory.  

Although the types of knowledge retained due to these three 
learning mechanisms differ, we hypothesize that conscious 
awareness is sufficient for learning. Although subliminal 
acquisition of information appears to occur, the effect sizes are 
quite small compared to conscious learning. In a classic study, 
Standing [90] showed that 10,000 distinct pictures could be 
learned with 96% recognition accuracy, after only 5 seconds 
of attention to each picture. No intention to learn was needed. 
Consciously learned educational material has been recalled 
after 50 years [91]. Attention greatly facilitates most modes of 
learning. 

All learning in LIDA occurs as a result of the conscious 
broadcast. The conscious broadcast contains the entire content 
of consciousness including the affective portions. Transient 
Episodic Memory is also updated with the current contents of 
consciousness, including feelings, as events (episodic 

learning). Up to a point, the stronger the affect is, the stronger 
the encoding in memory (discussed in more detail in the next 
section). Procedural memory (recent actions) is updated 
(reinforced) with the strength of the reinforcement influenced 
by the strength of the affect (procedural learning). 

Most of LIDA’s learning mechanisms are conceptual at this 
stage. Implementations exist for procedural learning [76] and 
episodic learning [92]. Spatial learning is currently being 
developed for possible robotic applications of LIDA. 
Perceptual associative learning is currently being implemented 
in a LIDA-based infant vervet monkey agent that learns 
predator alarm calls. Additional modes of learning are in the 
planning stage for later implementation into the LIDA I 
architecture. These include learning of motor plans in 
Sensory-Motor Memory for the execution of actions, the 
attentional learning of new attention codelets, and the learning 
of new structure-building codelets. 

VII.  FEELINGS AND EMOTIONS IN LIDA C  

Emotions have been argued to play major roles in 
facilitating high-level cognition (for example, by acting as 
motivators for actions): "the emotional aspect of cognition, 
providing motivation and value to an otherwise neutral world, 
[...] is a fundamental part of the make-up of an organism with 
respect to sensorimotor learning"[93]. However, the modeling 
of emotion has been largely neglected in cognitive architecture 
research [4], with notable exceptions including SOAR [94, 
95], and models accounting for emotion as well as some other 
aspects of cognition, but not aiming to be comprehensive 
architectures (e.g. [96], see [97, 98] for reviews). In this 
section, we will describe how LIDAC can model emotions and 
use them as motivators for action selection. These ideas are 
part of conceptual LIDAC and have not yet been implemented 
in LIDA I. As with the other cognitive science phenomena 
described in this paper, their implementations will be 
simplified abstractions intended to be functionally similar to 
the real phenomena. We do not claim to account for their full 
psychological complexity. Nevertheless, using terms common 
in cognitive science is useful for establishing conceptual 
grounding, and to reduce the need for explanations. 

The word “feeling” may be associated with external haptic 
sense, such as the feeling in our fingertips as they touch the 
keys. It is also used in connection with internal senses, such as 
the feeling of thirst or the pain of a pinprick. Following 
Johnston [99], and consistent with the influential appraisal 
theory [100], in the LIDAC model we speak of emotions as 
feelings with cognitive content, such as the joy at the 
unexpected meeting with a friend or the embarrassment at 
having said the wrong thing. 

Contemporary theories of emotion posit that cognitive 
appraisals of physiological changes give rise to emotional 
states [101-104]. Appraisal is an unconscious or conscious 
process where emotions are produced from subjective 
evaluations of situations, or objects, or events, along 
dimensions such as novelty, goal-alignment, agency, coping 
potential, and availability of a plan.  

Representing feelings in LIDAC. Feelings are represented 
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in the LIDAC model as nodes in PAM. Each feeling node 
constitutes its own identity, for example, distress at not having 
enough oxygen is represented by one node, relief at taking a 
breath by another. Each feeling node has its own valence, 
always positive or always negative, with varying degrees of 
arousal. The current activation of the node measures the 
momentary arousal of the valence, that is, how positive or how 
negative. The arousal of feelings can be bottom-up, that is, 
arising from feature detectors in Perceptual Associative 
Memory (PAM). If those feeling are also emotions, the arousal 
can also be top-down, that is influenced by the appraisal that 
gave rise to the emotion. A thirst node in humans would 
activate itself in response to internal sensation having to do 
with fluid balance. A fear node in the presence of a known 
event would be activated by spreading activation from the 
other nodes representing the event, in turn activated by feature 
detectors of different sensory modalities. 

Like other Workspace structures, feeling nodes help to cue 
transient and declarative episodic memories. The resulting 
local associations may also contain feeling nodes associated 
with memories of past events, which is consistent with 
network theories of emotion [105]. Being part of the structure 
carried by the coalition, and bringing their own activation with 
them, these feeling nodes play a major role in assigning 
activation to coalitions of information to which they belong, 
helping them to compete for attention. Any feeling nodes that 
belong to the winning coalition become part of the conscious 
broadcast (i.e., part of the contents of consciousness, and can 
influence the selection of an appropriate action). 

Feelings can be recognized based on sensory input. Taking 
thirst as an example as we did above, an internal sense may 
sufficiently activate the thirst node in PAM, causing an 
instantiated thirst node to appear in the LIDAC’s Workspace. 
If this node is selected by an attention codelet and the resulting 
coalition wins the competition in the Global Workspace and 
thus comes to consciousness, the feeling of being thirsty is 
experienced12 by the agent.  

As stated above, emotions in LIDAC are taken to be feelings 
with cognitive content [99], for example, the fear of a truck 
bearing down, the shame at something said, the sadness at a 
loss, or the surprise at an unexpected turn of events. Feelings, 
including emotions, are represented by nodes in LIDAC’s 
Perceptual Associative Memory (PAM). Cognitive content, 
represented by node/link structures, are linked to emotion 
nodes by a process called appraisal [106].  

Appraisal in LIDA.  In LIDAC, appraisal of a new event, 
and its connection to an appropriate emotion, is performed by 
appraisal codelets13, a form of structure-building codelet, 
acting within LIDAC’s Workspace. Appraisal codelets identify 
an emotion as well as an arousal level (see below), in the form 
of an emotion PAM node, and connect this node to the 
perceptual structure representing the event causing the 
emotion. The appraisal process can also alter previously 

 
12In the sense of functional consciousness. We make no commitment in our 

LIDA model to phenomenal consciousness. 
13 This section describes a purely conceptual model. Appraisal codelets and 

variables have not yet been implemented in LIDAI. 

identified emotions when the event is reappraised. This newly 
appraised structure, including the emotion node, is 
incorporated into the Current Situation Model (CSM), from 
whence some attention codelet may succeed in bringing it to 
consciousness. The conscious emotion can subsequently 
motivate action selection.  

 

 
Figure 2. Components of appraisal models (black) - based 
on [98] – and how LIDAC accounts for them (blue) 

LIDA C’s appraisal process is based on components of 
computational appraisal models proposed by Marsella et al. 
[98] (see Figure 2). Here, person-environment relationship 
refers to the representation of the agent's current relationship 
with its environment. In LIDAC's case, this representation is 
built in the Workspace, taking the form of PAM nodes. 

Appraisal variables are derived from this representation and 
mapped onto an affective state (an emotion) with a specific 
intensity by an affect derivation model and an affect intensity 
model. In LIDAC, this is done by appraisal codelets operating 
on the Workspace. We propose to use Scherer’s [100] 
appraisal variables: relevance, implications, coping potential 
and normative significance (all subjective to the current 
person-environment relationship). In LIDAC, these variables 
are represented in the Workspace by PAM nodes, node 
structures, and their activations (see below). An emotion PAM 
node is spawned and connected to this representation by an 
appraisal codelet. Thus, these codelets implement the 
Appraisal Derivation Model and the Affect Derivation Model 
in Marsella et al.’s terminology [98] by creating the emotion 
node, and the Affect Intensity Model by creating and 
weighting the links to the Workspace node structures 
representing appraisal variables, which will ultimately 
determine the activation (or arousal) of the emotion node. 

