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Abstract—We describe a cognitive architecture (LIDA) that
affords attention, action selection and human-like learning
intended for use in controlling cognitive agents tat replicate
human experiments as well as performing real-worldtasks.
LIDA combines sophisticated action selection, motation via
emotions, a centrally important attention mechanism and
multimodal instructionalist and selectionist learnng. Empirically
grounded in cognitive science and cognitive neurostice, the
LIDA architecture employs a variety of modules andprocesses,
each with its own effective representations and adgithms. LIDA
has much to say about motivation, emotion, attentim and
autonomous learning in cognitive agents. In this pzer we
summarize the LIDA model together with its resulting agent
architecture, describe its computational implementtion, and
discuss results of simulations that replicate knowrmexperimental
data. We also discuss some of LIDA’'s conceptual moks,
propose non-linear dynamics as a bridge between LWs
modules and processes and the underlying neurosc@n and
point out some of the differences between LIDA andther
cognitive architectures. Finally, we discuss how IDA addresses
some of the open issues in cognitive architecturesearch.

Index Terms—Autonomous agent, Cognitive model,
Computational model, Cognitive architecture, LIDA, Agent
architecture, Perceptual learning, Episodic learnig, Procedural
learning, Action-perception cycle, Cognitive cycle, Neural

correlates, Affordance, Attention, Action selectionEmotions

As social psychologist Kurt Lewin so succinctly peth
out “There is nothing so practical as a good thefryp.

169]. Artificial intelligence pioneer Allen Newelstrongly

supported the need for systems-level theoriestacthies,

asserting that “You can’t play 20 questions witliuna and

win” [2]. More recently, memory researcher Dougla

Hintzman, echoing Newell in decrying the relianca o
modeling individual laboratory tasks, stated tha@héories
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that parsimoniously explain data from single tasi$ never
generalize to memory as a whole...” [3]. Cognitivehétects
Langley, Laird and Rogers argue that “Instead ofyiag out
micro-studies that address only one issue at g tiveeshould
attempt to unify many findings into a single thema
framework, then proceed to test and refine thatrfig4]. In
line with these views, this paper presents a summaecount
of our systems-level conceptual LIDA cognitive mbde
(LIDA) together with its implemented computational
cognitive architecture (LIDA as a candidate for the unified
theoretical framework called for above. Discusslti®A’s
contributions to the open issues in cognitive miogelisted
by Langley et al, [4], as well as its answers tevpusly
suggested criteria for models of human cognitioh [Be
argue that LIDA is a plausible candidate for a ioif
theoretical framework of cognition.

The fundamental principle guiding LIDA is that eyer
autonomous agent [6], be it human, animal or aidfi(e.g.,
software agent, robot), must frequently and comtiigusense
its environment, interpret what it senses, and tlaeam.
Ecological psychologists and cognitive neuroscéstiefer to
this as the action-perception cycle [7, 8]. An dganst select
appropriate actions to further its goals, dependiog
affordances in its environment. Thus, action sedactis
central to cognition (see the action selection gigra [9]) and
is the overriding task of every broad cognitive hatecture,
e.g., SOAR [10], ACT-R [11], CLARION [12], etc.

For more sophisticated cognitive agents, actiorcsien
requires the agent to understand its current cistances (i.e.
the context), that is, the frequently recurrenhsfarmation of
sensory data into an internal model of its currgituation.
Many such cognitive agents gain from (or are buedewith)

?‘nultiple sensory systems that produce huge amantmta

from their complex, dynamic environments. Thereften too
much information to attend to at once. A cognitive
architecture controlling one of these agents wobdshefit
from some mechanism for attention [13, 14] that Mou
choose the most salient portion of the currentsiva for the
agent to attend to while selecting its next actiadeed, it has
been argued that attentional mechanisms are waitdigndling
real-world complexity, since the number of combimas of
memory items, percepts, and possible actions can be
extremely high, but agents have limited resouroesélecting

a suitable action [4, 15]. However, explicit gehextdentional
mechanisms are not commonly included in cognitive
architectures [4], although some architectures inedene
aspects of attention, such as visual attention [, eye-
movements [18, 19], and multi-tasking [20, 21].eAttion in



LIDA is the process of bringing content to conseioess,
following [22]. It is general in the sense thaisiindependent
from modality, can
remembered, or imagined content, and is thus abteddel a
wide variety of paradigms using the same mechalssa the
LIDA, Attention [23] and Attentional Blink [24] agents i
Section X).

Handcrafting sophisticated cognitive agents “livinon
complex environments is often prohibitively expewrsiif not
impossible. Thus, many of the cognitive architeesuemploy
some form of learning (e.g. [10, 12]). Some of ehé=arning
mechanisms suffer from being either unimodal oresviped.
Supervised learning has two major drawbacks. Oftelarge
and expensive training set, which is sometimes aitetble, is
required. Also, the designer must know in advanbatveort
of representations must be learned. Unimodal lagrmostly
procedural (i.e., learning of new productions).enftignores
other critical aspects of the agent’s cognitivecesses, such
as perception. Cognitive architectures with morenan-like,
unsupervised, and multimodal
needed to permit continual, effective
(reinforcement) and instructionalist (new repreagans)
learning by a cognitive agent.

theoretically focus on perceivedmodel

and for some learning mechanisms (see Sectionad/X4).

In order to distinguish the conceptual ideas of ithBA
from the mechanisms that have already been
implemented computationally, we will use the follog
subscript notation: LIDA for the conceptual model, LIDA
for the implemented parts, and LIDA without a sulmcto
refer to both. For example, “LIDA accounts for ftiooal
consciousness” implies that a functional conscieasn
mechanism is part of both the conceptual and the
computational model (although strongly simplified the
latter); whereas “LIDA can model feelings” means that
feelings are part of the conceptual but not the muatational
model.

Though aspects of the LIDA model have previouslgrbe
described in several short papers, [30-38], thjseparovides
a summative account by integrating the various comepts of
the model. Additional contributions include: (a)d&cussion
of the design principles underlying the LIDA modéb) a
brief description of the software implementationtioé LIDA,

learning mechanisms afFramework, (c) a short account of four LIPBased software
selectionisagents that replicate experimental results, (d)osendetailed

description of LIDA’s use of feelings and emotions as
motivators, (e) a discussion of the relationshiphaf LIDA:

The LIDA! model, described below, provides an example afonceptual model and the underlying neural architecof

a cognitive architecture combining sophisticatedtioac
selection, motivation and learning, a centrally arpnt
attention mechanism, and multimodal instructionasd
selectionist learning [25]. Empirically grounded ¢ognitive
neuroscience, the LIDA architecture is neither sglicbnor
connectionist, but blends crucial features of etobmploys a

brains, and (f) a comparison between LIDA and sathe
more popular cognitive architectures.

It is imperative to note that LIDA is not intend&ml model
brains. That is, as a cognitive model, the LIDA mlois
concerned with the functional organization of coigei
processes at the conceptual and computational &wehich

variety of modulesand processes, each with its own effectivéhey are studied in cognitive science. Though tloeleh must

representations and algorithms.
multiple, interactive, memory systems.

Most of these imvol be empirically validated by both psychological

and
neuroscientific studies, it makes no attempt to ehoihe

Every animal with a nervous system learns about thenderlying neural anatomy or mechanisms. That duoss

structure of its world by encoding entries into nogyn
systems [26]. The later retrieval of some of thesamories
facilitates adaptive responses to a changing enwiemt.
Thus, every systems-level cognitive model usedsfadying
human and animal minds, as well as artificial mjnafist
concern itself with learning and memory. Memory da@
partitioned into multiple, interactive memory syst in
various ways useful for different purposes [27-28].the
LIDA model we categorize memory according to thpetyf
structures learned, its function, and its duratitime result is a
bevy of interactive memory systems: sensory, pévetp
(recognition), spatial, episodic (two varieties)}teational,
procedural, and sensory-motor, as depicted in Eiglr
Memory and learning play a central role in the LID#odel.
Learning is mostly conceptual as of yet, due to tmby

mean, however, that the model is not inspired burale
mechanisms that are known, such as in visual otiaspa
cognition.

The LIDA model is partly computational and partly
conceptual. This paper is organized to reflect thgsinction.
The first part of the paper describes the undeglyfreory with
an emphasis on the aspects that have been conopalbti
implemented and tested (Sections Il, Ill, and I8gction I
explores the relationship between the LIDA modal ather
psychological and neuroscientific theories; Sectlbfocuses
on LIDA’s cognitive cycles, the high-level, but yebrief
processes out of which we hypothesize all cognitien
composed. Section IV is devoted to decision makamgl
action selection.

The next three sections provide brief discussiobsut

recently released LIDAcomputational framework. That beingsome of the conceptual aspects of LIDA that havenbe
said, LIDA implementations exist for most memory modulesjesigned, partially implemented, but not yet systieally

! LIDA is an acronym for Learning Intelligent Diditition Agent
(Learning IDA), where IDA is a software personngéat hand-crafted for the
US Navy that automates the process of finding nidetd (jobs) for sailors at
the end of a tour of duty. LIDA adds learning toAlDand extend its
architecture in many other ways

2 While the LIDA model seems modular, it makes nengutment to
modularity in the underlying neural mechanisms.

tested. Section V describes how LIDA handles hidbeel,
multicyclic, cognitive processes. Section VI intuods
LIDA’s ideas about learning, a centrally importgart of the
model. Section VIl describes the use of feelingd emotions
as motivators and facilitators of learning in thé&A model.
Further, Section VIII discusses how the high-lesehceptual



LIDA model can be grounded in cognitive neurosceerend
tentatively outlines functional correspondences reural
correlates.

bright spot on the stage of immediate memory, ththere
by a spotlight of attention under executive guigar@nly the
bright spot is conscious, while the rest of theatbe is dark

We then turn to concrete implementations of LIDAand unconscious.” The hypothesized primary functional

architecture via a description of the LIPpAomputational
framework (Section 1X) and descriptions of fourdigs that
use the computational framework to
experimental data (Section X).

The last few sections focus on some of the broaderes
stemming from the LIDA architecture. Section Xl ¢ds
LIDA in the context of other cognitive architectarewhile
Section XlI discusses how LIDA might address sorh¢he
open issues in cognitive architectures that wergedain a
review article by Langley et al. [4]. Finally, sext Xl
contains a brief conclusion.

Il. LIDA MODEL, ITSRELATIONS, AND DESIGNPRINCIPLES

The LIDA model is a conceptual and partially implrted
computational model that makes an attempt to cavkrge
portion of human cognition. It is largely based Baars’
Global Workspace Theory (GWT) [22, 39, 40], a cqntael
theory of the role of consciousngsgspecifically the

purpose of consciousness is to integrate, providess, and
coordinate the functioning of very large numbers of

replicate  humaspecialized networks that otherwise operate autoosiy and

unconsciously [41].

Besides GWT, the LIDA model implements and flesbets
a number of psychological and neuropsychologicabties,
including situated and grounded cognition [42, 4&;ceptual
symbol systems [42, 44], working memory [45, 46Emory
by affordances [47], long-term working memory [48nd
Sloman’s H-CogAff cognitive framework [49]. Thisdludes
a broad array of cognitive modules and processssusised in
Section III).

