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The fuzzy symmetric solution of fuzzy matrix equation A ˜X = ˜B, in which A is a crisp m×m nonsingular matrix and ˜B is an m×n
fuzzy numbers matrix with nonzero spreads, is investigated. The fuzzy matrix equation is converted to a fuzzy system of linear
equations according to the Kronecker product of matrices. From solving the fuzzy linear system, three types of fuzzy symmetric
solutions of the fuzzy matrix equation are derived. Finally, two examples are given to illustrate the proposed method.

1. Introduction

Linear systems always have important applications in many
branches of science and engineering. In many applications, at
least some of the parameters of the system are represented by
fuzzy rather than crisp numbers. So, it is immensely impor-
tant to develop a numerical procedure that would appro-
priately treat general fuzzy linear systems and solve them.
The concept of fuzzy numbers and arithmetic operations
with these numbers was first introduced and investigated by
Zadeh [1], Dubois et al. [2], and Nahmias [3]. A different
approach to fuzzy numbers and the structure of fuzzy
number spaces was given by Puri and Ralescu [4], Goetschell
et al. [5], and Wu and Ming [6, 7].

Since Friedman et al. [8, 9] proposed a general model
for solving an n × n fuzzy linear systems whose coefficients
matrix is crisp and the right-hand side is an arbitrary fuzzy
numbers vector by an embedding approach in 1998, many
works have been done about how to deal with some fuzzy
linear systems with more advanced forms such as dual
fuzzy linear systems (DFLSs), general fuzzy linear systems
(GFLSs), fully fuzzy linear systems (FFLSs), dual full fuzzy
linear systems (DFFLSs), and general dual fuzzy linear
systems (GDFLSs). These works were performed mainly by
Allahviranloo et al. [10–13], Abbasbandy et al. [14–17],
Wang et al. [18, 19] and Dehghan et al. [20, 21], among
others. However, for a fuzzy matrix equation which always

has a wide use in control theory and control engineering,
few works have been done in the past decades. In 2010, Guo
et al. [22–24] investigated a class of fuzzy matrix equations
A ˜X = ˜B in which A is an m × n crisp matrix and the
right-hand side matrix ˜B is an m × l fuzzy numbers matrix
by means of the block Gaussian elimination method and
the undetermined coefficients method, and they studied
least squares solutions of the inconsistent fuzzy matrix
equation Ax̃ = ˜B by using the generalized inverses. In 2011,
Allahviranloo and Salahshour [25] obtained fuzzy symmetric
approximate solutions of fuzzy linear systems by solving
a crisp system of linear equations and a fuzzified interval
system of linear equations. Meanwhile, they [26] investigated
the maximal and minimal symmetric solutions of full fuzzy

linear systems ˜Ax̃ = ˜b by the same approach.
In this paper, we propose a general model for solving

the fuzzy matrix equation A ˜X = ˜B where A is crisp m × m

nonsingular matrix and ˜B is an m× n fuzzy numbers matrix
with nonzero spreads. The model is proposed in this way,
that is, we first convert the fuzzy matrix equation to a fuzzy
system of linear equations based on the Kronecker product
of matrices and then obtain three types of fuzzy symmetric
solutions of the fuzzy matrix equation by solving the fuzzy
linear systems. Finally, some examples are given to illustrate
our method. The structure of this paper is organized as
follows.
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In Section 2, we recall the fuzzy number and present the
concept of the fuzzy matrix equation and its fuzzy symmetric
solutions. The method to solve the fuzzy matrix equation
is proposed and the fuzzy symmetric solutions of the fuzzy
matrix equation are obtained in detail in Section 3. Some
examples are given to illustrate our method in Section 4 and
the conclusion is drawn in Section 5.

2. Preliminaries

2.1. Fuzzy Numbers. There are several definitions for the
concept of fuzzy numbers (see [1, 2, 4]).

Definition 1. A fuzzy number is a fuzzy set like u : R → I =
[0, 1] which satisfies the following:

(1) u is upper semicontinuous,

(2) u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥
min{u(x),u(y)} for all x, y ∈ R, λ ∈ [0, 1],

(3) u is normal, that is, there exists x0 ∈ R such that
u(x0) = 1,

(4) suppu = {x ∈ R | u(x) > 0} is the support of the u,
and its closure cl(suppu) is compact.