According to Scherer [100], the relevance of a stimulus 
event to an organism can be judged by its novelty (which 
includes intensity, suddenness, familiarity and predictability), 
as well as intrinsic pleasantness and goal relevance. In LIDA C, 
intensity or bottom-up salience is implemented by feature 
detectors, intrinsic pleasantness by activation passed from 
pleasant or unpleasant emotion nodes, and top-down 
importance with regard to current goals by activation passed 
down from goal representations. 

The implications of a situation or an event need to be 
appraised to determine whether it furthers or hinders an 
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organism’s survival, or its ability to satisfy its needs or attain 
its goals. This involves the attribution of a cause, the 
assessment of outcome probabilities and of discrepancies from 
expectations, and checking the conduciveness to goals or 
needs. In LIDAC, implications could be judged by a predictive 
mental model in the virtual window of the CSM in the 
Workspace [79], represented as a node structure, that might be 
created and altered by behavior schemes representing the 
dynamics of the cause (e.g. possible actions of the responsible 
person) in the Procedural Memory [107]. This model or node 
structure would consist of PAM nodes (which can represent 
events as well as entities or objects [79]) representing causes 
and outcomes, and their activations would represent outcome 
probabilities and utilities. The overall activation of the node 
structure would influence the activation of the emotion node 
(urgent implications would lead to an emotion node with high 
activation). 

Coping potential involves the evaluation of whether the 
individual can affect its concern with the eliciting event, and 
depends on to what extent the event can be controlled or 
influenced by the agent as well as to what extent the agent can 
adjust or adapt to the consequences of the event. In LIDAC, 
this also could be evaluated using a model created in the 
virtual window of the CSM [79], similarly to the implication 
evaluation, in this case making use of learned schemes 
representing the agent’s own actions. This evaluation might 
require multiple cognitive cycles, each selecting a possible 
action, adding its results to the model in the Workspace and 
evaluating whether and to what extent the eliciting event will 
have been dealt with; this extent will then influence the 
activation of the emotion node. In both implication evaluations 
and coping potential evaluations, if a similar event has been 
encountered and its consequences learned already, building a 
predictive model using such schemes might not be necessary – 
the event’s consequences can be cued from episodic (or 
perceptual) long-term memory. 

Finally, normative significance involves taking into account 
how other group members would react to an event, and the 
significance of this for social agents [100]. The normative 
significance of events is evaluated against internal as well as 
external (social) standards. Such standards could be 
represented in semantic memory (part of declarative memory) 
in LIDA C, and, if cued, could influence the appraisal of 
socially significant situations, either by modulating the 
activations of the node structures representing these or by 
adding additional nodes (see previous work on moral 
standards in LIDA in [108]). 

Importantly, we hypothesize that none of these appraisal 
variables require any amodal representations, as is common in 
other computational models of emotion (see e.g. [98]). All of 
them are represented by PAM nodes (which are based on 
perceptual symbols [42, 44]) and their activations. 

Based on these appraisal variables, appraisal codelets can 
assign an emotion to the appraised situation, i.e. they can build 
a node structure representing the situation as well as its 
appraisal (both of which consist of PAM nodes) and connect 
an emotion PAM node to this structure. The activation of the 

emotion node (i.e. the intensity of the represented emotion) 
will be derived from this node structure, and will depend on 
all the factors described above. 

The affect consequence model, mapping the affect onto an 
either behavioral or cognitive (internal) change, is 
implemented by the Procedural Memory and Action Selection 
modules in LIDA, which can cause the selection and 
execution of an external (behavioral) or an internal action. 
These actions cause changes in the represented situation in the 
Workspace, which is used in subsequent appraisals. Thus 
LIDA C contains a closed-loop appraisal system. 

Although LIDAC adopts an appraisal-model of emotion, it 
has two major differences in comparison to recent 
computational models of emotion reviewed by Marsella [98]. 
First, our model may potentially account for more factors 
determining the intensity of emotions than conventionally 
used affect intensity models such as e.g. expected utility 
(intensity proportional to the product of goal utility and 
probability of attainment – see [98]), since the node structure 
resulting from the appraisal process and passing activation to 
the emotion node could possibly be highly complex. This 
method of deriving affective intensity is also arguably more 
cognitively plausible than using a mathematical equation and 
amodal symbols (e.g. [42, 44]). However, since our model is 
purely conceptual as of yet, these claims are speculative and 
require further computational testing. Second, LIDAC’s 
attention mechanism provides computational explanations for 
the demonstrated importance of attention in the subjective 
intensity of emotions (e.g. [109, 110] – an agent paying 
attention to an emotion has an attention codelet with a high 
activation that will build a coalition with said emotion, 
increasing its activation and thus its subjective intensity). The 
few emotion models accounting for attention (e.g. [111]) 
usually only include a basic thresholding mechanism, as 
opposed to LIDAC’s detailed attention model that is based on 
Global Workspace Theory [69, 112].  

The role of emotions in action selection. Every 
autonomous agent must be equipped with primitive 
motivations that motivate its selection of actions, in order to 
form its own agenda [6]. Such motivations may be causal as in 
the purely physical mechanism motivating a bacterium to 
follow a nutrient gradient upstream [113]. They may occur as 
drives as in the if condition of a production rule in an artificial 
agent [114]. In humans, in many animals, and in the LIDA C 
model, these motivations are implemented by feelings and 
emotion [33]. Such feelings implicitly give rise to values, an 
agent’s general preference for an action in a situation, that 
serve to motivate action selection [33, 115]. Feelings provide 
flexible motivations. For example, hunger with its multiple, 
learned satisfiers is much more flexible than specifying under 
which circumstances to eat what. Also, a built-in or learned 
fear of A can be flexibly applied to B when B is like A. 
Feelings are desirable motivators when the environment is too 
complex to specify what to do when, and when association 
and learning are both available. 

LIDA’s Procedural Memory contains schemes, each 
consisting of a context, an action, a result, and an activation 
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measuring the likelihood of an action taken in the context 
producing the result. Feeling or emotion nodes in the 
conscious broadcast that also occur in the context of a scheme 
in Procedural Memory add to the current activation of that 
scheme, increasing the likelihood of it being activated. It is 
here that feelings play their first role as implementations of 
motivation by adding to the likelihood of a particular action 
being selected. A feeling in the context of a scheme implicitly 
increases or decreases the value assigned to taking that 
scheme’s action. 

Apart from facilitating action selection, feelings or 
emotions in the conscious broadcast also play a role in 
modulating the various forms of learning. Up to a point, the 
higher the arousal the greater the learning. Beyond that point, 
more arousal begins to interfere with learning [116].  

In the Action Selection mechanism, the activation of a 
particular behavior scheme, and thus its ability to compete for 
selection and execution, depends upon several factors. These 
factors include how well the context specified by the behavior 
scheme agrees with the current and very recently past contents 
of consciousness (that is, with the contextualized current 
situation). The contribution of feeling nodes to the behavior 
scheme’s activation constitutes the environmental influence on 
action selection. As mentioned earlier, the activation of this 
newly arriving behavior also depends on the presence of 
feeling nodes in its context and their activation as part of the 
conscious broadcasts. Thus feelings contribute motivation for 
taking action by adding activation to newly arriving behavior 
schemes.  

The selected behavior, including its feelings, is then passed 
to sensory-motor memory for execution. There the feelings 
modulate the execution of the action [117]. 