The LIDA computational architecture, derived froimet
LIDA cognitive model, employs a variety of modukist are
designed using quite distinct computational medransi
drawn from Al. These include variants of the Copyca
Architecture [50, 51], Sparse Distributed Memorp®) [52,
53], the Schema Mechanism [54, 55], the Behavior [5&,

attentional componehtin cognition. Originally conceived as 97]; and the Subsumption Architecture [58].

a neuropsychological model of conscious and undonsc

Please note that whenever we mention that our model

processes [22], GWT has been broadened in LIDA mto accounts for some mental phenomenon, and use teoms

higher-level theory of human cognitive processi@fj]{ Now

supported by considerable empirical evidence [4BWT

views the nervous system as a distributed parsjsiem with
many different specialized processes. Coalitions these
processes enable an agent to make sense of theryselasa
coming from the current environmental situation.hédt
coalitions, filtering and using this understandingmpete for
attention in what Baars calls the global workspathe

contents of the winning coalition are broadcasbglly, and

are proposed to be phenomenally conscious. Thiscoous
broadcast serves to recruit other unconscious pseseto be
used to select an appropriate response to thentigiteation.
GWT is therefore a theory of how consciousness tfans

within cognition. The broadcast must be global tova

simultaneous learning into multiple memories witivedse

functions.

This description of GWT is from the point of vieW what
happens during a single LIDA cognitive cycle (sd® t
subsection Cognitive Cycles below). Viewing its tmis over
multiple successive cognitive cycles, the globatkspace can
be thought of as a fleeting memory system that lesadccess
between brain functions that are otherwise sepgiBsars,
2002). From this view it seems to be. a theater of mental
functioning. Consciousness in this metaphor resestd

5 The LIDA model treats of functional consciousnedbat is,
consciousness as described in GWT (referring torindétion that is
"broadcast" in the global workspace and made abiail to cognitive
processes such as action selection, as opposetdytdooally available, non-
conscious information). It makes no commitment hemomenal (subjective)
consciousness.

* Following Baars (1988, p369), we think of attentias the process of
bringing content to consciousness.

cognitive science, we do not mean to imply that AJs able

to account for the full psychological complexity damlying
these terms. Rather, we mean to say that theseament
phenomena fit into and are part of the LiPAnodel. If
implemented as part of LIDA their computational
counterparts are functionally similar but very sienp
abstractions as is the case with most computatioodkls.

It is important to emphasize some design princighest
underlie the LIDA model (but are not necessarilyque to
LIDA — see Section Xl for comparisons with otheguoitive
architectures). Six such principles are discusseldwn The
first four principles have been implemented in
computational LIDA framework, while the last twoeastill
conceptual.

Principles of grounded cognition.First, the model adheres
to theprinciples of grounded cognitidd 2], which emphasize
the importance of modal representations, situattidrg and
perceptual simulation. Instead of representing Kadge as
amodal symbols in a semantic memory, the represemnsain
the model, which resemble perceptual symbols [4R, dre
grounded in primitive sensors and actuators (see th
Understanding phase in Section Ill, and vectoresgntations
in Section IX). Current LIDA agents are not physically
embodied, but interact with simulated environments, which
can still implement the structural coupling betwegent and
environment which embodiment requires [59]. LIDA’s
predecessor, IDA, a software agent operating iead-world
virtual environment that included unstructured dmai
correspondence with humans, was claimed to be eiedbaa
this restricted sense [60]. There are now a langaber of

the

® Work is underway to physically embody LIDA on aPRumanoid robot



theoretical arguments [44, 61] as well as empirfaadings
[62, 63] (and many others - see [42] for a detaii@dew) in
favor of a grounded as opposed to a symbolic onitiotst
view of cognition. Despite having gained
acceptance in cognitive science and cognitive rsigace,

only a surprisingly small number of cognitive atebtures are come to consciousness,

fully grounded,
representations (see [64] and Section XI).

reportability.
Profligacy in learning. Fifth, each of the various modes of
learning in the model follows therinciple of profligacy This

increasingneans that new representations are added to theusar

memories at the slightest justification, that idewever they
and are left to survive by

in the sense of using only modateinforcement or they simply decay away. Such agiple is

often referred to aggenerate and tesbecause multiple

Asynchronous operation. Second, with the exception of representations are generated but very few su{viye While
two serial decision points controlled by trigger® (be many cognitive architectures (including ACT-R) @il a
described below), thenodel operates entirely asynchronouslyroughly similar principle, LIDA has specific deguibns of
That is, no process waits for its turn to proceeat, rather memory systems that provide wide-ranging conceptual
each process operates whenever its conditions adisfiexd. explanations. Examples are the more fine-graindxdlisision
LIDA/'s asynchronous processes implement concurrent aofl memory systems (Fig. 1), and the cognitivelyuglble
distributed information processing, features whigch vitally auto-associative implementation of memory which can
important when dealing with highly complex percegptimputs account for effects such as the tip-of-the-tongfiiece or the
with limited resources [65]. remember-know distinction. Most of these memoryteays

Functional consciousnessThird, the model includes an have been implemented computationally (see Seetiprbut
explicit functional consciousness mechanisimat plays a learning is conceptual and not yet part of LIDAith the
major role in perceptual filtering, action seleatioand exception of procedural learning, which has begriemented
learning (the LIDA model makes no commitment on theomputationally in LIDA’s predecessor [76], and qgaptual

subject of phenomenal consciousness on the paditioér
animals or artificial agents [66]). Functional coimgisness
plays an important role as a perceptual filter bhglding the
agent to focus on only the most salient informatibrhelps
action selection by allowing the agent to recresgaurces in
order to choose what to do next and to efficiergbive
problems. The usefulness of consciousness as view&IN T

in enabling multiple networks in the brain to comie and
compete has been previously argued for - see [4]l,f&

examples. Some experimental data we computatiorrailyel,
such as the Allport experiment [68], are diffictdtaccount for
without a functional consciousness mechanism. Maredhe
model assumes that functional consciousness iscassary
condition for learning (see Profligacy in learningiow).

associative learning, which is currently being iempented in
a LIDA-based infant vervet monkey agent that legnresiator
alarm calls.

Feelings and emotionsFinally, the model does not have
any built-in drives or specific motivators. Insteattificial
feelings and emotions implement the motivatieeded for an
agent to select appropriate actions with which ¢b @n its
environment. They also serve as primary learnimjifators
by regulating the amount of reinforcement assigtedny
entity in the system (see Section VII).

Ill. THELIDA CoOGNITIVE CYCLE

The LIDA model and its ensuing architecture areugaed
in the LIDA cognitive cycle. The agent’s “life” came viewed

Cognitive cycles.Fourth, theCognitive Cycle Hypothesis 5 consisting of a continual sequence of theseithegeycles.
that emerges from the LIDA model claims that humaggqh cycle consists of three phases, an understamtiase,

cognition functions by means of continual iteratmmsimilar
flexible cognitive cycles each taking approximat@ly0-300
ms [69] (similar concepts have been proposed imaseience
[7, 8] and cognitive science [70]). However, beeaus
cascading, cycles potentially occur at a rate wé fio ten
cycles per second. These cycles can cascade;sthsgveral
cycles may have different processes running simetasly.
This cascading must, however, respect the serilrenaof
conscious processing that is necessary to maithairstable,
coherent image of the world that consciousnessiges\71,
72]. Higher-level cognitive processes operate acrosltiple
cycles. This view is consistent with emerging ewicke from
cognitive neuroscience [73, 74]. Building highevek
cognitive processes from cognitive cycles actingcagnitive
atoms” should prove a useful strategy for develgmiognitive
software agents, because of the computationaligffiy of

an attending phase, and an action selection phdB&’'s
cognitive cycles closely resemble action-perceptigdes in
neuroscience [8, 77], and also bear some similatity
execution cycles in other cognitive architectur¥g, [16, 70].
A cognitive cycle can be thought of as a cognitivement”.
As will be described in Section V below, higherdév
cognitive processes are composed of many of thegeitive
cycles, each a cognitive “atom.”

Just as atoms have inner structure, the LIDA model
hypothesizes a rich inner structure for its cogaittycles [31,
78]. During each cognitive cycle, the LIDA agensfimakes
sense of its current situation as best as it caoguating its
representations of both external (coming through sbnses)
and internally generated features of its world.sTh the
understandingphase of the cycle. By a competitive process to
be described below, it then decides what portionthaf

asynchronous and partially overlapping processeenwhienresented situation is most in need of attenfidiis portion

dealing with complex information [65]. See Sect)ror the

is broadcast to the rest of the system, makinget durrent

neuroscientific plausibility of this concept ans itsefulness in ¢ontents of consciousness. and enabling the agehiobse an

accounting for experiments dealing with

subjectivgppropriate action to execute. This is théending phase.



These broadcast conscious contents facilitategbmiiting of  Distributed Memory [52] implementations to storedatue
internal resources, potential actions, from whible &ction episodic, declarative and spatial memories. Reg®otts the
selection mechanism chooses. This isabtion phase. Figure cue consist of local associations, that is, remeetbevents
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Figure 1LIDA Cognitive Cycle Diagram

1 shows the process in more detail. It starts entpper-left from these two memory systems that were associaitbcthe
corner and proceeds roughly clockwise. various elements of the cue. In addition to theenrpercept
Understanding phase. The cycle begins with sensory and the CSM, the Workspace contains recent peregptshe
stimuli from sources in the agent's external anterimal models assembled from them that have not yet ddcayay.
environment being intercepted in sensory memory.,(¢he The Workspace also contains the Conscious Con@uésie,
iconic buffer). Low-level feature detectors in serysmemory a list containing a series of a few tens of vegerg conscious
begin the process of making sense of the incomimgu. contents, which helps the agent to deal with tielated
Recognized low-level features pass activation tfhéi-level concepts [81]. A new model of the agent’s curréttasion is
features, such as objects, categories, relationent® assembled from the percepts, the associations, thed
situations, etc., represented as nodes in the ptaede undecayed parts of the previous model. This assegbl
Associative Memory (PAM). PAM nodes are connectgd bprocess will typically require structure-buildingodeletd.
links, which can represent, for instance, corregpooe, These structure-building codelets are small, specigose
membership, spatial or causal relationships, asl wel processors, each of which has some particulardf/g&ructure
affordances, in the case of an object-action link category- it is designed to build. These codelets are coatipu
action link [79]. These PAM nodes, and the linkgwseen monitoring the Workspace for opportunities to filltheir
them, are the building blocks of node structurestlie particularly specified task. They may draw uponcpetual
Workspace that are similar to Barsalou’s [42, 4djceptual memory and even sensory memory to enable the rémogn
symbol§ and serve as modal representations in the mdue! (iof relations and situations, and of analogies anlavities
LIDA model does not contain amodal representationbgse (inspired by [50, 51]). The newly assembled modeistitutes
entities, recognized preconsciously and represebyeBAM the agent's understanding of its current situatathin its
node structures, make up the percept that is passedrld. It has made sense of the incoming stimuli dhe
asynchronously to the Workspace, where a modelhef tunderstanding phase is complete.
agent’s current situation, called the Current Situeal Model Attending phase.For an agent operating within a complex
(CSM), is assembled (updated). This percept sexsescue to environment, this current model may well be muahrioh for
two forms of episodic memory (the memory for evgntsthe agent to consider all at once in deciding vibato next. It
transient [80] and declarative (autobiographica semantic). needs to selectively attend to a portion of the ehodortions
LIDA, uses auto-associative, content-addressable Sparse

" In the computational model, the term codelet mefgenerally to any
Barsalou has confirmed that our PAM node implentoria are similar to  small, special-purpose processor or running piécmfiware code. Codelets
his perceptual symbols in personal correspondence. correspond to processors in Global Workspace Theory



of the model compete for attention. These compsgtimgions
take the form of coalitions of structures from thedel. Such
coalitions are formed by special-purpose attentiodelets,
whose function is to bring certain perceptual dtrees of
concern to the particular attention codelet inte @Blobal
Workspace (hence the name Global Workspace Thethg.
coalition containing the most salient (importantgent,
insistent, novel, threatening, promising, arousinggexpected)
perceptual structures wins the competition. Inaffthe agent
has decided on what to attend. A representatidtheo€ontents
of the winning coalition is then broadcast globdlhnging its
contents to consciousness and, thereby, completirg
attending phase of the cycle.