Let E1 be the set of all fuzzy numbers on R.

Definition 2. A fuzzy number u in parametric form is a pair
(u,u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfies the
requirements:

(1) u(r) is a bounded monotonic increasing left continu-
ous function,

(2) u(r) is a bounded monotonic decreasing left contin-
uous function,

(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number x is simply represented by (u(r),u(r)) =
(x, x), 0 ≤ r ≤ 1. By appropriate definitions the fuzzy
number space {(u(r),u(r))} becomes a convex cone E1

which could be embedded isomorphically and isometrically
into a Banach space.

Definition 3. Let x = (x(r), x(r)), y = (y(r), y(r)) ∈ E1,
0 ≤ r ≤ 1, and real number k ∈ R. Then,

(1) x = y iff x(r) = y(r) and x(r) = y(r),

(2) x + y = (x(r) + y(r), x(r) + y(r)),

(3) x − y = (x(r)− y(r), x(r)− y(r)),

(4)

kx =
⎧

⎨

⎩

(kx(r), kx(r)), k ≥ 0,

(kx(r), kx(r)), k < 0.
(1)

2.2. Kronecker Product of Matrices and Fuzzy Matrix. The
following definitions and results about the Kronecker prod-
uct of matrices are from [27].

Definition 4. Suppose A = (ai j) ∈ Rm×n, B = (bi j) ∈ Rp×q,
the matrix in block form:

A⊗ B =

⎛

⎜

⎜

⎜

⎜

⎝

a11B a12B · · · a1nB
a21B a12B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

⎞

⎟

⎟

⎟

⎟

⎠

∈ Rmp×nq (2)

is said the Kronecker product of matrices A and B, denoted
simply by A⊗ B = (ai jB).

Definition 5. Let A = (ai j) ∈ Rm×n, ai = (a1i, a2i, . . . ,

ami)
T , i = 1, . . . ,n, the mn dimensions vector:

Vec(A) =

⎛

⎜

⎜

⎜

⎜

⎝

a1

a2
...
an

⎞

⎟

⎟

⎟

⎟

⎠

(3)

is called the extension on column of the matrix A.

Lemma 6. Let A = (ai j) ∈ Rm×n, B = (bi j) ∈ Rn×s, and
C = (ci j) ∈ Rs×t. Then,

Vec(ABC) =
(

CT ⊗ A
)

Vec(B). (4)

Definition 7. A matrix ˜A = (ãi j) is called a fuzzy matrix,

if each element ãi j of ˜A is a fuzzy number, that is, ãi j =
(ai j(r), ai j(r)), 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ r ≤ 1.

Definition 8. Let ˜A = (ãi j = (ai j(r), ai j(r)) ∈ Em×n, ãi =
(ã1 j , ã2 j , . . . , ãmj)

T , j = 1, . . . ,n. Then, the mn dimensions
fuzzy numbers vector:

Vec
(

˜A
)

=

⎛

⎜

⎜

⎜

⎜

⎝

ã1

ã2
...
ãn

⎞

⎟

⎟

⎟

⎟

⎠

(5)

is called the extension on column of the fuzzy matrix ˜A.

2.3. Fuzzy Matrix Equations

Definition 9. The matrix system:
⎛

⎜

⎜

⎜

⎜

⎝

a11 a12 · · · a1m

a21 a12 · · · a2m
...

...
...

...
am1 am2 · · · amm

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x̃11 x̃12 · · · x̃1n

x̃21 x̃12 · · · x̃2n
...

...
...

...
x̃m1 x̃m2 · · · x̃mn

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

˜b11
˜b12 · · · ˜b1n

˜b21
˜b12 · · · ˜b2n

...
...

...
...

˜bm1
˜bm2 · · · ˜bmn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(6)

where ai j , 1 ≤ i, j ≤ m are crisp numbers and ˜bi j , 1 ≤ i ≤
m, 1 ≤ j ≤ n are fuzzy numbers, is called a fuzzy matrix
equations (FMEs).
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Using matrix notation, we have

A ˜X = ˜B. (7)

A fuzzy numbers matrix:

˜X =
(

x̃i j
)

=
(

xi j(r), xi j(r)
)

,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ r ≤ 1,
(8)

is called a solution of the fuzzy linear matrix equation (6) if
˜X satisfies

A ˜X = ˜B. (9)

Clearly, Definition 9 is just for the fuzzy matrix equation
and its exact solution. In this paper we will discuss its
approximate fuzzy symmetric solutions.