VIII.  LIDA  AND THE UNDERLYING NEURAL PROCESSES 

As emphasized earlier, LIDA is not intended to model the 
neural mechanisms underlying cognition. But if LIDA is to be 
a cognitive model, and cognition is implemented in brains, 
there must be some relationship between LIDA and the 
underlying neuroscience. In this section, we will outline this 
relationship, in order to argue for the plausibility of the LIDA 
model, and to further clarify and constrain the functionality 
that LIDA’s modules and processes are intended to model. 
Following Freeman and others we invoke non-linear dynamics 
as the needed bridge between our model and the underlying 
neuroscience [118-120]. Although currently not implemented 
as a dynamical system, LIDA's cognitive cycle shows many of 
the properties of such systems [121]. For example, it is similar 
to an overarching oscillatory process, and is assembled from 
multiple components themselves resembling oscillators; its 
dynamics change over multiple time scales (from activation-
passing processes operating in a few ms, to modules operating 
in a few tens of ms, to cognitive cycles and multi-cycle 
processes [69]); and its representations show properties 
resembling the dynamic systems concept of stability (a PAM 
node representation in the Workspace might be stable, i.e. 
persistent in the face of systematic or random perturbations - 
incoming activations, or unstable if it is still in PAM and its 

activation is very close to the percept threshold) [122].  
Descriptions of tentative neuronal correlates for LIDA’s 

modules and processes, based on functional correspondence, 
have been described elsewhere [123]. Below, we shall briefly 
outline a simplified dynamical systems view of LIDA’s 
cognitive cycle, connecting it to empirical neuroscience. We 
use a flavor of dynamic systems theory called Dynamic Field 
Theory (DFT) to make this connection, because of its 
conceptual similarity to LIDA’s ideas (see above) and its 
neurobiological plausibility [122, 124, 125]. Dynamic neural 
fields in DFT can be viewed as types of recurrent neural 
networks [126] with dynamics similar to leaky integrate-and-
fire equations which are used in some spiking neuron models 
[127]. They are firmly grounded in neural principles [126] and 
can account for the dynamics of cortical neural activation, for 
example in the visual cortex [128] and motor cortices, 
substantiated by comparisons of single-neuron recordings to 
the field activation [129] (see [126] for more arguments for 
the neural plausibility of DFT).  

Dynamic neural fields formalize how neural populations 
represent dimensions characterizing perceptual features, 
cognitive operations, actions, etc. They represent information 
along an activation dimension (corresponding to the amount of 
available information or its certainty) and one or more feature 
dimensions (e.g. spatial location, orientation, or perceptual 
features such as frequency or color or motion), with low levels 
of activation at a particular point indicating that that value of 
the represented dimension is unlikely, and with the dynamics 
defined by a field equation similar to the one below [122]. 

 
��� ��, �� = −���, �� + resting	level + input + interaction 
 

where u(x,t) is the activation field defined over dimension x 
and time t, and � is a timescale parameter. Without the 
interaction between field sites (ignoring the last term), 
attractor solutions depend only on the field input (e.g. from 
sensors) and the constant resting level; activation peaks would 
eventually vanish with ceasing input. To stabilize local 
activation peaks in the absence of input, the interaction is 
defined to be locally excitatory and globally inhibitory [122], 
in the center-surround fashion observed in biological neurons 
(e.g. [130]). 

Different layers of LIDA’s sensory memory [131] could 
correspond to sensory cortical areas, which could be modeled 
as multiple dynamic fields – e.g. [125]. Multiple such features 
represented on different fields implementing different layers 
of sensory memory can be bound into holistic object 
representations on a working memory field, e.g. as done by 
[132]. Such a field might implement the Workspace, and 
activation peaks on it correspond to PAM nodes (Figure 3). 

Another dynamic field with strong inhibitory interaction to 
ensure a winner-take-all mechanism could implement LIDA’s 
Global Workspace. This field would receive its excitatory 
input from the Workspace field, as well as an Attention field 
for amplifying attended regions, and would select and stabilize 
the strongest activation peak, which would then inhibit all 
others and emerge as the winner of the competition for 
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consciousness (see Section III). Adjusting the timescale 

 
Figure 3. A dynamical systems (DFT) based implementation of 
the LIDA cognitive cycle in a reaction time experiment. The blue, 
thick lines / blue surface represent dynamic neural fields. Red, thin 
lines show the field output, after the application of a sigmoidal 
threshold function to ensure that only sufficiently activated field sites 
contribute to the interaction [122]. In this simplified example, yellow 
and green glowing lights are perceived and represented (only one 
feature layer is shown, but any number could be combined in 
Workspace representations). The activation peak representing the 
green light enters the Global Workspace, due to the Attention field 
amplifying its peak (but not the peak associated with the yellow 
light), and elevates the pre-shaped Procedural Memory field above 
threshold, causing an action to be taken and the button to be pressed 
(pre-shaping can ensure that from all applicable actions based on 
current percepts, only the task-relevant one reaches the threshold, and 
has been argued to be neurally plausible [129]). 

parameter can ensure that this process only happens at 
plausible frequencies. 

Finally, action selection could be implemented as suggested 

by [133], by adding two additional layers, apart from the 
Global Workspace layer, representing important objects: a 
Procedural Memory (called ASL in [133]) encoding chains of 
action primitives, and a Result layer (called IL in [133]) 
specifying result states of an action. Conscious object 
representations can then prime multiple possible actions 
(activation peaks) in the Procedural Memory layer, and a 
predefined task context or a specific goal defined in the Result 
layer can then elevate one of these over the threshold, 
stabilizing it and thus selecting the action best matching the 
preconditions and the goal state. Action selection and 
movement control using dynamic neural fields [134], as well 
as pre-defining goals through pre-shaping [129], have been 
argued to be neurobiologically plausible. 

Figure 3 shows the described highly simplified DFT 
implementation of LIDAI for the reaction time experiment 
described in Section X, showing the agent perceiving a green 
light and pressing the appropriate button. Since we have only 
recently started investigating a dynamic implementation of 
LIDA I, we do not yet have data substantiating the neural 
plausibility of such an implementation, or of our mapping of 
LIDA modules to brain areas [123]. 

LIDA’s modules can be tentatively assigned neural 
correlates, based on functional correspondences. This mapping 
is tentative because the empirical neuroscience evidence is 
still changing. Such correlates should be interpreted as being 
involved with the activity of the corresponding LIDA module 
or process, rather than as being equivalent to it. The 
correspondence of module to brain correlates is often one-to-
many, since a single LIDA module may be implemented by 
numerous, disparate cell assemblies in brains. Do note that the 
LIDA model, being described in terms of modules and 
processes, makes no commitment to the underlying neural 
structure being modular or localized, as is exemplified in the 
following paragraphs. 

Sensory memory correlates in a one-to-many fashion with 
brain areas for each sensory modality, for example iconic 
memory (occipital lobe) and echoic memory (primary auditory 
cortex) [135, 136]. Representations in Sensory Memory are all 
modal. Node representations in PAM (LIDA’s perceptual 
symbol implementations [42, 44]) are difficult to localize in 
the brain, since they are distributed and multimodal [42, 137, 
138]; some of the major areas involved are the perirhinal 
cortex [139, 140], amygdala and orbito-frontal cortex [141], 
mushroom body neurons [142], medial orbitofrontal cortex 
[143], etc. 

The entorhinal cortex, together with the temporo-parietal 
and frontal lobes in humans, would implement parts of the 
LIDA Workspace (preconscious working memory buffers) 
where new objects, events, and higher-level structures are 
created [144, 145]. We view the hippocampus as 
implementing LIDA’s Transient Episodic Memory [146, 
147],where events are encoded in humans for a few hours or a 
day at most [148], as well as the Spatial Memory module [149, 
150] which is currently in development. 