Action and learning phase.One major purpose of all this
processing is to help the agent choose what to ek, the
other being the several forms of learning. Thoughdontents
of this conscious broadcast are available glob@#gilitating
different modes of learning in the conceptual modesee
Section VI), the primary recipient is Procedural rivtay,
which stores templates (“scherfid¢sof possible actions
including their contexts and possible results.Idbastores an
activation value for each such template which atsnto
measure the likelihood of an action taken withi d¢bntext
producing the expected result. Templates whose egtst
intersect sufficiently with the contents of the soious
broadcast instantiate copies of themselves with tfaiables
specified to the current situation. Instantiatednpates
remaining from previous cycles may also continuebt
available. These instantiations are passed to tttona
selection mechanism, which chooses a single aéton one
of these instantiations. The chosen action thens gtwe
sensory-motor memory, where it is executed by gr@piate
algorithm (motor plan).
environment, or an internal representation, or batid the
cycle is complete.

Concurrently with action selection and executiohg t
contents of the conscious broadcast is used totedach of
several memories (Perceptual Associative (recamiti
Transient Episodic, Attentional, Procedural), bbthadding
new items and by reinforcing existing items.

IV. TYPESOF DECISIONMAKING AND ACTION SELECTION

information about the identity of the cross streefjuired
consciously, but the choice itself is most likelyade
unconsciously - the choice wa®nsciously mediate@gven
though it was unconsciously made. While drivingngloa
straight road with little traffic, the necessaright adjustments
to the steering wheel are typicallgutomatized actions
selected completely unconsciously, one action dallg the
previous [82]. They are usually not even conscipusl
mediated, though unconscious sensory input is usetbeir
execution. If a car cuts in front of the drivertesf he or she
will have turned the steering wheel and pressed bitadke
simultaneously with becoming conscious of the danda
alarm mechanismhas unconsciously selected appropriate
actions in response to the challenge [49]. Theah¢tuning of
the steering wheel, how fast, how far, the executib the
action, is also performed unconsciously though witry
frequent sensory input.

Though heavily influenced by the conscious broat(the
contents of consciousness), action selection duaingjingle
cognitive cycle in the LIDA model is not performed
consciously. A cognitive cycle is a mostly uncopssi
process. When speaking, for example, a person lysiiads
not consciously think in advance about the strectand
wording of the next phrase, and is occasionallynesugrprised
at what comes out. When approaching the intersedtidhe
example above, no conscious thought need be givehe
choice to turn left. Consciousness serves to peovid
information on which such action selection is badad the
selection itself is done unconsciously after thensoious
broadcast [36]. We refer to this very typical saiglcle
process asonsciously mediated action selection

LIDA’s predecessor IDA had computational

The action taken affectse thimplementations for all of the described decisioaking

types [30, 67]. In LIDA computational development is still
underway. Consciously mediated action selection acttbn
execution are currently implemented as discussddwbe
Section V describes LIDAs conceptual designs for the other

types.

V. HIGHER-LEVEL COGNITIVE PROCESSES ANILEVELS OF
CONTROL INLIDA ¢

The previous sections focused on one form of action As mentioned before, LIDA aims to be a conceptsalvall

selection. Here, we discuss alternate variants,yneémwhich
have been implemented in the computational ardhitec
Volitional decision making (volition for short) is higher-
level cognitive process for conscious action s@&actTo
understand volition it must be carefully distindwesl from 1)
consciously mediated action selection, 2) autoradtiaction
selection, 3) alarms, and 4) the execution of astitn each of
the latter three, the actual selection (or exealti® performed
unconsciously. Consciously planning a driving rofrtam a
current location to the airport is an example ofibaeative,
volitional decision making Choosing to turn left at an
appropriate intersection along a familiar route uiesp

8LIDA 's Procedural Memory is based on Drescher’s [48e@te Net.

as computational cognitive architecture. Howevet,all parts

of the conceptual model have yet been implemented
computationally. Sections V, VI and VIl describepaontant
parts of the conceptual model that have not yeh bedy
implemented. These include higher-level processéss (
section), learning (section VI), and feelings ando#dons
(section VII).

Higher-level cognitive processing
deliberation, volition, metacognition, reasoninglarming,
problem solving, language comprehension, and laggua
production. In the LIDA model such higher-level processes
are distinguished by requiring multiple cognitivgcles for
their accomplishment. They can be implemented by on

in humans inchide



more behavior streamsthat is, streams of instantiatedbehavior stream sets up the deliberative procesmlifonal
schemes and links from Procedural Memory. Recadit thdecision making as specified by ideomotor theomg/uding
actions (as we use the term) in the LIDA model, amd writing the let's-drink-orange-juice node to the Wspacé’.
humans, include internal actions such as those lsed Note that a single proposal with no objection canglickly
reasoning and other higher-level cognitive procegsacting accepted and acted upon.

on internal representations instead of the external This volitional decision-making process might dsté
environment. See [34, 83, 84] for descriptions ofvhhigh-  with continuing cycles of proposing and objectirgyia Eric
level decision making and problem solving have bedBerne’'s “what if” game [87]. To counter such endles

implemented in LIDA Here we focus on deliberative oscillations, the LIDA model proposes three hypothetical
volitional decision making as one higher-level dtiga mechanisms: reducing the activation of proposeelsis each
process. time they reach consciousness, reducing the tifneatéd for

Deliberative Volitional Decision Making Section IV
described different forms of decision making. Wevneturn
to a consideration of deliberative, volitional d#en making.
In 1890, William James introduced his ideomotorotiyeof
volition [For a recent review see 85, 86]. Jamestyated
proposers, objectors, and supporters as actorginrama of
acting volitionally. He might have suggested thdofging
scenario in the context of dealing with a feelirighorst. The
idea of drinking orange juice “pops into mind,” ths, it is
propelled to consciousness by a proposer; motivated
feeling of thirst and a liking for orange juiceetldea becomes
the contents of consciousness. “No, it's too sWweskerts an
objector. “How about a beer?” says a different psgs. “Too
early in the day,” says another objector. “Orangeg is more
nutritious,” says a supporter. With no further aliens,
drinking orange juice is volitionally selected.

Baars incorporated ideomotor theory directly ini® GWT

the process by a “timekeeper codelet” at each nestad a
metacognitive process monitoring the process andsihg an
alternative if it has gone on for too long (se€] [f80 details).
In addition to volition, deliberative processing #&so
involved in other higher-level cognitive processash as
planning, scheduling, and problem solving. Deliigea
information processing and decision making allowsagent
to function flexibly within a complicated niche & complex,
dynamic environment. Such deliberative processdaimans,
and in some other animals, are typically perforniedan
internally constructed virtual reality. An internattual reality
for deliberation requires a short-term memory inickhh
temporary structures can be constructed with whioh
“mentally” try out possible actions without actyaéxecuting
them. In the LIDA model the virtual window of the
perceptual scene in the Workspace serves justadighction
[79]. In many cases, the action selected duringostrall

[22]. The LIDA: model fleshes out volitional decision makingcognitive cycles consists of building or adding some

via ideomotor theory within GWT [30] as follows. Aidea
“popping into mind” in the LIDA model is accomplished by
the idea being part of the conscious broadcastngue
cognitive cycle, that is, part of the contents ohgciousness
for that cognitive moment. These contents are rif@ination
(structures) contained within the winning coalitiéor that
cycle. This winning coalition was gathered by scattention
codelet (see Section Il above). Ultimately, thigeation
codelet, by forming a coalition that wins the catteis
responsible for the idea “popping into mind.” Thuge
implemented the characters in James’ scenario tastian
codelets, with some acting as proposers, otheisbgstors,
and others as supporters, the content of each fpoppto
mind” if it wins the competition and is broadcast.

But how does the conscious thought of “Let’s drartknge
juice,” lead to a let's-drink-orange-juice node ithe
Workspace? Like every higher-order cognitive predesthe
LIDA ¢ model, volition occurs over multiple cycles, argl i
implemented by a behavior stream in the actionctiele
module. This volitional behavior stream is an insi&ion of a
volitional scheme in Procedural Memory. Whenever
proposal node in its context is activated by a psap in the
conscious broadcast, this volitional scheme in&ttey itself.
The instantiated volitional scheme, the volitiorishavior
stream, is incorporated into the action selecticecmanism,
the behavior net. The first (internal) behaviothis volitional

9 A stream is a sequence with its order only pdytEpecified.

representational structures in the Workspace duriing
process of some sort of deliberatibn

VI. LEARNING INLIDAc

The conscious broadcast has two primary rolestuitecent
of resources, and learning. Global Workspace Theaonylti-
modal learning requires that the broadcast be globaking
learning critical to any understanding of GWT, whicIDA
models. Learning is also critical to understandthg role
played by feelings and emotions in the LID&odel (see
section VII).

Learning in the LIDA model can only occur after
information has been attended to, that is, broadcam the
Global Workspace. The LIDA model realizes several
fundamental learning mechanisms (modes), eachartypes,
which underlie much of human learning. The two t/pee
instructionalist (i.e., learning by the creation of new
representations) andselectionist (i.e., learning by the
reinforcement of existing representations) [25]e Thodes of
learning in the model includeerceptual episodic and
Brocedural

10 Alternatively, this node could arrive in the Wopkse with the percept
of the following cycle as a result of internal segsof the internal speech. In
LIDA, this is only an implementation matter, making functional difference.
In humans this is an empirical matter to be decidgexperiment. Thus the
design decision for LIDA becomes a cognitive hygsth.

" Internal actions are part of the LIRAmodel, but have not been
implemented yet.



Perceptual learning is learning to
categorizations, relationships, events, etc. As rabjects,
categories, and the relationships among them amdeba
them and other elements of the agent’s ontologyleamed,
nodes (objects and categories) and links (relatipsy are
added to PAM, but not before the conscious broad€agure
1). Episodic learning is the encoding of informatiinto
episodic memory, the associative,
memory for events - the what, the where, and thenn[88,
89].

Procedural learning is the encoding of proceduras
executing behaviors into Procedural Memory. Ihis kearning
of new actions and action sequences with whictctomplish
new tasks. Here we must distinguish between ast@ection
and action execution. LIDA’s Procedural Memory
composed of schemes concerned with the selectiastahns.
Algorithms (motor plans) for their execution areufa in

recognize objectlearning).Up to a point, the stronger the affect is, the strer

the encoding in memorfgiscussed in more detail in the next

section). Procedural memory (recent actions) is atgut

(reinforced) withthe strength of the reinforcement influenced

by the strength of the affegdrocedural learning).
Most of LIDA’s learning mechanisms are conceptuahés
stage. Implementations exist for procedural legrijit6] and

content-addréssabepisodic learning [92]. Spatial learning is curhgnbeing
robotic applications of LIDA

developed for possible
Perceptual associative learning is currently bé&mgemented
fin a LIDA-based infant vervet monkey agent thatrrisa
predator alarm calls. Additional modes of learnarg in the
planning stage for later implementation into theDA]|
architecture. These include learning of motor plans

isSensory-Motor Memory for the execution of actiorise

attentional learning of new attention codelets, tadlearning
of new structure-building codelets.

Sensory-Motor Memory. The Procedural Memory hasnbee

implemented in LIDA and a procedural
implementation was available in IDA [76].
Instructionalist learning refers to learning by tdition of
new representations. For perceptual learning, soelw
representations are produced in the Workspace ringtste-
building codelets. If a new representation is jprd winning
coalition in the Global Workspace, it becomes pattthe
conscious broadcast and is learned. In the curr
implementation, for perceptual learning these
representations will consist of nodes and linksPi&M, for
procedural learning of schemes in Procedural Meraorgl for
episodic learning of vectors in Transient Episddiemory.