3. Method for Solving FMEs

In this section, we will investigate the fuzzy matrix equation
(7), that is, convert it to a crisp system of linear equations and
a fuzzified interval system of linear equations, define three
types of fuzzy approximate symmetric solution and give its
solution representation to the original fuzzy matrix equation.

At first, we convert the fuzzy matrix equation (7) to a
fuzzy system of linear equations based on the Kronecker
product of matrices.

Theorem 10. Let A = (ai j) belong to Rm×n, let ˜X = (x̃i j) =
(xi j(r), xi j(r)) belong to En×l, and let B = (bi j) belong to Rl×s.
Then,

Vec
(

A ˜XB
)

=
(

BT ⊗ A
)

Vec
(

˜X
)

. (10)

Proof. Let ˜X = (x̃1, x̃2, . . . , x̃n), x̃ j = (xi j(r), xi j(r)) ∈ Em,
i = 1, 2, . . . ,m, j = 1, 2, . . . , l. B = (b1, b2, . . . , bl), bj ∈ Rn,
j = 1, 2, . . . , l. Then,

Vec
(

A ˜XB
)

= Vec
(

A ˜Xb1,A ˜Xb2, . . . ,A ˜Xbl
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A ˜Xb1

A ˜Xb2

...

A ˜Xbl

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(11)

Since

A ˜Xbj = (Ax̃1,Ax̃2, . . . ,Ax̃n)bj = (Ax̃1,Ax̃2, . . . ,Ax̃l)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 j

b2 j

...

bl j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= b1 jAx̃1 + b2 jAx̃2 + · · · + bl jAx̃l

=
(

b1 jA, b2 jA, . . . , bnjA
)

Vec
(

˜X
)

,

(12)

we have

Vec
(

A ˜XB
)

=

⎛

⎜

⎜

⎜

⎜

⎝

b11A b22A · · · bl1A
b12A b22A · · · bl2A

...
...

...
...

b1lA b2lA · · · blsA

⎞

⎟

⎟

⎟

⎟

⎠

Vec
(

˜X
)

= (BT ⊗ A
)

Vec
(

˜X
)

.

(13)

Theorem 11. The matrix ˜X ∈ Em×n is the solution of the fuzzy
matrix equation (7) if and only if x̃ = Vec( ˜X) ∈ Emn is the
solution of the following linear fuzzy system:

Gx̃ = ỹ, (14)

where G = In ⊗ A and ỹ = Vec(˜B).

Proof. Setting B = In in (10), we have

Vec
(

A ˜X
)

= (In ⊗ A) Vec
(

˜X
)

. (15)

Applying the extension operation the Definition 8 to two
sides of (7), we also have

Gx̃ = ỹ, (16)

where G = In⊗A is an mn×mn matrix and ỹ = Vec(˜B) is an
mn fuzzy numbers vector. Thus, the ˜X is the solution of (7)
which is equivalent to that x̃ = Vec( ˜X) which is the solution
of (14).

For simplicity, we denote p = mn in (7), thus

G =

⎛

⎜

⎜

⎜

⎜

⎝

g11 g12 · · · g1,p

g21 g12 · · · g2,p
...

...
...

...
gp,1 gp,2 · · · gp,p

⎞

⎟

⎟

⎟

⎟

⎠

,

ỹ =

⎛

⎜

⎜

⎜

⎜

⎝

ỹ1

ỹ2
...
ỹp

⎞

⎟

⎟

⎟

⎟

⎠

(17)

in (14).

The following definitions show what the fuzzy symmetric
solutions of the fuzzy matrix equation are.

Definition 12 (see [28]). The united solution set (USS), the
tolerable solution set (TSS), and the controllable solution set
(CSS) for the system (14) are, respectively, as follows:

X∃∃ =
{

x ∈ Rp : Gx ∩ y /=φ
}

,

X∀∃ =
{

x ∈ Rp : Gx ⊆ y
}

,

X∃∀ =
{

x ∈ Rp : Gx ⊇ y
}

.