LIDA’s Global Workspace, where coalitions compete for 
attention, can be thought of as possibly corresponding to 
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different brain areas during successive cognitive cycles, with 
each such area holding a coalition appropriate to it, Coalitions 
race to threshold with the winner “igniting” [151] to give rise 
to a thalamocortical core [152], which implements the 
conscious broadcast via a dynamic Global Workspace (dGW), 
presumably facilitated by large scale oscillatory synchrony 
[69, 153, 154]. LIDA’s Procedural Memory would correspond 
to the anterior cingulate and the striatum [155, 156] while its 
Action Selection mechanism would be grounded in the basal 
ganglia [157]. These last two modules are concerned with 
what action to perform in response to the situation understood 
during a single cognitive cycle. The correlates of volitional 
decision making, arising from multiple cognitive cycles (see 
next section), include the ventral anterior cingulate cortex and 
prefrontal cortices (such as the ventromedial and dorsolateral 
prefrontal cortex) [158, 159]. Although these prefrontal areas 
are involved in many other tasks, their importance for 
volitional decision making is highlighted by the apparent 
necessity of prefrontal involvement in the oscillatory 
synchrony giving rise to conscious activity [153, 160], which 
is necessary for selecting volitional actions (see Section IV). 
LIDA’s Sensory-motor Memory, which is concerned with 
how to perform the selected action, would involve the dorsal 
striatum [161]. For a more comprehensive overview of neural 
mappings of LIDA modules and processes see the tables in 
[123]. 

In contrast to LIDA, some other cognitive architectures and 
models have attempted to directly correlate the activity in their 
modules to brain areas, and have presented evidence for the 
neuronal counterparts of their modules based on brain imaging 
data [162]. For example, ACT-R has been successful in 
predicting fMRI activation in tasks such as algebraic problem 
solving [163] or mathematical reasoning [164]. The neuronal 
correlates underlying ACT-R’s modules that have been 
substantiated using such fMRI studies include the fusiform 
gyrus (visual), posterior parietal cortex (imaginal), anterior 
cingulate cortex (goal/control), lateral inferior prefrontal 
cortex (retrieval), caudate nucleus in the basal ganglia 
(procedural) and the motor cortex (manual) [165, 166]. Apart 
from substantiation of their claims with neural imaging 
methods, another difference between LIDA’s and ACT-R’s 
neural mapping is that ACT-R assumes a strictly modular 
organization of the brain, with functional one-on-one 
mappings to individual areas, a view that has some challenges 
based on empirical results [137, 167, 168]. Anderson et al. 
[166] also point out that there is some evidence against the 
prediction arising from this mapping that the basal ganglia (as 
the counterpart of ACT-R’s production system) is the sole 
path of communication between different cortical areas. This 
evidence includes observed cortical-to-cortical connections 
(e.g. [137, 169]), the apparent small-world properties of the 
cortex (minimal-length pathways connecting all individual 
components) [170, 171], as well as the major role of long-
range synchronization of oscillatory signals in mediating 
communication between different cortical networks [154, 
172]. Finally, analyzing cognitive states using stimulus-locked 
averaging across trials, as done in many brain imaging studies 

including ACT-R’s, removes information about how the 
brain’s spontaneous activity interacts with stimulus-driven 
input [172] by averaging out signals not time-locked to the 
stimulus.  

In contrast, dynamical system properties outlined above, as 
well as oscillatory activity and brain rhythms, play a major 
role in LIDA’s view of the neuronal correlates underlying its 
modules and processes [67, 69, 173, 174]. LIDA itself is 
modular, but does not try to map its modules to brain areas in 
a one-on-one fashion. Based on the cognitive cycle hypothesis 
(Section II) and the assumption that functional consciousness 
requires large-scale theta-gamma synchrony [154, 173], we 
have derived the temporal length of the cognitive cycle and its 
subprocesses [69], and have used these parameters to replicate 
behavior data (Section X). Efforts are under way to further 
substantiate the hypotheses put forward by the LIDA model 
with respect to its neuronal and oscillatory counterparts.  

IX.  THE LIDA I COMPUTATIONAL FRAMEWORK 

 The LIDAI Framework is a generic and customizable 
computational implementation of aspects of the LIDAC model, 
programmed in Java. The main goal is to provide a generic 
implementation of the model, easily customizable for specific 
problem domains, so as to allow for the relatively rapid 
development of LIDAI-controlled software agents. Here, we 
briefly describe the LIDAI Framework elements and principal 
characteristics. A more detailed description can be found in 
[175]. 

The Framework permits a declarative description of the 
specific implementation details of an agent. The architecture 
of the software agent is specified using an XML-formatted file 
called the agent declaration file. In this way, the developer 
does not need to define the entire agent in Java; he or she can 
simply define it using this XML specification file. For 
example, new behaviors (schemes) can be added to an agent 
manually by entering a new entry to the parameters of the 
Procedural Memory module, and specifying the PAM nodes 
constituting the scheme context (in which situation the action 
would be appropriate), the action that should be taken when 
the context is matched, the expected result of the action, and a 
base-level activation (see Sections III and VI). 

An important goal of the Framework is its ready 
customization. The customization can be done at several levels 
depending upon the required functionality. At the most basic 
level, developers can use the agent declaration file to 
customize their applications. Several small pieces in the 
Framework can also be customized by implementing 
particular versions of them. For example, new strategies for 
decaying activations or types of codelets can be implemented. 
Finally, more advanced users can also customize and change 
internal implementation of whole modules. In each case, the 
Framework provides default implementations that greatly 
simplify the customization process. 

The Framework was conceived with multithreading support 
in mind. Biological minds operate in parallel and so should 
artificial ones, not only for plausibility, but also in order to be 
able to deal with complex perceptual information with limited 
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resources14 [65]. Tasks, encapsulations of small processes, 
together with a dedicated task manager, implement 
multithreading support that allows for a high level of 
parallelization. Finally, the LIDAI Framework implementation 
adheres to several important design principles [176] and best 
programming practices. 

The LIDAI Framework defines several data structures and 
procedures (algorithms) and is composed of several pieces. Its 
main components are software modules, interconnected 
elements that represent conceptual modules in the LIDA C 
model. Each main component of the LIDAC cognitive model 
has a corresponding module in the framework. For example, 
the Sensory Memory, Workspace and Action Selection are all 
modules in the framework. In addition to a common 
application programming interface (API), each module has its 
own API that defines its functionality. Modules can have 
submodules. A submodule is a module nested inside another 
module. For example, the Workspace has several submodules, 
such as the CSM submodule. 

Most modules in the LIDAI Framework are domain 
independent. For each of these modules, the Framework 
provides a default implementation. For example, Transient 
Episodic Memory is implemented as sparse distributed 
memory [52] and the Action Selection Module as a behavior 
net [56]. However, some modules must be domain specific. In 
particular, Sensory Memory and Sensory-Motor Memory have 
to be specified on the basis of the domain that the Framework 
is being applied to. Nevertheless, the Framework supplies base 
implementations from whence the developer can implement 
domain-specific functionality. 

Modules need to perform several tasks in order to achieve 
their specific functionalities. The Framework provides Tasks, 
which are encapsulations of small processes. A module can 
create several Tasks to help it perform its functions. A Task 
can run one time or repeatedly. A Task that passes activation 
is an example of the former, while a structure-building codelet 
is an example of the latter. The Task Manager controls the 
execution of all Tasks in the Framework. Tasks can be 
executed on separate threads by the Task Manager, achieving 
parallel execution in a way that is approximately transparent to 
the user. 