Each node in PAM and each scheme in Procedural Memqection, we will describe how LIDAcan model emotions and

has both a base-level and a current activation. dureent
activation measures the present relevance or sgliefithe
node or scheme. Their base-level activation meastireir
overall usefulness.
broadcast, selectionist learning reinforces the efagel
activation of every node and scheme in the conscommtent
of the broadcast. For episodic learning, such oeggment
happens automatically by means of internal mechaisf
sparse distributed memory (SDM) [52], the computel
mechanism we use to model episodic memory.

Although the types of knowledge retained due taéhtree
learning mechanisms differ, we hypothesize thatscimus
awareness is sufficient for learning. Although subial
acquisition of information appears to occur, thieafsizes are
quite small compared to conscious learning. Inaasit study,
Standing [90] showed that 10,000 distinct pictucesid be
learned with 96% recognition accuracy, after onlgegonds
of attention to each picture. No intention to leams needed.
Consciously learned educational material has beealled
after 50 years [91]. Attention greatly facilitate®st modes of
learning.

All learning in LIDA occurs as a result of the coimis
broadcast. The conscious broadcast contains tive eontent
of consciousness including the affective portioMgansient
Episodic Memory is also updated with the currenttents of
consciousness, includingfeelings as events (episodic

learning

VII. FEELINGS AND EMOTIONS INLIDA ¢

Emotions have been argued to play major roles
facilitating high-level cognition (for example, kacting as
motivators for actions): "the emotional aspect ofjmtion,
providing motivation and value to an otherwise nauwvorld,
[...] is a fundamental part of the make-up of agaoism with
respect to sensorimotor learning"[93]. However, rtiedeling

€8t emotion has been largely neglected in cogniinahitecture

Ne¥esearch [4], with notable exceptions including FOp94,

95], and models accounting for emotion as wellases other
aspects of cognition, but not aiming to be compnshe
architectures (e.g. [96], see [97, 98] for reviewl) this

use them as motivators for action selection. Thdeas are

part of conceptual LIDA and have not yet been implemented
in LIDA,. As with the other cognitive science phenomena

Occurring  during each  consCioWgscribed in this paper, their implementations wiie

simplified abstractions intended to be functionalynilar to
the real phenomena. We do not claim to accounthieir full
psychological complexity. Nevertheless, using teoosimon
in cognitive science is useful for establishing asptual
grounding, and to reduce the need for explanations.

The word “feeling” may be associated with exterhaptic
sense, such as the feeling in our fingertips ag tbech the
keys. It is also used in connection with interredises, such as
the feeling of thirst or the pain of a pinprick. [lBaing
Johnston [99], and consistent with the influengglpraisal
theory [100], in the LIDA model we speak oémotionsas
feelings with cognitive content, such as the joy the
unexpected meeting with a friend or the embarrassraé
having said the wrong thing.

Contemporary theories of emotion posit that cougaiti

appraisals of physiological changes give rise to emotional

states [101-104]. Appraisal is an unconscious arscous

process where emotions are produced from subjective

evaluations of situations, or objects, or eventfna
dimensions such as novelty, goal-alignment, agenoping
potential, and availability of a plan.

Representing feelings in LIDA:.. Feelings are represented



in the LIDA: model as nodes in PAM. Each feeling nodédentified emotions when the event is reappraidéis newly
constitutes its own identity, for example, distrassot having appraised structure, including the emotion node, is
enough oxygen is represented by one node, reliedkttg a incorporated into the Current Situation Model (CSNipm
breath by another. Each feeling node has its owenea, whence some attention codelet may succeed in bgnigito
always positive or always negative, with varyingyeees of consciousness. The conscious emotion can subséguent
arousal. The current activation of the node measuhe motivate action selection.

momentary arousal of the valence, that is, howtipesor how

negative. The arousal of feelings can be bottomthat is, Appraisal Codelets

arising from feature detectors in Perceptual Asgoe :
Memory (PAM). If those feeling are also emotiortse airousal Appralsal
can also be top-down, that is influenced by theraippl that S IW
gave rise to the emotion. A thirst node in humarsuld Model

A — E— T

activate itself in response to internal sensatiaviriy to do [ _Persr )/ e § ) [ e
with fluid balance. A fear node in the presenceadtnown Relationship P
event would be activated by spreading activatiamfrthe i aui
other nodes representing the event, in turn aetivhy feature |
detectors of different sensory modalities. — it

Like other Workspace structures, feeling nodes belpue ===========-1 Broceduiral
transient and declarative episodic memories. Tlsiltiag Memory

Iopal associa}tions may also contain feeliqg nodﬂg)agted Figure 2. Components of appraisal models (black) based
with memories of past events, which is consisterthw [98] — and how LIDA. accounts for them (blue)
network theories of emotion [105]. Being part oé ttructure

carried by the coalition, and bringing their owniation with
them, these feeling nodes play a major role ingagsg
activation to coalitions of information to whicheth belong,
helping them to compete for attention. Any feelimages that
belong to the winning coalition become part of toascious
broadcast (i.e., part of the contents of consciessnand can
influence the selection of an appropriate action).

Feelings can be recognized based on sensory impking
thirst as an example as we did above, an intemraes may
sufficiently activate the thirst node in PAM, casi an
instantiated thirst node to appear in the LUFAWorkspace.
If this node is selected by an attention codeletthe resulting
coalition wins the competition in the Global Worksg and
thus comes to consciousness, the feeling of bdiirgty is
experiencetf by the agent.

As stated above, emotions in LIRAre taken to be feelings
with cognitive content [99], for example, the fezfra truck
bearing down, the shame at something said, theesadat a
loss, or the surprise at an unexpected turn oftevérelings,
including emotions, are represented by nodes inAdB
Perceptual Associative Memory (PAM). Cognitive onif
represented by node/link structures, are linkedetootion
nodes by a process called appraisal [106].

LIDA's appraisal process is based on components of
computational appraisal models proposed by Marsatllal.
[98] (see Figure 2). Here, person-environment iatahip
refers to the representation of the agent's cumedationship
with its environment. In LIDA's case, this representation is
built in the Workspace, taking the form of PAM nede

Appraisal variables are derived from this represteo and
mapped onto an affective state (an emotion) witkpecific
intensity by anaffect derivationmodel and araffect intensity
model. In LIDA., this is done by appraisal codelets operating
on the Workspace. We propose to use Scherer's [100]
appraisal variables: relevance, implications, cgpiotential
and normative significance (all subjective to therrent
person-environment relationship). In LIRAthese variables
are represented in the Workspace by PAM nodes, node
structures, and their activations (see below). fmoton PAM
node is spawned and connected to this represemthtican
appraisal codelet. Thus, these codelets implemdmt t
Appraisal Derivation Model and the Affect Derivatidodel
in Marsella et al.’s terminology [98] by creatiniget emotion
node, and the Affect Intensity Model by creatingdan
weighting the links to the Workspace node strucure
representing appraisal variables, which will ultigtg
determine the activation (or arousal) of the enrotiode.

Appraisal in LIDA. In LIDAc, appraisal of a new event, A dina to Sch 1001, theel f timul
and its connection to an appropriate emotion, rfopmed by ccording to Scherer [100], theelevanceot a stimulus
event to an organism can be judged by its noveltlyich

appraisal codelety a form of structure-building codelet, ; ludes intensit dd familiarit ddim@bilit
acting within LIDA:'s Workspace. Appraisal codelets identify'nc udes intensity, suddenness, familiarity anddpmbility),

an emotion as well as an arousal level (see beiowhe form as well as intrinsic pleasantness and goal relexan¢.IDA.,

of an emotion PAM node. and connect this node t® tHntensity or bottom-up salience is implemented lptdire

perceptual structure representing the event caushey detectors, intrinsic pleasantness by activationsgasfrom

emotion. The appraisal process can also alter quely pleasant or_unpleasant emotion nodes, gnd_ top-down
importance with regard to current goals by actoratpassed

12 . . _ _ down from goal representations.
In the sense of functional consciousness. We mal@ammitment in our . i . .
LIDA model to phenomenal consciousness. The implications of a situation or an event need to be

'3 This section describes a purely conceptual magsraisal codelets and appraised to determine whether it furthers or hisdan
variables have not yet been implemented in LIDA
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organism'’s survival, or its ability to satisfy iteeds or attain emotion node (i.e. the intensity of the represergstbtion)
its goals. This involves the attribution of a caudke will be derived from this node structure, and vdépend on

assessment of outcome probabilities and of diso@es from
expectations, and checking the conduciveness tds goa

needs. In LIDA, implications could be judged by a predictiveeither

mental model in the virtual window of the CSM ineth
Workspace [79], represented as a node structuaentight be
created and altered by behavior schemes repregettim
dynamics of the cause (e.g. possible actions ofdbponsible
person) in the Procedural Memory [107]. This moatehode
structure would consist of PAM nodes (which canrespnt
events as well as entities or objects [79]) repriisg causes
and outcomes, and their activations would represatdome
probabilities and utilities. The overall activatiof the node
structure would influence the activation of the ¢imo node
(urgent implications would lead to an emotion nedth high
activation).

all the factors described above.

The affect consequence model, mapping the affetct an
behavioral or cognitive (internal) changes i
implemented by the Procedural Memory and Actiore&@&n
modules in LIDA, which can cause the selection and
execution of an external (behavioral) or an interaction.
These actions cause changes in the representatiaitin the
Workspace, which is used in subsequent appraiddiss
LIDA ¢ contains a closed-loop appraisal system.

Although LIDA: adopts an appraisal-model of emotion, it
has two major differences in comparison to recent
computational models of emotion reviewed by Maes¢di8].
First, our model may potentially account for moeetbrs
determining the intensity of emotions than conwamily
used affect intensity models such as e.g. expeatdity

Coping potentialinvolves the evaluation of whether the(intensity proportional to the product of goal it§il and

individual can affect its concern with the elicgirvent, and
depends on to what extent the event can be cosdral
influenced by the agent as well as to what exteatagent can
adjust or adapt to the consequences of the everitiDA(,
this also could be evaluated using a model createthe
virtual window of the CSM [79], similarly to the plication
evaluation, in this case making use of learned reelse
representing the agent's own actions. This evalnatnight
require multiple cognitive cycles, each selectingpassible
action, adding its results to the model in the Vgpdce and
evaluating whether and to what extent the eliciivgnt will
have been dealt with; this extent will then inflaenthe
activation of the emotion node. In both implicatewaluations
and coping potential evaluations, if a similar evbas been
encountered and its consequences learned alreaiiging a
predictive model using such schemes might not lsessary —
the event's consequences can be cued from epigodic
perceptual) long-term memory.

Finally, normative significancévolves taking into account
how other group members would react to an evert, tha
significance of this for social agents [10d]he normative
significance of events is evaluated against inteasawell as
external (social) standards. Such standards coudd
represented in semantic memory (part of declaratieenory)

probability of attainment — see [98]), since thal@tructure
resulting from the appraisal process and passitigasion to
the emotion node could possibly be highly compl&kis
method of deriving affective intensity is also aably more
cognitively plausible than using a mathematicalatigun and
amodal symbols (e.g. [42, 44]). However, since madel is
purely conceptual as of yet, these claims are $atoel and
require further computational testing. Second, LH3A
attention mechanism provides computational expianatfor
the demonstrated importance of attention in thejestibe
intensity of emotions (e.g. [109, 110] — an ageafipg
attention to an emotion has an attention codelét &ihigh
activation that will build a coalition with said etion,
increasing its activation and thus its subjectiviemsity). The
few emotion models accounting for attention (e.y11]))
usually only include a basic thresholding mechaniss
opposed to LIDA's detailed attention model that is based on
Global Workspace Theory [69, 112].