Modules need to communicate with other modules. To 
implement this, we use the Observer design pattern [176]. In 
short, a module, called the “listener,” which receives 
information from another “producer” module, can register 
itself with the producer as a listener. Each time the producer 
has something to send, it transmits the information to all of its 
registered listeners. There are numerous instances of listeners 
in the Framework. One module can be registered as a listener 
of several other modules. Also a module can be a producer 
and a listener of other modules at the same time. 

Nodes, links, and other LIDA elements such as coalitions, 
codelets, and behaviors, have activation. The activation 

 
14 The implementations based on LIDAI are not yet at a stage where the 

functional importance of parallel and asynchronous operation could be 
verified. Ongoing work on implementing LIDAI on robots might make such 
empirical evaluations possible in the future. 

generally represents the relative importance of the element to 
the current situation. All activations are excited or decayed 
using “strategies.” These are implementations of the strategy 
design pattern which allows for customizable behavior; in this 
case they specify the way activation of each element is excited 
or decayed, so it is easy for the developer to change the 
algorithm for excitation or decay of elements. 

Finally, the Framework includes several supporting tools, 
such as a customizable graphical user interface (GUI), logging 
capabilities, and an architecture loader that parses several 
XML files with the definition and parameterization of the 
agent. 

Vector LIDA is a promising improvement of the LIDA 
cognitive architecture’s computational implementation. Vector 
LIDA I [177] employs high-dimensional vectors and reduced 
descriptions. High-dimensional vector spaces have interesting 
properties that make them attractive for representations in 
cognitive models [178]. The distribution of the distances 
between vectors in these spaces, and the huge number of 
possible vectors, allow noise-robust representations where the 
distance between vectors can be used to measure the similarity 
(or dissimilarity) of the concepts they represent. Moreover, 
these high-dimensional vectors can be used to represent 
complex structures, where each vector denotes an element in 
the structure. However, a single vector can also represent one 
of these same complex structures in its entirety by 
implementing a reduced description, a mechanism to encode 
complex hierarchical structures in vectors or connectionist 
models [179]. These reduced description vectors can be 
expanded to obtain the whole structure, and can be used 
directly for complex calculations and procedures, such as 
making analogies, logical inference, or structural comparison 
[see 178, 180 for further discussion of these applications]. 

Vector LIDA will utilize a new reduced representation 
model, the Modular Composite Representation (MCR) based 
on high-dimensional integer vectors [181]. This representation 
has advantages over previous similar models: it has good 
representation capability with relatively simple operations (see 
[181] and [182] for details). Also, several new variations of 
Sparse Distributed Memory (SDM) [52], the Integer SDM 
[183] and the Extended SDM [184] provide support for storing 
these vectors with an intrinsic learning mechanism. 

This new implementation will present several advantages 
over the current version. First, MCR vectors have the potential 
of directly implementing Barsalou’s perceptual symbol system 
[44]. Constructing MCR vectors from sensory and motor 
information using hyperdimensional computing operations 
would produce representations that have many of the 
perceptual symbols’ characteristics described by Barsalou 
[44]. Similar sensory information would yield similar 
representations, and the processing operations of MCR could 
facilitate the implementation of the simulators described by 
Barsalou, such as integrating details [185], simulating event 
sequences [184], and categorizing new stimuli [52]. Second, 
many cognitive operations require approximate comparisons, 
which are hard to implement with graph-like representations, 
but are natural for vector representations. Third, Integer SDM 
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and Extended SDM would provide an inherent learning 
mechanism [52] that will reinforce common vectors in the 
memory. Finally, the vector nature of this model makes it a 
good candidate for parallel implementations, using GPUs or 
other high-performance parallel architectures. 

Although this new implementation is still in progress, 
extensive research and implementations have already been 
carried out for its main components: MCR vectors and the 
various SDM implementations. 

Summing up, the LIDAI Framework allows the creation of 
new applications and simulations based on the LIDAC model. 
Its design and implementation aims at simplifying this process 
by permitting the developer to concentrate on the specifics of 
the application, while hiding the complexities of the generic 
parts of the model. Use of the Framework also enforces good 
software practices that simplify the creation of complex 
architectures. It achieves a high level of abstraction permitting 
several ways and levels of customization with a low level of 
coupling among modules. Supplemental tools like a GUI and 
logging support are also provided. The result is a powerful and 
customizable tool with which to develop LIDAI-controlled 
software agents and robots. 

X. LIDA I-BASED SOFTWARE AGENTS 

We have developed four cognitive software agents that 
replicate experiment data from human subjects [24, 69] in 
order to show how the computational LIDAI architecture can 
model human cognition in basic psychological tasks. Our main 
goals with these agents were to substantiate some of the 
claims of the LIDA model and to take a first step towards 
identifying a set of internal parameters. Ideally, these internal 
parameters will remain constant when disparate datasets from 
different experiments conducted on human subjects are 
reproduced with LIDAI agents. Finding such a set of 
parameters would provide substantial evidence of the accuracy 
and usefulness of the conceptual cognitive model. 

Basic values for the parameters governing mechanisms in 
LIDA I were derived from neuroscience data [69]. For 
example, visual feature detectors in LIDAI agents have to take 
about 30ms to run, derived from neuronal conduction delays 
in area V1 in the human visual cortex [186, 187]. These basic 
parameters were first tested in a simple reaction time task 
(LIDA I Reaction Time agent), and verified in an experiment 
designed to investigate perceptual simultaneity and continuity 
(LIDA I Allport agent), and two experiments examining the 
properties of attention (the LIDAI Attention and Attentional 
Blink agents). The latter three agents were also motivated by 
the goal of validating some of the claims of the GWT of 
consciousness underlying the LIDA model. GWT posits that 
consciousness is discrete, which is consistent with some recent 
neuroscientific evidence [154, 188, 189]. 

The LIDA I Reaction Time agent. The LIDAI Reaction 
Time (LRT) agent performs a simple reaction time task. The 
main goal was to evaluate the behavioral consequences of the 
parameters derived from empirical neuroscience evidence, 
concerning the duration of the cognitive cycle and its phases. 
The agent is embedded in a simple environment consisting of 

a red or green light, and a button which the agent has to press 
when the light turns green. 

The LRT agent is based on the LIDAI computational 
Framework and contains additional code to implement the 
simple environment [69]. Some parts of the understanding 
phase of the LIDA cognitive cycle (Transient Episodic 
Memory, Declarative Memory, structure building codelets) 
were not required because of the simplicity of this task. 

The LRT agent’s cognitive cycle starts with a representation 
of the light in the environment, which is stored in Sensory 
Memory. Feature Detectors pertaining to the color of the 
stimulus observe this representation and pass activation to 
corresponding PAM nodes, which are then copied to the 
Workspace, indicating that the stimulus has been recognized 
or understood (this occurs in about 100ms, as in humans 
[190]). This marks the end of the understanding phase, which 
in more complex domains would also include memory recall 
and structure building15. 

In the attending phase, attention codelets look out for 
relevant, important, urgent, or novel percepts, combine them 
into coalitions, and move them to the Global Workspace. One 
of these coalitions wins the subsequent competition for 
consciousness and is included in the global broadcast. This 
coalition has entered consciousness. There is some evidence to 
indicate that this takes approximately 200-280ms from the 
beginning of a cycle for simple processing tasks, under the 
assumption that conscious perception involves synchronous 
oscillatory activity in brains [191]. 