The role of emotions in action selection Every
autonomous agent must be equipped with primitive
motivations that motivate its selection of actioimsorder to
form its own agenda [6]. Such motivations may beseaas in
the purely physical mechanism motivating a bacterito
follow a nutrient gradient upstream [113]. They nugur as

in LIDA¢, and, if cued, could influence the appraisal ofirives as in thé@ condition of a production rule in an artificial
socially significant situations, either by modutati the agent [114]. In humans, in many animals, and inltH2A ¢
activations of the node structures representingether by model, these motivations are implemented by fesliagd

adding additional
standards in LIDA in [108]).

Importantly, we hypothesize that none of these appt
variables require any amodal representations, esnsnon in
other computational models of emotion (see e.g])[98I of

nodes (see previous work on moramotion [33]. Such feelings implicitly give rise t@lues, an

agent’'s general preference for an action in a sitnathat
serve to motivate action selection [33, 115]. Fagiprovide
flexible motivations. For exampléyungerwith its multiple,
learned satisfiers is much more flexible than dpéw under

them are represented by PAM nodes (which are based which circumstances to eat what. Also, a built-mlearned

perceptual symbols [42, 44]) and their activations.

Based on these appraisal variables, appraisal etsdean
assign an emotion to the appraised situationthes. can build
a node structure representing the situation as wasllits
appraisal (both of which consist of PAM nodes) andnect
an emotion PAM node to this structure. The actoranf the

fear of A can be flexibly applied to B when B ikdi A.
Feelings are desirable motivators when the envieoniris too
complex to specify what to do when, and when assioci
and learning are both available.

LIDA's Procedural Memory contains schemes, each
consisting of a context, an action, a result, andaetivation



measuring the likelihood of an action taken in twntext

producing the result. Feeling or emotion nodes e t

conscious broadcast that also occur in the comteatscheme
in Procedural Memory add to the current activatainthat

scheme, increasing the likelihood of it being aatidd. It is
here that feelings play their first role as implenations of
motivation by adding to the likelihood of a part&uaction
being selected. A feeling in the context of a soh@mplicitly

increases or decreases the value assigned to tdhkig
scheme’s action.

Apart from facilitating action selection, feelingsr
emotions in the conscious broadcast also play a iol
modulating the various forms of learning. Up toanp, the
higher the arousal the greater the learning. Beybat point,
more arousal begins to interfere with learning [116

In the Action Selection mechanism, the activatidnao
particular behavior scheme, and thus its abilitgampete for
selection and execution, depends upon severalr&actiese
factors include how well the context specified bg behavior
scheme agrees with the current and very recensiyquatents
of consciousness (that is, with the contextualizearent
situation). The contribution of feeling nodes te thehavior
scheme’s activation constitutes the environmenfiiénce on
action selection. As mentioned earlier, the adiwabf this
newly arriving behavior also depends on the preseof
feeling nodes in its context and their activatienpart of the
conscious broadcasts. Thus feelings contributewvaboin for
taking action by adding activation to newly arrigibehavior
schemes.

The selected behavior, including its feelings hisnt passed
to sensory-motor memory for execution. There thairigs
modulate the execution of the action [117].

VIIl. LIDA AND THE UNDERLYING NEURAL PROCESSES

As emphasized earlier, LIDA isot intended to model the
neural mechanisms underlying cognition. But if LID#Ato be
a cognitive model, and cognition is implementedbiains,
there must be some relationship between LIDA ane
underlying neuroscience. In this section, we wiltlioe this
relationship, in order to argue for the plausipiliff the LIDA
model, and to further clarify and constrain the dtionality
that LIDA’s modules and processes are intended ¢aolein
Following Freeman and others we invoke non-lingaradhics
as the needed bridge between our model and therlyinge
neuroscience [118-120]. Although currently not iexpknted
as a dynamical system, LIDA's cognitive cycle showvany of
the properties of such systems [121]. For exaniig similar
to an overarching oscillatory process, and is abtsanfrom
multiple components themselves resembling osciiatits
dynamics change over multiple time scales (fronivatibn-
passing processes operating in a few ms, to modplesating
in a few tens of ms, to cognitive cycles and mcyiiie
processes [69]); and its representations show piepe
resembling the dynamic systems concept of stalifitiPAM
node representation in the Workspace might be estats.
persistent in the face of systematic or randomupleations -
incoming activations, or unstable if it is still RAM and its
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activation is very close to the percept threshfl@p].

Descriptions of tentative neuronal correlates foDA's
modules and processes, based on functional comdspoe,
have been described elsewhere [123]. Below, we bhafly
outline a simplified dynamical systems view of LIBA
cognitive cycle, connecting it to empirical neuresce. We
use a flavor of dynamic systems theory called Dysdfield
Theory (DFT) to make this connection, because of
conceptual similarity to LIDA’s ideas (see above)daits
neurobiological plausibility [122, 124, 125]. Dynaammeural
fields in DFT can be viewed as types of recurreetral
networks [126] with dynamics similar to leaky intatp-and-
fire equations which are used in some spiking neunodels
[127]. They are firmly grounded in neural princpld26] and
can account for the dynamics of cortical neuraivatibn, for
example in the visual cortex [128] and motor cesic
substantiated by comparisons of single-neuron daocgs to
the field activation [129] (see [126] for more amgents for
the neural plausibility of DFT).

Dynamic neural fields formalize how neural popuas
represent dimensions characterizing perceptual urfest
cognitive operations, actions, etc. They repreggormation
along an activation dimension (corresponding tocaimeunt of
available information or its certainty) and onenaore feature
dimensions (e.g. spatial location, orientation, parceptual
features such as frequency or color or motion) tatv levels
of activation at a particular point indicating thaat value of
the represented dimension is unlikely, and with digeamics
defined by a field equation similar to the one he[©22].

it

tu(x, t) = —u(x, t) + resting level + input + interaction

where u(x,t) is the activation field defined over dimension x
and time t, andr is a timescale parameter. Without the
interaction between field sites (ignoring the lastrm),
attractor solutions depend only on the field infeigy. from
sensors) and the constant resting level; activaieaks would

trieventually vanish with ceasing input. To stabilikecal

activation peaks in the absence of input, the aufon is
defined to be locally excitatory and globally inibiloy [122],
in the center-surround fashion observed in biolalgieurons
(e.g. [130]).

Different layers of LIDA’'s sensory memory [131] ddu
correspond to sensory cortical areas, which coeldnbdeled
as multiple dynamic fields — e.g. [125]. Multiplech features
represented on different fields implementing difar layers
of sensory memory can be bound into holistic object
representations on a working memory field, e.gdese by
[132]. Such a field might implement the Workspaesd
activation peaks on it correspond to PAM nodesuyfed).

Another dynamic field with strong inhibitory inteation to
ensure a winner-take-all mechanism could impleni¢DA’s
Global Workspace. This field would receive its ¢atiry
input from the Workspace field, as well as an Atitem field
for amplifying attended regions, and would selext atabilize
the strongest activation peak, which would thenibithall
others and emerge as the winner of the competitan



consciousness (see Section Ill). Adjusting the sicate
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Figure 3. A dynamical systems (DFT) based implementation of
the LIDA cognitive cycle in a reaction time experinent. The blue,
thick lines / blue surface represent dynamic nefieddls. Red, thin
lines show the field output, after the applicatioh a sigmoidal
threshold function to ensure that only sufficierdbtivated field sites
contribute to the interaction [122]. In this sinfigld example, yellow
and green glowing lights are perceived and reptede(only one
feature layer is shown, but any number could be kkioned in
Workspace representations). The activation peakesepting the
green light enters the Global Workspace, due toAttention field
amplifying its peak (but not the peak associatethvthe yellow
light), and elevates the pre-shaped Procedural Merield above
threshold, causing an action to be taken and thterbto be pressed
(pre-shaping can ensure that from all applicablgoas based on
current percepts, only the task-relevant one reatttethreshold, and
has been argued to be neurally plaugib29]).

parameter can ensure that this process only happéns
plausible frequencies.
Finally, action selection could be implemented @ggested
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by [133], by adding two additional layers, aparonfr the
Global Workspace layer, representing important abjea
Procedural Memory (called ASL in [133]) encodingaicts of
action primitives, and a Result layer (called IL [ib33])
specifying result states of an action. Consciougeatb
representations can then prime multiple possibléorE
(activation peaks) in the Procedural Memory layand a
predefined task context or a specific goal defimethe Result
layer can then elevate one of these over the thldsh
stabilizing it and thus selecting the action besttahing the
preconditions and the goal state. Action selectiand
movement control using dynamic neural fields [13H,well
as pre-defining goals through pre-shaping [129)ehbheen
argued to be neurobiologically plausible.

Figure 3 shows the described highly simplified DFT
implementation of LIDA for the reaction time experiment
described in Section X, showing the agent percgidrgreen
light and pressing the appropriate button. Sinceneaxe only
recently started investigating a dynamic implemteoma of
LIDA,, we do not yet have data substantiating the neural
plausibility of such an implementation, or of ouapping of
LIDA modules to brain areas [123].

LIDA’'s modules can be tentatively assigned neural
correlates, based on functional correspondenceés.nidpping
is tentative because the empirical neurosciencdeace is
still changing. Such correlates should be integateds being
involved with the activity of the corresponding LADmodule
or process, rather than as being equivalent toThe
correspondence of module to brain correlates isnoftne-to-
many, since a single LIDA module may be implemertigd
numerous, disparate cell assemblies in brains.dde that the
LIDA model, being described in terms of modules and
processes, makes no commitment to the underlyingahe
structure being modular or localized, as is exefiegliin the
following paragraphs.

Sensory memory correlates in a one-to-many fashiibim
brain areas for each sensory modality, for examedmic
memory (occipital lobe) and echoic memory (primaunglitory
cortex) [135, 136]. Representations in Sensory Mgrmace all
modal. Node representations in PAM (LIDA’s perceptu
symbol implementations [42, 44]) are difficult tochlize in
the brain, since they are distributed and multinh¢d2, 137,
138]; some of the major areas involved are theripieal
cortex [139, 140], amygdala and orbito-frontal emr{141],
mushroom body neurons [142], medial orbitofrontattex
[143], etc.

The entorhinal cortex, together with the tempordegtal
and frontal lobes in humans, would implement paiftshe
LIDA Workspace (preconscious working memory buffers
where new objects, events, and higher-level strastuare
created [144, 145]. We view the hippocampus as
implementing LIDA’s Transient Episodic Memory [146,
147],where events are encoded in humans for a éeushor a
day at most [148], as well as the Spatial Memorygule [149,
150] which is currently in development.

LIDA’'s Global Workspace, where coalitions compete f
attention, can be thought of as possibly correspgndo



different brain areas during successive cognitiyees, with
each such area holding a coalition appropriaté, t8aalitions
race to threshold with the winner “igniting” [151d give rise
to a thalamocortical core [152], which implementse t
conscious broadcast via a dynamic Global WorksgdGaV),
presumably facilitated by large scale oscillatognchrony
[69, 153, 154]. LIDA’s Procedural Memory would cespond
to the anterior cingulate and the striatum [153]Mghile its
Action Selection mechanism would be grounded inkiheal
ganglia [157]. These last two modules are concenvid
what action to perform in response to the situatinderstood
during a single cognitive cycle. The correlatesvofitional
decision making, arising from multiple cognitivectss (see
next section), include the ventral anterior cingrileortex and
prefrontal cortices (such as the ventromedial amdalateral
prefrontal cortex) [158, 159]. Although these poetal areas
are involved in many other tasks, their importarfoe
volitional decision making is highlighted by the papent
necessity of prefrontal involvement in the osaifgt
synchrony giving rise to conscious activity [1580], which
is necessary for selecting volitional actions (Seetion 1V).
LIDA’s Sensory-motor Memory, which is concerned hwit
how to perform the selected action, would invollke torsal
striatum [161]. For a more comprehensive overviéweural
mappings of LIDA modules and processes see thedal
[123].

In contrast to LIDA, some other cognitive architees and
models have attempted to directly correlate thviggin their
modules to brain areas, and have presented evidendke
neuronal counterparts of their modules based on breaging
data [162]. For example, ACT-R has been successful
predicting fMRI activation in tasks such as algébrzroblem
solving [163] or mathematical reasoning [164]. Teuronal
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including ACT-R’s, removes information about howeth
brain’s spontaneous activity interacts with stinsutiriven
input [172] by averaging out signals not time-lodki® the
stimulus.

In contrast, dynamical system properties outlinedva, as
well as oscillatory activity and brain rhythms, ypla major
role in LIDA's view of the neuronal correlates unigang its
modules and processes [67, 69, 173, 174]. LIDAIlfitse
modular, but does not try to map its modules tonbaaeas in
a one-on-one fashion. Based on the cognitive dygbothesis
(Section 1) and the assumption that functional smousness
requires large-scale theta-gamma synchrony [153], Wve
have derived the temporal length of the cognitiyele and its
subprocesses [69], and have used these paraneteitate
behavior data (Section X). Efforts are under wayfugher
substantiate the hypotheses put forward by the Libddel
with respect to its neuronal and oscillatory cotpeets.

IX. THELIDA , COMPUTATIONAL FRAMEWORK

The LIDA, Framework is a generic and customizable
computational implementation of aspects of the L{dwodel,
programmed in Java. The main goal is to providesaegc
implementation of the model, easily customizablesipecific
problem domains, so as to allow for the relativeiypid
development of LIDAcontrolled software agents. Here, we
briefly describe the LIDAFramework elements and principal
characteristics. A more detailed description canfdaend in
[175].

The Framework permits a declarative descriptionttadf
specific implementation details of an agent. Thehidecture
of the software agent is specified using an XMLnfatted file
called theagent declaration fileIn this way, the developer
does not need to define the entire agent in Jaaaylshe can

correlates underlying ACT-R's modules that have nbeesimply define it using this XML specification fileFor

substantiated using such fMRI studies include th&fdrm
gyrus (visual), posterior parietal cortex (imag)nanterior
cingulate cortex (goal/control), lateral inferiorrefrontal
cortex (retrieval), caudate nucleus in the basahgtia
(procedural) and the motor cortex (manual) [165]168part
from substantiation of their claims with neural ity
methods, another difference between LIDA’'s and ARS-
neural mapping is that ACT-R assumes a strictly uhd
organization of the brain, with functional one-ameo
mappings to individual areas, a view that has sohaienges
based on empirical results [137, 167, 168]. Andersb al.
[166] also point out that there is some evidenceiresy the
prediction arising from this mapping that the bagahglia (as
the counterpart of ACT-R’s production system) ig thole
path of communication between different corticaaa. This
evidence includes observed cortical-to-cortical nemstions
(e.g. [137, 169]), the apparent small-world projsrtof the
cortex (minimal-length pathways connecting all indual
components) [170, 171], as well as the major rdldong-
range synchronization of oscillatory signals in mé&dg
communication between different cortical networkks4,
172]. Finally, analyzing cognitive states usingnstius-locked
averaging across trials, as done in many brain imgagtudies

example, new behaviors (schemes) can be added agemt
manually by entering a new entry to the parametérthe
Procedural Memory module, and specifying the PANle®
constituting the scheme context (in which situatibe action
would be appropriate), the action that should berawhen
the context is matched, the expected result o&ttieon, and a
base-level activation (see Sections Il and VI).

An important goal of the Framework is its ready
customization. The customization can be done araélevels
depending upon the required functionality. At thesinbasic
level, developers can use the agent declaratioa fi
customize their applications. Several small pie@esthe
Framework can also be customized by implementing
particular versions of them. For example, new sgias for
decaying activations or types of codelets can @dmented.
Finally, more advanced users can also customizechadge
internal implementation of whole modules. In eadse; the
Framework provides default implementations thatatjye
simplify the customization process.

The Framework was conceived with multithreadingpsup
in mind. Biological minds operate in parallel ana should
artificial ones, not only for plausibility, but alsn order to be
able to deal with complex perceptual informationhwimited
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resource¥ [65]. Tasks, encapsulations of small processegenerally represents the relative importance ofefleenent to
together with a dedicated task manager, implemettie current situation. All activations are excited decayed
multithreading support that allows for a high levef using “strategies.” These are implementations ef dtrategy
parallelization. Finally, the LIDAFramework implementation design pattern which allows for customizable betwavn this
adheres to several important design principles ][Br@l best case they specify the way activation of each elériseexcited

programming practices.

or decayed, so it is easy for the developer to gbhaihe

The LIDA, Framework defines several data structures aragorithm for excitation or decay of elements.

procedures (algorithms) and is composed of sepéeaks. Its
main components are software modules,
elements that represent conceptual modules in tiBAL
model. Each main component of the LIP&ognitive model
has a corresponding module in the framework. Famgpte,
the Sensory Memory, Workspace and Action Seledi@nall

Finally, the Framework includes several supportiogls,

intercondectsuch as a customizable graphical user interfacd)(®Ghdging

capabilities, and an architecture loader that parseveral
XML files with the definition and parameterizatiosf the
agent.

Vector LIDA is a promising improvement of the LIDA

modules in the framework. In addition to a commomognitive architecture’s computational implemermtatiVector

application programming interface (API), each meduis its
own API that defines its functionality. Modules céave
submodules. A submodule is a module nested insid¢har
module. For example, the Workspace has several ciiles,
such as the CSM submodule.

Most modules in the LIDA Framework are domain

LIDA, [177] employs high-dimensional vectors and reduced
descriptions. High-dimensional vector spaces hateresting
properties that make them attractive for represiems in
cognitive models [178]. The distribution of the tdisces
between vectors in these spaces, and the huge nuofibe
possible vectors, allow noise-robust representatiehere the

independent. For each of these modules, the Frarkewadlistance between vectors can be used to measusettharity

provides a default implementation. For example,n$ient

(or dissimilarity) of the concepts they represevibreover,

Episodic Memory is implemented as sparse distributehese high-dimensional vectors can be used to septe

memory [52] and the Action Selection Module as hawor
net [56]. However, some modules must be domainifspen
particular, Sensory Memory and Sensory-Motor Mentaye
to be specified on the basis of the domain thattiaenework
is being applied to. Nevertheless, the Framewopipkes base
implementations from whence the developer can implhg
domain-specific functionality.

Modules need to perform several tasks in orderctoeae
their specific functionalities. The Framework pres Tasks,
which are encapsulations of small processes. A teodan
create several Tasks to help it perform its fumgioA Task
can run one time or repeatedly. A Task that paastgation
is an example of the former, while a structure-ding) codelet
is an example of the latter. The Task Manager otsthe
execution of all Tasks in the Framework. Tasks d¢sn
executed on separate threads by the Task Manageeving
parallel execution in a way that is approximateinsparent to
the user.

complex structures, where each vector denotesemesit in
the structure. However, a single vector can alpoesent one
of these same complex structures in its entirety by
implementing areduced descriptiona mechanism to encode
complex hierarchical structures in vectors or catinaist
models [179]. These reduced description vectors ban
expanded to obtain the whole structure, and carnudesl
directly for complex calculations and procedureschs as
making analogies, logical inference, or structw@inparison
[see 178, 180 for further discussion of these appbns].
Vector LIDA will utilize a new reduced representati
model, the Modular Composite Representation (MC&3eh
on high-dimensional integer vectors [181]. Thisresgntation
has advantages over previous similar models: it dasd
representation capability with relatively simplecogtions (see
[181] and [182] for details). Also, several new igdons of
Sparse Distributed Memory (SDM) [52], the IntegedDN®
[183] and the Extended SDM [184] provide supportsioring

Modules need to communicate with other modules. Tiiese vectors with an intrinsic learning mechanism.

implement this, we use the Observer design paftefé]. In
short, a module, called the -‘listener,” which reesi
information from another “producer” module, can istgr
itself with the producer as a listener. Each tifme producer
has something to send, it transmits the informatioall of its
registered listeners. There are humerous instaoficksteners
in the Framework. One module can be registered lesteaer
of several other modules. Also a module can becaymer
and a listener of other modules at the same time.

Nodes, links, and other LIDA elements such as tioah,
codelets, and behaviors, have activation. The bt

* The implementations based on LID&re not yet at a stage where the

This new implementation will present several adagas
over the current version. First, MCR vectors hdegotential
of directly implementing Barsalou’s perceptual syinkystem
[44]. Constructing MCR vectors from sensory and onot
information using hyperdimensional computing opereat
would produce representations that have many of
perceptual symbols’ characteristics described bys@au
[44]. Similar sensory information would yield simuil
representations, and the processing operationsGR Mould
facilitate the implementation of the simulators adsed by
Barsalou, such as integrating details [185], sitimdaevent
sequences [184], and categorizing new stimuli [=&cond,
many cognitive operations require approximate caiapas,

the

functional importance of parallel and asynchronamperation could be Which are hard to implement with graph-like repreagons,

verified. Ongoing work on implementing LIDAn robots might make such puyt are natural for vector representations. THinteger SDM
empirical evaluations possible in the future.
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and Extended SDM would provide an inherent learning red or green light, and a button which the apestto press

mechanism [52] that will reinforce common vectors the
memory. Finally, the vector nature of this modelkesit a
good candidate for parallel implementations, usBigUs or
other high-performance parallel architectures.

Although this new implementation is still in progse
extensive research and implementations have alréaen
carried out for its main components: MCR vectorsl dne
various SDM implementations.

when the light turns green.

The LRT agent is based on the LIPAomputational
Framework and contains additional code to implentbet
simple environment [69]. Some parts of the undeditey
phase of the LIDA cognitive cycle (Transient Episod
Memory, Declarative Memory, structure building cledg)
were not required because of the simplicity of thisk.

The LRT agent’s cognitive cycle starts with a regrgation

Summing up, the LIDAFramework allows the creation of of the light in the environment, which is stored $ensory

new applications and simulations based on the IdD#del.

Its design and implementation aims at simplifyihig tprocess
by permitting the developer to concentrate on fhexiics of

the application, while hiding the complexities bketgeneric
parts of the model. Use of the Framework also eef®igood
software practices that simplify the creation ofmgbex

architectures. It achieves a high level of absiwagbermitting

several ways and levels of customization with a lewel of

coupling among modules. Supplemental tools likeld énd

logging support are also provided. The resultpeaerful and
customizable tool with which to develop LIpAontrolled

software agents and robots.

X. LIDA |-BASED SOFTWAREAGENTS

Memory. Feature Detectors pertaining to the colbrtre
stimulus observe this representation and pass atictiv to
corresponding PAM nodes, which are then copied h® t
Workspace, indicating that the stimulus has beeogeized
or understood(this occurs in about 100ms, as in humans
[190]). This marks the end of thenderstanding phaseyhich
in more complex domains would also include memeagat
and structure buildirg.

In the attending phase attention codelets look out for
relevant, important, urgent, or novel percepts, ltiom them
into coalitions, and move them to the Global Wodcp One
of these coalitions wins the subsequent competition
consciousness and is included in the global braaddais
coalition has entered consciousness. There is seidence to

replicate experiment data from human subjects B3, in

order to show how the computational LID&rchitecture can
model human cognition in basic psychological taSks main
goals with these agents were to substantiate sdmiheo

beginning of a cycle for simple processing tasksjen the
assumption that conscious perception involves symdus
oscillatory activity in brains [191].