Finally, an appropriate action is selected based on the 
contents of the conscious broadcast in the action selection 
phase. The schemes in Procedural Memory, in this case the 
two schemes representing the action to press the button and to 
release it, obtain activation based on how well the conscious 
contents match their context. A single action will then be 
selected in the Action Selection module. The chosen action is 
then passed to Sensory-Motor Memory where it is executed. 
When this occurs, the state of the button in the environment is 
set to the appropriate value by a snippet of code that could be 
called the LRT agent’s “actuator.” 

The cognitive cycle durations of the LRT agent (283 ms 
averaged over 30 runs, see [69]) are comparable, but larger 
than the cycle durations inferred from the reaction times of 
adult humans (200ms according to [192]). This is consistent 
with recent neuroscientific evidence (e.g. [154, 193, 194], see 
also [69]) supporting the idea that single perception-action 
cycles may take longer than simple reaction time tasks under 
normal circumstances (e.g. more complex stimuli). We 
hypothesize that the main reason for humans being faster at 
such experiments is the effect of temporal expectation, which 
reduces reaction time (and has not yet been implemented in 
LIDA I). A behavioral consequence of this is that reaction 
times to predictable stimuli are significantly lower than 

 
15 Embedding these processes into a cognitive cycle – which increases the 

duration of a single cycle – is one of the differences between LIDA and other 
cognitive architectures (see Section XI). Due to the early stage of the 
implemented LIDAI framework, this difference has not been empirically 
evaluated yet. 
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reactions to uncertain and temporally highly variable stimuli 
(see [195] for a review). From a neurophysiological point of 
view, increased activation levels can be observed in 
subcortical (the basal ganglia) and cortical action circuits 
(inferior parietal and premotor areas) prior to perceiving the 
stimulus. This increased activity is presumed to be capable of 
reducing the time required for action selection for predictable 
stimuli [196, 197], an effect not accounted for in this 
simulation.  

The LIDA I Allport agent. This agent replicates a 
psychological experiment proposed by Allport [68], with the 
intention of comparing the Discrete Moment Hypothesis [198] 
with the Continuous (Traveling) Moment Hypothesis. The 
Discrete Moment Hypothesis posits that consciousness is 
comprised of distinct and non-overlapping conscious 
‘moments,’ within which all time-order information is lost. In 
contrast, the Continuous (Traveling) Moment Hypothesis 
considers conscious ‘moments’ to correspond to continuously 
moving segments of the incoming sensory information. We 
used this experimental paradigm to show that LIDA’s discrete 
consciousness position is an adequate model of human 
functional consciousness, despite Allport’s conclusion that the 
Discrete Moment Hypothesis contradicts experimental 
evidence. Another goal of this simulation was to verify the 
timing parameters in a more complex setting [69]. 

In Allport’s experiment, participants were seated in front of 
a screen, which displayed a single horizontal line, appearing in 
one of 12 positions on the screen (see Figure 4). This line 
rapidly changed position, moving upward. Upon reaching the 
topmost position, the screen was left blank for the same 
duration as the line took while traversing each of the 12 
positions, and then the line appeared again on the bottom 
position. The cycle time (τ) was controlled by the participant. 
At very large cycle times, participants could see the single line 
jumping from position to position. Upon decreasing τ, they 
reported seeing multiple lines, moving together. At a specific 
cycle time S and below, participants reported seeing a 
stationary array of 12 lines flickering in synchrony. The 
participants had to arrive at the cycle time S, where they did 
not perceive any movement on the screen.  

In separate trials participants first decreased the cycle time 
from a very high value (slow to fast), and then increased it 
from a very low value (fast to slow), at which all lines were 
seen simultaneously. Both times were recorded for each 
participant. These times were then compared to the predictions 
of the two hypotheses about consciousness. According to the 
Discrete Moment Hypothesis, there are two different cycle 
times τ at which all 12 lines are seen simultaneously on the 
screen and are perceived not to move. At τ1 = S, displaying all 
lines as well as the blank screen (left blank for S/2, the same 
time as the lines took to display) falls within one conscious 
‘moment’; thus subjects should not perceive any movement, 
since there will be no change between this conscious 
‘moment’ (containing 12 lines and a blank screen) and the 
next one. At τ2 = S / 2, if the hypothesis of discrete conscious 
moments is accepted, no movement should be perceived 
either, since in this case conscious ‘moments’ containing all 

lines and the blank screen would alternate (in the first S/2 ms 
the 12 lines would be displayed, perceived simultaneously 
since they fall into one conscious ‘moment’; and in the second 
S/2 ms there would be a blank screen – thus no moving lines 
could be perceived on the screen, just flickering). The cycle 
time at which subjects will perceive no movement will thus be 
S when decreasing τ, and S/2 when increasing τ. A significant 
difference between these two conditions is predicted. 

In contrast, the Continuous Moment Hypothesis predicts 
that successive events are perceived to be simultaneous 
whenever, and as long as, they fall within the temporal 
constraints of the conscious ‘moment.’ Thus, since the 
criterion for determining S was not only momentary 
simultaneity but perpetual absence of perceived movement, 
there can be only one cycle time τ1=S at which this criterion is 
met (at τ2 = S / 2, the contents of a conscious ‘moment’ would 
change gradually from containing 12 lines to containing just 
the blank screen – thus there would be movement -, instead of 
just alternating between the two cases, as in the discrete case 
described above). There should be no difference between trials 
decreasing or increasing τ. Allport [68] did not find significant 
differences between these two conditions, and thus argued 
against the Discrete Moment Hypothesis. However, despite 
LIDA I’s consciousness mechanism being fundamentally 
discrete, we could successfully reproduce Allport’s results 
with a LIDAI-based agent. 

 
Figure 4 The display and conscious percept in Allport’s experiment. 
Lines were displayed in one of 12 positions, appearing to move 
upwards. Upon reaching the top, the screen was left blank for the 
same period as the lines required to traverse all 12 positions. τ 
denotes the total cycle time. At cycle times τ >S, subjects could see 
multiple lines moving together (left panel). At τ=S, subjects saw all 
lines simultaneously and perceived no movement (right panel). (From 
[69] with permission) 
 

The LIDA Allport agent was implemented similarly to the 
LRT agent. The major differences were the following: The 
Allport agent had a PAM consisting of twelve nodes, one for 
each line on the screen16. Feature detectors passed activation 
to these nodes depending on the line position. It also had two 
different schemes in the Procedural Memory. The first scheme 
became active when no movement was perceived on the 
screen, i.e. when the contents of multiple conscious broadcasts 

 
16 The twelve nodes, and the two schemes were hard-coded into this agent, 

since the implementations of perceptual and procedural learning in LIDAI are 
not yet finished. 
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contained all 12 lines; this scheme caused the agent to press 
the “no movement perceived” button. The second scheme was 
selected when a single line, or multiple lines, were perceived 
as moving by the agent, and resulted in the agent pressing the 
“movement perceived” button. For easier implementation, the 
agent did not change the cycle time (τ) itself – it only reacted 
to whether or not it perceived movement on the screen (the 
cycle time was changed gradually by the environment 
controller). There was only one cycle time at which the agent 
did not perceive movement, 96ms [69], which is consistent 
with Allport’s (1968) results (unlike the predictions of the 
Discrete Moment Hypothesis) and provides support for the 
claim that the temporal extent of a conscious “moment” of a 
LIDA agent is similar to that of a human. The main reason for 
this is that in the LIDA model, single conscious episodes are 
discrete but, contrary to Stroud’s [198] view, not necessarily 
distinct – a current conscious ‘moment’ can contain percepts 
from a previous moment. Whether or not an older percept 
remains conscious depends on how long in the past it has been 
perceived, and on attentional modulation, where percepts that 
are subjectively important and attended to can persist longer in 
consciousness. 