Finally, an appropriate action is selected basedttan

claims of the LIDA model and to take a first stgards contents of the conscious broadcast in #otion selection

identifying a set of internal parameters. Ideahgse internal Phase The schemes in Procedural Memory, in this case
parameters will remain constant when disparatesatgarom two schemes representing the action to press titerband to
different experiments conducted on human subjects d€lease it, obtain activation based on how well ¢bescious
reproduced with LIDA agents. Finding such a set ofcontents match their context. A single action wflen be
parameters would provide substantial evidenceefitturacy Selected in the Action Selection module. The chastion is
and usefulness of the conceptual cognitive model. then passed to Sensory-Motor Memory where it iscetesl.
Basic values for the parameters governing mechanism When this occurs, the state of the button in thérenment is
LIDA, were derived from neuroscience data [69]. Foget to the appropriate value by a snippet of cbdedould be
example, visual feature detectors in LIPaigents have to take called the LRT agent’s “actuator.”
about 30ms to run, derived from neuronal conductielays ~ The cognitive cycle durations of the LRT agent (288
in area V1 in the human visual cortex [186, 18%eJe basic averaged over 30 runs, see [69]) are comparablelabyer
parameters were first tested in a simple reactiore ttask than the cycle durations inferred from the reactiomes of
(LIDA, Reaction Time agent), and verified in an experimer@dult humans (200ms according to [192]). This iaststent
designed to investigate perceptual simultaneity @omtinuity ~ With recent neuroscientific evidence (e.g. [1543,1894], see
(LIDA, Allport agent), and two experiments examining th&lso [69]) supporting the idea that single percepction

properties of attention (the LIDAAttention and Attentional
Blink agents). The latter three agents were alstvated by
the goal of validating some of the claims of the GWf

consciousness underlying the LIDA model. GWT po#itst

consciousness is discrete, which is consistent sathe recent
neuroscientific evidence [154, 188, 189].

The LIDA, Reaction Time agent The LIDA, Reaction
Time (LRT) agent performs a simple reaction timektarhe
main goal was to evaluate the behavioral conse@seotthe
parameters derived from empirical neuroscience exd,
concerning the duration of the cognitive cycle #sdphases.
The agent is embedded in a simple environment stimgiof

cycles may take longer than simple reaction tinskgaunder
normal circumstances (e.g. more complex stimuliye W
hypothesize that the main reason for humans beistgif at
such experiments is the effect of temporal expiectatvhich
reduces reaction time (and has not yet been impitadein
LIDA)). A behavioral consequence of this is that reactio
times to predictable stimuli are significantly lawehan

15 Embedding these processes into a cognitive cys#aieh increases the
duration of a single cycle — is one of the differes between LIDA and other
cognitive architectures (see Section Xl). Due te tarly stage of the
implemented LIDA framework, this difference has not been empircall
evaluated yet.



reactions to uncertain and temporally highly vaeagstimuli
(see [195] for a review). From a neurophysiologigaint of
view, increased activation levels can be observed
subcortical (the basal ganglia) and cortical actmrecuits
(inferior parietal and premotor areas) prior togeéring the
stimulus. This increased activity is presumed taégable of
reducing the time required for action selectiongoedictable
stimuli [196, 197], an effect not accounted for fthis
simulation.

The LIDA, Allport agent. This agent
psychological experiment proposed by Allport [6@]th the
intention of comparing thBiscrete Moment Hypothedi$98]
with the Continuous (Traveling) Moment HypothesiBhe
Discrete Moment Hypothesis posits that consciousnies
comprised of distinct and
‘moments,’ within which all time-order informatids lost. In
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lines and the blank screen would alternate (infitlsé S/2 ms
the 12 lines would be displayed, perceived simeltasly
since they fall into one conscious ‘moment’; andhia second
S/2 ms there would be a blank screen — thus no ngdines
could be perceived on the screen, just flickeriridje cycle
time at which subjects will perceive no movemerit thius be
S when decreasing and S/2 when increasingA significant
difference between these two conditions is predicte

In contrast, theContinuous Moment Hypothesfredicts

replicates athat successive events are perceived to be sineaitesn

whenever, and as long as, they fall within the terap
constraints of the conscious ‘moment.” Thus, sirtbe
criterion for determining S was not only momentary
simultaneity but perpetual absence of perceived emmant,

non-overlapping consciouthere can be only one cycle tiragS at which this criterion is

met (att, = S/ 2, the contents of a conscious ‘moment’ \doul

contrast, theContinuous (Traveling) Moment Hypothesischange gradually from containing 12 lines to conitaj just

considers conscious ‘moments’ to correspond toicoatisly
moving segments of the incoming sensory informatidfe
used this experimental paradigm to show that LIDdiscrete

the blank screen — thus there would be movemeénstead of
just alternating between the two cases, as in ibrate case
described above). There should be no differencedest trials

consciousness position is an adequate model of mumdecreasing or increasingAllport [68] did not find significant

functional consciousness, despite Allport’s conidaghat the
Discrete  Moment Hypothesiscontradicts experimental
evidence. Another goal of this simulation was teifyethe
timing parameters in a more complex setting [69].

In Allport’s experiment, participants were seatedrbnt of
a screen, which displayed a single horizontal lapgearing in
one of 12 positions on the screen (see Figure Hjs Tine
rapidly changed position, moving upward. Upon réaghhe
topmost position, the screen was left blank for tzme
duration as the line took while traversing eachtlod 12
positions, and then the line appeared again onbtittom
position. The cycle timer) was controlled by the participant.
At very large cycle times, participants could de gingle line
jumping from position to position. Upon decreasingthey
reported seeing multiple lines, moving together.afgpecific
cycle time S and below, participants reported spen
stationary array of 12 lines flickering in synchyonThe
participants had to arrive at the cycle time S, rghbey did
not perceive any movement on the screen.

In separate trials participants first decreasedctlote time
from a very high value (slow to fast), and thenréased it
from a very low value (fast to slow), at which kles were
seen simultaneously. Both times were recorded fache
participant. These times were then compared t@itédictions
of the two hypotheses about consciousness. Acapirtdirihe
Discrete Moment Hypothesishere are two different cycle
timest at which all 12 lines are seen simultaneously fon t
screen and are perceived not to mover,At S, displaying all
lines as well as the blank screen (left blank f{#, $he same
time as the lines took to display) falls within ooenscious
‘moment’; thus subjects should not perceive any emoent,

differences between these two conditions, and tmgsied
against theDiscrete Moment HypothesisHowever, despite
LIDA /s consciousness mechanism being fundamentally
discrete, we could successfully reproduce Allpomesults
with a LIDA-based agent.
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Figure 4 The display and conscious percept in Allport’s erkpent.
Lines were displayed in one of 12 positions, appgato move
upwards. Upon reaching the top, the screen wasblafik for the
same period as the lines required to traverse 2llpdsitions.t
denotes the total cycle time. At cycle timesS, subjects could see
multiple lines moving together (left panel). AtS, subjects saw all
lines simultaneously and perceived no movemenhipgnel). (From
[69] with permission)

The LIDA Allport agent was implemented similarly toe
LRT agent. The major differences were the followifdne
Allport agent had a PAM consisting of twelve nodese for
each line on the screBnFeature detectors passed activation
to these nodes depending on the line positionsé had two
different schemes in the Procedural Memory. Thet Sicheme
became active when no movement was perceived on the

since there will be no change between this consciodcreen, i.e. when the contents of multiple consclmoadcasts

‘moment’ (containing 12 lines and a blank screengl ¢ghe

next one. Att, = S / 2, if the hypothesis of discrete conscious
moments is accepted, no movement should be ped:eive 6 The twelve nodes, and the two schemes were hateldcoito this agent,

either, since in this case conscious ‘moments’ aairtg all

since the implementations of perceptual and praeddiearning in LIDA are
not yet finished.



contained all 12 lines; this scheme caused thetdgepress
the “no movement perceived” button. The secondreeheas
selected when a single line, or multiple lines, avperceived
as moving by the agent, and resulted in the agasispg the
“movement perceived” button. For easier impleménitatthe
agent did not change the cycle timg i{self — it only reacted
to whether or not it perceived movement on the estrghe
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after T1 without a distractor in between (lag-1 rems.
Increasing T2 salience [200] or emotional arou28ll] also
attenuates the AB effect. Although a large numbér o
conceptual and computational models have been peapo
and the basic AB phenomenon is well understood,tmos
models are unable to integrate and account fgsl@homena
and findings associated with the AB (see [202] 20Q] for

cycle time was changed gradually by the environmemécent reviews of these models).

controller). There was only one cycle time at whibh agent
did not perceive movement, 96ms [69], which is cstest
with Allport’'s (1968) results (unlike the prediatis of the

We have developed a LIDA-based attentional blinkdeto
[24] to computationally model visual AB experimei203]
and conceptually explain a wide range of phenomAsacan

Discrete Moment Hypothe§isnd provides support for the he seen from Figure 5, the LiDAttentional blink agent was

claim that the temporal extent of a conscious “muthef a

LIDA agent is similar to that of a human. The megason for
this is that in the LIDA model, single conscioudsepes are
discrete but, contrary to Stroud’s [198] view, mecessarily
distinct — a current conscious ‘moment’ can confaémcepts
from a previous moment. Whether or not an oldercer
remains conscious depends on how long in the phasibeen
perceived, and on attentional modulation, wherequs that
are subjectively important and attended to canigtdmger in
consciousness.

The LIDA Attentional agents. We have developed two

agents reproducing attention experiments to subiatan
LIDA’'s GWT-based attention and consciousness mdshan
the LIDA, Attention [23] and Attentional Blink [24] agents.
The first agent used an adapted version of Van 8taeke’s
experiment [199]. The environment consisted of ackl
screen with two white squares on the left and itpet Iside of
a central fixation cross, in which cues and thgets could
appear, and which the agent had to respond tor Affixation
period, one of the white rectangles was randompjaced by
the cue (a colored rectangle) for 200ms, followgdHe two
white rectangles again for 20ms. Subsequently,tdhget (a
small black rectangle) was randomly presented i oihthe
white rectangles until the agent responded, andébponse

time was measured. Humans [199] as well as the LID

Attention agent [23] were faster by 20ms in congtuéals —
in which the target appeared on the same sidecasuth — than
in incongruent trials (average response times \86fms and
380ms). We hypothesize that the
difference is that in congruent trials, the progetliischeme

responsible for the correct behavior has alreadgnbe

instantiated by the cue by the time the targetvesti and
merely has to be selected and executed. In contmast
incongruent trials the procedural scheme has todtantiated
as well as selected and executed; and this schestantiation
takes an additional 20ms compared to the congresd [23].

The second attentional agent reproduced the aiteadti
blink (AB). The AB refers to the phenomenon of widuals
often being unable to consciously perceive the rsgadf two
presented targets in a stream of target and distratimuli, if
the second target T2 is presented within 200-508ftes the
first target T1. A considerable number of effects/én been
discovered in AB experiments. It has been docundetttat
the second target can be reported if presented diatedy

successful in reproducing the AB effect (using daga from

[203)).
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Figure 5 The results for human subjects (panel B left, {208]) and
the LIDA AB agent (panel B right) (based on [24])

A LIDA-based AB model could provide a novel approac
to understanding the AB for two reasons. First, Al» a
general cognitive architecture, as opposed to afieetl AB
models, and integrates other cognitive phenomenavedls
Thus, a larger range of phenomena can be accotortéd.g.
the attenuation by emotional arousal, or the ABratation in
whole report experiments [204]). Although thereaisother
cognitive architecture based AB model [205] basedACT-
R, this model is unable to conceptually explain ¢fffects of
emotional arousal, or the phenomenon of target usioi,
because standard ACT-R does not include emotional

rocessing or high-level vision [24]. LIQAcan account for

oth, although the former only on a conceptual llesice
emotions have not been implemented yet. SecondA LD
also based on the GWT and thus provides a plauaideunt
of attention and access consciousness, the mosbriamp

reason for the time

mechanisms underlying the attentional blink.
Xl. CONTRASTINGLIDA WITH MAJORCOGNITIVE
ARCHITECTURES

A full description of other cognitive architecturesould
exceed the scope of this paper (see [4, 123, 2f0¥6tefcent
reviews), as would a comparison of LIDA’s featuveigh the
large number of other architectures (such compasisan be
found in [123, 207] or [208]). Instead, we will fax on a few
significant differences between LIDA and existingajor
cognitive architectures, thereby highlighting hole tLIDA
model can complement research on cognitive ardhites.

It is important to point out that the conceptuaDBl- model
has only been partially computational implementaag that
reproduction of human data has only recently bedinus, it
would be infeasible to compare LIP#A simulation data to the



wealth of data obtained from approximately 30 yeafs
simulations of other architectures such as ACT-RsTs also
the main reason why the present focus
computational as well as conceptual descriptiorath bof
which have proven highly useful in cognitive scienby
providing explanations and hypotheses guiding amgoi
research [12, 16].

Computational differences.LIDA differs from many other
cognitive architectures such as ACT-R [209], SOAR]|
CLARION [210, 211], EPIC [212], and Icarus [213] &
number of ways. The most significant of the implated
differences include:

1. Adherence to grounded theories of cognition lactt of
amodal symbolgsee Section II).

2.Explicit and neuroscientifically plausible furanial

consciousness mechanigbased on GWT) [22, 39, 40, 112] —

the only other systems-level cognitive architectaxplicitly
addressing consciousness is CLARION, proposingoaléwel
representation which distinguishes between consciand
unconscious knowledge and processes [214]. Thelddiom
of the Allport experiment is an example for the ortpnce of
functional consciousness for modeling human behavio

3. Specific explanation and subdivision of memgstesns
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5. Complex, but detailed and effectual preconscious
working memorythat enables binding and understanding

is both d®ection Il and [79]). LIDA’s workspace is fullyrgunded

and modal [42], and consistent with Baddeley's theof
working memory [220].

Conceptual differences There are also differences in the
parts of the conceptual LIDAmodel that have not been
implemented computationally as of yet.

1. The use of feelings and emotions as flexiblévatots
Emotions are not accounted for by the mentioned
architectures, with the exception of SOAR, an dechiure that
has an implemented emotion model based on appthisaity
[95] and has emotionally motivated actions as widtle most
important difference between SOAR’s and LIPg\ emotion
models is the derivation of affect intensity. SOARploys an
affect intensity model based on expected utilityheveas
LIDA s affect intensities are influenced by activatioofs
nodes in the entire node structure (perceptualesgmtation)
representing an event.

2. Several modes of human-like learnifg2, 221],
including perceptual, spatial, procedural, atterdio and
episodic learning. None of the mentioned architestu
account for all modes of learning mentioned in BeacvI.

LIDA s memory systems include sensory memory, workinglthough conceptually developed, these ideas haste afl

memory, perceptual associative memory, transiemodt
memory, declarative memory, and procedural memdBA ¢
further includes sensory-motor memory, attentiomamory
[23] and spatial memory [215] which are currentlgdar
development. Transient episodic and declarative onies are
modeled using a sparse-coded, noise-robust
mechanism able to account for phenomena such aiptbé&

the-tongue effect or the remember-know distinct{@4d6].

Although episodic memory is arguably an importaatt pf
human cognition, few cognitive models account for4i.

SOAR has recently added an episodic memory mod@1lé]]
in essence storing snapshots of the entire workspantent
(short term declarative knowledge). In contrastDAlonly

stores events that appear in the conscious braadtass
Transient Episodic Memory, and employs a modifiestance
of an SDM [92], resulting in a content-addressaasesociative

been implemented computationally as of yet, excfept
episodic learning and procedural learning. Episddarning
[92] has been implemented in the LIPAomputational
framework (Section 1X), while procedural learningaw
implemented prior to the development of the framew@6]

memamnd is not yet part of it. Neither of these two daveen

validated by replicating human data as of yet. DAlbased
agent implementing perceptual learning is now gpess.

As described above, we feel it is both useful anddrtant
to have fine-grained models of memory systems aaching
mechanisms. The conceptual LIPA model contains
approaches and ideas of these processes, but fingsa have
been implemented in LIDAto date. In contrast, many
cognitive  architectures have well-developed leagnin
algorithms in specific domains. For example, reioément
learning - a form of procedural learning - is impknted in

episodic memory with a decay rate measured in houfCT-R, SOAR and CLARION. The latter two are alsdeato

(consistent with Conway'’s [80] and Baddeley's [88as).

4. Sophisticated procedural memory and action s$ielec
facilitating high-level decision making and non-ioe
problem solving, which has been implemented [2&8]well
as procedural learning, which is a part of develeptal

form new semantic representations. SOAR also stppor
episodic learning (also implemented in LIDA). Déspiheir
superiority in terms of implemented learning mogdels
however, we believe that LIDA can still make a cimition
here, since none of these architectures accounhéentire

learning that has been implemented [76] (but not yeariety of learning and memory suggested by the AdD

integrated with the LIDA computational frameworkjhe
conceptual LIDA model also
developmental learning (see below). While the noeri
cognitive architectures address action selectich @noblem
solving to different degrees [4], developmentalridézg is
usually restricted to procedural learning. It sldoube
mentioned that a number
developmental learning have been proposed in rohdé.g.
[219], see also [123]); however, these systemsuisually not
concerned with cognitive modeling.

includes other forms of

model.

Weaknesses of the LIDA modelThe major shortcomings
of LIDA compared to other cognitive architectureslide:

1. No implementation of multicyclic cognitiofe.g.
deliberation, volition, reasoning, ...). This is thmajor
strength of production-based systems (e.g, SOART-RC

of architectures supporting.).

2. No model of languageas opposed to e.g. ACT-R [222]
or SOAR [223, 224]. Current work simulating therlgag of

vervet monkey alarm calls (in preparation) is thdup be a



19

precursor of adding language capability to LIDA. contributions in turn. Quotes in italics are frorarigley et al,
3. Very little work to date on causality and probip'’, and serve to denote an open issue.
both of which would be important for real-world &pptions “categorization and understandihgrhe internal structure

such as robotics. Example cognitive architecturesndly of LIDA’s Workspace, including the CSM [79] (witltsi own
based on probability theory include Sigma [225] dacakus internal structure) and the Conscious Contents @U2@5]
[213]. are devoted precisely to the issue of low-levelarsthnding
4. Lacking implementation of metacognitian important of both external sensory input and internal statej of the
part of higher-level cognitive processing. In castr relation between them. The agents effecting thitemsstanding
CLARION [226] includes implementations of meta-ciiye are LIDA’s structure-building codelets.
processes. (Metacognition was implemented in LIDA’'s “...architectures that directly support both episodic
predecessor IDA [227], but by means of adding dacedlg memory and reflective processes that operate ostthetures
different architecture. Current plans are for amegmated it contains’ The LIDA model includes both Transient
inclusion of metacognition in LIDA) Episodic Memory and Declarative Memory. Local
5. Early stage of LIDA Although LIDA aims to be a associations from these memory systems form parthef
general cognitive architecture with empirically ii@able content used by structure-building codelets to douilew
predictions, only a small subset of LIRAas been actually structures in the CSM in LIDA’s Workspace.
implemented and verified so far. LIDA is much maoeeent “... encode knowledge in a variety of formalismsatel
than many cognitive architectures — the first \@rsof the them to each other, and use them to support igtail
computational framework was released less than yesrs behavior more flexibly and effectivélyLIDA employs
ago [175]. distinct data structures, and distinct processat dperate on
Comparison with similar systems.The LIDA model is them for PAM, the episodic memories, and Procedural
primarily an implementation and fleshing out of tBéobal Memory. Their roles in the cognitive cycle relabem to one
Workspace Theory (GWT) of consciousness in cogmitio another, and allow them to support action selection
GWT was inspired by the blackboard systems of H&ath “...manage an agent's resources to selectively foitsis
and colleagues in Al [228], of McClelland in neuratworks perceptual attention, its effectors, and the taiksursues’
[229], and of Van Der Velde in cognitive scienc28(Q]. (see LIDA’'s attentional mechanism (functional conscioess)
[231] for an overview.) Recall that a blackboardteyn, often performs just these functions.
dedicated to solving a complex ill-defined problemnsists of “...origin of agents’ primary goals in terms of intel
a family of knowledge sources (experts/agents),harexl drives” Such internal drives are implemented explicated
blackboard data structure on which they write tiseiggested LIDA: via feelings and emotions, providing flexibilityn i
partial solutions, and a scheduling/control strietihat decision making.
regulates the writing to the blackboard. The LIDAdel can “...exhibit emotion in ways that link directly to eth
be viewed as a blackboard system with its Worksgaceing cognitive processes and that modulate intelligegihavior”
as the blackboard, each of the other memories hed t Feelings and emotions play significant roles in heasf
processes acting as knowledge sources, and thiDA's major modules and processes, modulating action

attention/consciousness system constituting theelection and learning as well.

scheduling/control structure. Note that unlike apidgl

blackboard system, LIDA models cognition, rathearttbeing XIlll. CONCLUDINGREMARKS

devoted to the solution of one problem. We have provided a summary overview of the LIDA miod

There have also been other implementations of @@1f 5 gystems-level conceptual and computational mofdeliman
GWT such as the Global Neuronal Workspace system_ é‘(f)gnition that is grounded in cognitive psychologyd
Dehaene and colleagues [232], Wallace's mathematicggnitive neuroscience, and whose architecture egnally
treatment of GWT [233], and Shanahan and colledguegiiords grounded cognition, attention, emotion, icact
robotic GWT architecture [234]. None of these thre%election, human-like learning, and other higheele

constitutes a full, systems-level cognitive arottitee. processes. We have also briefly described the LIDA
computational Framework and have described sinuusti
XIl. HOwLIDA ADDRESSES SOME OF THOPENISSUES IN involving four LIDA software agents replicating

COGNITIVE ARCHITECTURES psychological experiments and providing evidencat th

In their recent review of research on cognitivehdectures LIDA’'s cognitive cycle timing and LIDA’s attentiorand
[4], Langley, Laird and Rogers list and discussenseparate consciousness mechanisms are comparable to hurbpttsu
“open issues” which they suggest should drive eurre This is an important first step towards increasld@A’s
research on cognitive architectures. Here, we stgpat our plausibility as a model of human cognition. Morecksu
LIDA architecture makes some contribution on sixtlebse replications are in progress. Furthermore, the LiE&nitive
open issues. We will briefly describe each of thosarchitecture is suited not only for simulated eipents, but

also for real-world applications. Its predecessbA |was

7 A paper on causality in LIDA is currently in pregtion. Discussions on d‘?Ve'OPed as_a dlstrl_bu_tlon agent for the Navy, rm“mc_ajtl_ng
how best to incorporate probability in LIDA are ofig. with sailors via email in natural language [66].eTabilities



and mechanisms required for this job can be usednamber
of additional fields of application including aitifal clerks,
customer service agents, travel agents, loan officea bank,
and many others [236]. Apart from human informatagents,
LIDA could also function on a physical robot (itsactivity
facilitated by asynchronous operation and one-arhing in
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CRAM control system [237] and to embody it on a BPR&-
humanoid robot.

Finally, we emphasize the importance of cognitivedels
such as LIDA. These models play a major role innitbge
science due to their usefulness in providing detdaibnd
verifiable explanations for cognitive processes,d am
providing hypotheses that can guide ongoing resda&:ct].
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