The LIDA Attentional agents. We have developed two 
agents reproducing attention experiments to substantiate 
LIDA’s GWT-based attention and consciousness mechanism, 
the LIDAI Attention [23] and Attentional Blink [24] agents.  

The first agent used an adapted version of Van Bockstaele’s 
experiment [199]. The environment consisted of a black 
screen with two white squares on the left and the right side of 
a central fixation cross, in which cues and the targets could 
appear, and which the agent had to respond to. After a fixation 
period, one of the white rectangles was randomly replaced by 
the cue (a colored rectangle) for 200ms, followed by the two 
white rectangles again for 20ms. Subsequently, the target (a 
small black rectangle) was randomly presented in one of the 
white rectangles until the agent responded, and the response 
time was measured. Humans [199] as well as the LIDA 
Attention agent [23] were faster by 20ms in congruent trials – 
in which the target appeared on the same side as the cue – than 
in incongruent trials (average response times were 360ms and 
380ms). We hypothesize that the reason for the time 
difference is that in congruent trials, the procedural scheme 
responsible for the correct behavior has already been 
instantiated by the cue by the time the target arrives, and 
merely has to be selected and executed. In contrast, in 
incongruent trials the procedural scheme has to be instantiated 
as well as selected and executed; and this scheme instantiation 
takes an additional 20ms compared to the congruent case [23]. 

The second attentional agent reproduced the attentional 
blink (AB). The AB refers to the phenomenon of individuals 
often being unable to consciously perceive the second of two 
presented targets in a stream of target and distractor stimuli, if 
the second target T2 is presented within 200-500ms after the 
first target T1. A considerable number of effects have been 
discovered in AB experiments. It has been documented that 
the second target can be reported if presented immediately 

after T1 without a distractor in between (lag-1 sparing). 
Increasing T2 salience [200] or emotional arousal [201] also 
attenuates the AB effect. Although a large number of 
conceptual and computational models have been proposed, 
and the basic AB phenomenon is well understood, most 
models are unable to integrate and account for all phenomena 
and findings associated with the AB (see [202] or [200] for 
recent reviews of these models).  

We have developed a LIDA-based attentional blink model 
[24] to computationally model visual AB experiment [203] 
and conceptually explain a wide range of phenomena. As can 
be seen from Figure 5, the LIDAI attentional blink agent was 
successful in reproducing the AB effect (using the data from 
[203]). 

 
Figure 5 The results for human subjects (panel B left, from[203]) and 
the LIDA AB agent (panel B right) (based on [24]) 

A LIDA-based AB model could provide a novel approach 
to understanding the AB for two reasons. First, LIDA is a 
general cognitive architecture, as opposed to specialized AB 
models, and integrates other cognitive phenomena as well. 
Thus, a larger range of phenomena can be accounted for (e.g. 
the attenuation by emotional arousal, or the AB attenuation in 
whole report experiments [204]). Although there is another 
cognitive architecture based AB model [205] based on ACT-
R, this model is unable to conceptually explain the effects of 
emotional arousal, or the phenomenon of target confusion, 
because standard ACT-R does not include emotional 
processing or high-level vision [24]. LIDAC can account for 
both, although the former only on a conceptual level since 
emotions have not been implemented yet. Second, LIDA is 
also based on the GWT and thus provides a plausible account 
of attention and access consciousness, the most important 
mechanisms underlying the attentional blink. 

XI. CONTRASTING LIDA  WITH MAJOR COGNITIVE 

ARCHITECTURES 

A full description of other cognitive architectures would 
exceed the scope of this paper (see [4, 123, 206] for recent 
reviews), as would a comparison of LIDA’s features with the 
large number of other architectures (such comparisons can be 
found in [123, 207] or [208]). Instead, we will focus on a few 
significant differences between LIDA and existing major 
cognitive architectures, thereby highlighting how the LIDA 
model can complement research on cognitive architectures. 

It is important to point out that the conceptual LIDAC model 
has only been partially computational implemented, and that 
reproduction of human data has only recently begun. Thus, it 
would be infeasible to compare LIDAI’s simulation data to the 
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wealth of data obtained from approximately 30 years of 
simulations of other architectures such as ACT-R. This is also 
the main reason why the present focus is both on 
computational as well as conceptual descriptions, both of 
which have proven highly useful in cognitive science by 
providing explanations and hypotheses guiding ongoing 
research [12, 16].  

Computational differences. LIDA differs from many other 
cognitive architectures such as ACT-R [209], SOAR [10], 
CLARION [210, 211], EPIC [212], and Icarus [213] in a 
number of ways. The most significant of the implemented 
differences include: 

1. Adherence to grounded theories of cognition and lack of 
amodal symbols (see Section II). 

2.Explicit and neuroscientifically plausible functional 
consciousness mechanism (based on GWT) [22, 39, 40, 112] – 
the only other systems-level cognitive architecture explicitly 
addressing consciousness is CLARION, proposing a two-level 
representation which distinguishes between conscious and 
unconscious knowledge and processes [214]. The simulation 
of the Allport experiment is an example for the importance of 
functional consciousness for modeling human behavior.  

3. Specific explanation and subdivision of memory systems. 
LIDA I’s memory systems include sensory memory, working 
memory, perceptual associative memory, transient episodic 
memory, declarative memory, and procedural memory. LIDA C 
further includes sensory-motor memory, attentional memory 
[23] and spatial memory [215] which are currently under 
development. Transient episodic and declarative memories are 
modeled using a sparse-coded, noise-robust memory 
mechanism able to account for phenomena such as the tip-of-
the-tongue effect or the remember-know distinction [216]. 
Although episodic memory is arguably an important part of 
human cognition, few cognitive models account for it [4]. 
SOAR has recently added an episodic memory module [217], 
in essence storing snapshots of the entire workspace content 
(short term declarative knowledge). In contrast, LIDA only 
stores events that appear in the conscious broadcast in its 
Transient Episodic Memory, and employs a modified instance 
of an SDM [92], resulting in a content-addressable, associative 
episodic memory with a decay rate measured in hours 
(consistent with Conway’s [80] and Baddeley’s [89] ideas). 

4. Sophisticated procedural memory and action selection, 
facilitating high-level decision making and non-routine 
problem solving, which has been implemented [218], as well 
as procedural learning, which is a part of developmental 
learning that has been implemented [76] (but not yet 
integrated with the LIDA computational framework). The 
conceptual LIDAC model also includes other forms of 
developmental learning (see below). While the mentioned 
cognitive architectures address action selection and problem 
solving to different degrees [4], developmental learning is 
usually restricted to procedural learning. It should be 
mentioned that a number of architectures supporting 
developmental learning have been proposed in robotics (e.g. 
[219], see also [123]); however, these systems are usually not 
concerned with cognitive modeling. 

5. Complex, but detailed and effectual preconscious 
working memory that enables binding and understanding 
(Section III and [79]). LIDA’s workspace is fully grounded 
and modal [42], and consistent with Baddeley’s theory of 
working memory [220]. 

Conceptual differences. There are also differences in the 
parts of the conceptual LIDAC model that have not been 
implemented computationally as of yet. 

1. The use of feelings and emotions as flexible motivators. 
Emotions are not accounted for by the mentioned 
architectures, with the exception of SOAR, an architecture that 
has an implemented emotion model based on appraisal theory 
[95] and has emotionally motivated actions as well. The most 
important difference between SOAR’s and LIDAC’s emotion 
models is the derivation of affect intensity. SOAR employs an 
affect intensity model based on expected utility, whereas 
LIDA C’s affect intensities are influenced by activations of 
nodes in the entire node structure (perceptual representation) 
representing an event. 

2. Several modes of human-like learning [32, 221], 
including perceptual, spatial, procedural, attentional and 
episodic learning. None of the mentioned architectures 
account for all modes of learning mentioned in Section VI. 
Although conceptually developed, these ideas have not all 
been implemented computationally as of yet, except for 
episodic learning and procedural learning. Episodic learning 
[92] has been implemented in the LIDAI computational 
framework (Section IX), while procedural learning was 
implemented prior to the development of the framework [76] 
and is not yet part of it. Neither of these two have been 
validated by replicating human data as of yet. A LIDA-based 
agent implementing perceptual learning is now in progress. 

As described above, we feel it is both useful and important 
to have fine-grained models of memory systems and learning 
mechanisms. The conceptual LIDAC model contains 
approaches and ideas of these processes, but few of these have 
been implemented in LIDAI to date. In contrast, many 
cognitive architectures have well-developed learning 
algorithms in specific domains. For example, reinforcement 
learning - a form of procedural learning - is implemented in 
ACT-R, SOAR and CLARION. The latter two are also able to 
form new semantic representations. SOAR also supports 
episodic learning (also implemented in LIDA). Despite their 
superiority in terms of implemented learning models, 
however, we believe that LIDA can still make a contribution 
here, since none of these architectures account for the entire 
variety of learning and memory suggested by the LIDAC 
model. 

Weaknesses of the LIDA model. The major shortcomings 
of LIDA compared to other cognitive architectures include: 

1. No implementation of multicyclic cognition (e.g. 
deliberation, volition, reasoning, …). This is the major 
strength of production-based systems (e.g, SOAR, ACT-R, 
…). 

2. No model of language, as opposed to e.g. ACT-R [222] 
or SOAR [223, 224]. Current work simulating the learning of 
vervet monkey alarm calls (in preparation) is thought to be a 
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precursor of adding language capability to LIDA. 
3. Very little work to date on causality and probability17, 

both of which would be important for real-world applications 
such as robotics. Example cognitive architectures soundly 
based on probability theory include Sigma [225] and Icarus 
[213]. 

4. Lacking implementation of metacognition, an important 
part of higher-level cognitive processing. In contrast, 
CLARION [226] includes implementations of meta-cognitive 
processes. (Metacognition was implemented in LIDA’s 
predecessor IDA [227], but by means of adding a radically 
different architecture. Current plans are for an integrated 
inclusion of metacognition in LIDAc.) 

5. Early stage of LIDAI. Although LIDA aims to be a 
general cognitive architecture with empirically verifiable 
predictions, only a small subset of LIDAC has been actually 
implemented and verified so far. LIDA is much more recent 
than many cognitive architectures – the first version of the 
computational framework was released less than two years 
ago [175]. 

Comparison with similar systems. The LIDA model is 
primarily an implementation and fleshing out of the Global 
Workspace Theory (GWT) of consciousness in cognition. 
GWT was inspired by the blackboard systems of Hayes-Roth 
and colleagues in AI [228], of McClelland in neural networks 
[229], and of Van Der Velde in cognitive sciences [230]. (see 
[231] for an overview.) Recall that a blackboard system, often 
dedicated to solving a complex ill-defined problem, consists of 
a family of knowledge sources (experts/agents), a shared 
blackboard data structure on which they write their suggested 
partial solutions, and a scheduling/control structure that 
regulates the writing to the blackboard. The LIDA model can 
be viewed as a blackboard system with its Workspace serving 
as the blackboard, each of the other memories and their 
processes acting as knowledge sources, and the 
attention/consciousness system constituting the 
scheduling/control structure. Note that unlike a typical 
blackboard system, LIDA models cognition, rather than being 
devoted to the solution of one problem. 

There have also been other implementations of portions of 
GWT such as the Global Neuronal Workspace system of 
Dehaene and colleagues [232], Wallace’s mathematical 
treatment of GWT [233], and Shanahan and colleagues’ 
robotic GWT architecture [234]. None of these three 
constitutes a full, systems-level cognitive architecture.  

XII.  HOW LIDA  ADDRESSES SOME OF THE OPEN ISSUES IN 

COGNITIVE ARCHITECTURES  

In their recent review of research on cognitive architectures 
[4], Langley, Laird and Rogers list and discuss nine separate 
“open issues” which they suggest should drive current 
research on cognitive architectures. Here, we suggest that our 
LIDA architecture makes some contribution on six of those 
open issues. We will briefly describe each of those 

 
17 A paper on causality in LIDA is currently in preparation. Discussions on 

how best to incorporate probability in LIDA are ongoing. 

contributions in turn. Quotes in italics are from Langley et al, 
and serve to denote an open issue. 

“categorization and understanding”: The internal structure 
of LIDA’s Workspace, including the CSM [79] (with its own 
internal structure) and the Conscious Contents Queue [235] 
are devoted precisely to the issue of low-level understanding 
of both external sensory input and internal state, and of the 
relation between them. The agents effecting this understanding 
are LIDA’s structure-building codelets. 

“…architectures that directly support both episodic 
memory and reflective processes that operate on the structures 
it contains.” The LIDA model includes both Transient 
Episodic Memory and Declarative Memory. Local 
associations from these memory systems form part of the 
content used by structure-building codelets to build new 
structures in the CSM in LIDA’s Workspace. 

“… encode knowledge in a variety of formalisms, relate 
them to each other, and use them to support intelligent 
behavior more flexibly and effectively.” LIDA employs 
distinct data structures, and distinct processes that operate on 
them for PAM, the episodic memories, and Procedural 
Memory. Their roles in the cognitive cycle relate them to one 
another, and allow them to support action selection. 

“…manage an agent’s resources to selectively focus its 
perceptual attention, its effectors, and the tasks it pursues.” 
LIDA’s attentional mechanism (functional consciousness) 
performs just these functions. 

“…origin of agents’ primary goals in terms of internal 
drives.” Such internal drives are implemented explicated in 
LIDA C via feelings and emotions, providing flexibility in 
decision making. 

“…exhibit emotion in ways that link directly to other 
cognitive processes and that modulate intelligent behavior.” 
Feelings and emotions play significant roles in each of 
LIDA C’s major modules and processes, modulating action 
selection and learning as well. 

XIII.  CONCLUDING REMARKS 

We have provided a summary overview of the LIDA model, 
a systems-level conceptual and computational model of human 
cognition that is grounded in cognitive psychology and 
cognitive neuroscience, and whose architecture conceptually 
affords grounded cognition, attention, emotion, action 
selection, human-like learning, and other higher-level 
processes. We have also briefly described the LIDA 
computational Framework and have described simulations 
involving four LIDA software agents replicating 
psychological experiments and providing evidence that 
LIDA’s cognitive cycle timing and LIDA’s attention and 
consciousness mechanisms are comparable to human subjects. 
This is an important first step towards increasing LIDA’s 
plausibility as a model of human cognition. More such 
replications are in progress. Furthermore, the LIDA cognitive 
architecture is suited not only for simulated experiments, but 
also for real-world applications. Its predecessor IDA was 
developed as a distribution agent for the Navy, communicating 
with sailors via email in natural language [66]. The abilities 
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and mechanisms required for this job can be used in a number 
of additional fields of application including artificial clerks, 
customer service agents, travel agents, loan officers in a bank, 
and many others [236]. Apart from human information agents, 
LIDA could also function on a physical robot (its reactivity 
facilitated by asynchronous operation and one-shot learning in 
the SDM). Work is underway to combine LIDA with the  
CRAM control system [237] and to embody it on a PR-218 
humanoid robot. 

Finally, we emphasize the importance of cognitive models 
such as LIDA. These models play a major role in cognitive 
science due to their usefulness in providing detailed and 
verifiable explanations for cognitive processes, and in 
providing hypotheses that can guide ongoing research [3, 4]. 
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