(18)
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Definition 13. A fuzzy vector x̃ = (x̃1, x̃2, . . . , x̃p)ᵀ given by
x̃i = [xi(r), xi(r)], 1 ≤ i ≤ p, 0 ≤ r ≤ 1 is called the minimal
symmetric solution of the fuzzy matrix equation (7) which
is placed in CSS if for any arbitrary symmetric solution z̃ =
(z̃1, z̃2, . . . , z̃p)ᵀ, which is placed in CSS, that is, x̃(1) = z̃(1),
we have

(z̃ ⊇ x̃), that is, (z̃i ⊇ x̃i), that is, σz̃i ≥ σx̃i , i = 1, 2, . . . , p,
(19)

where σz̃i and σx̃i are symmetric spreads of z̃i and x̃i,
respectively.

Definition 14. A fuzzy vector x̃ = (x̃1, x̃2, . . . , x̃p)ᵀ given by
x̃i = [xi(r), xi(r)], 1 ≤ i ≤ p, 0 ≤ r ≤ 1 is called the
maximal symmetric solution of the fuzzy matrix equation
(7) which is placed in TSS if for any arbitrary symmetric
solution z̃ = (z̃1, z̃2, . . . , z̃p)ᵀ, which is, placed in TSS, that
is x̃(1) = z̃(1), we have

(x̃ ⊇ z̃), that is, (x̃i ⊇ z̃i), that is, σx̃i ≥ σz̃i , i = 1, 2, . . . , p,
(20)

where σz̃i and σx̃i are symmetric spreads of z̃i and x̃i,
respectively.

Secondly, in order to solve the fuzzy matrix equation (7),
we need to consider the fuzzy system of linear equation (14).
For the fuzzy linear system (14), we can extend it into to
a crisp system of linear equations and a fuzzified interval
system of linear equations to obtain its fuzzy symmetric
solutions.

Theorem 15 (see [25]). The fuzzy linear system (14) can be
extended into a p× p crisp function system of linear equations:

⎛

⎜

⎜

⎜

⎜

⎝

g11 g12 · · · g1,p

g21 g12 · · · g2,p
...

...
...

...
gp,1 gp,2 · · · gp,p

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1

x1
...
xp

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

ỹ1(1)
ỹ2(1)

...
ỹp(1)

⎞

⎟

⎟

⎟

⎟

⎠

, (21)

g11(x1 − α1(r), x1 + α1(r)) + · · ·

+ g1p

(

xp − α1(r), xp + α1(r)
)

=
(

y
1
(r), y1(r)

)

,

g21(x1 − α1(r), x1 + α1(r)) + · · ·

+ g2p

(

xp − α1(r), xp + α1(r)
)

=
(

y
2
(r), y2(r)

)

,

...

gp1

(

x1 − αp(r), x1 + αp(r)
)

+ · · ·

+ app
(

xp − αp(r), xp + αp(r)
)

=
(

y
p
(r), yp(r)

)

,

(22)

where ỹi(1) ∈ R, i = 1, 2, . . . , p and αi(r), i = 1, 2, . . . , p are
unknown spreads.

Now, one solves the crisp linear system (21) to obtain
xi, i = 1, 2, . . . , p, that is, existed uniquely since det(G) =
det(In⊗A) = det(A)n /= 0 and solve the interval equations (22)
to obtain αi(r), i = 1, 2, . . . , p.

So, without loss of generality and for simplicity to express
the theory, it is assumed that the coefficients matrix G is
positive. Then, ith equation of interval system (22) is

gi1(x1 − αi(r), x1 + αi(r)) + · · ·

+ gip
(

xp − αi(r), xp + αi(r)
)

=
(

y
i
(r), yi(r)

)

,
(23)

it can be rewritten in parametric form:

p
∑

j=1

gi j
(

xj − αi(r)
)

= y
i
(r), i = 1, 2, . . . , p, (24)

p
∑

j=1

gi j
(

xj + αi(r)
)

= yi(r), i = 1, 2, . . . , p. (25)

So, after some computations and replacing αi(r) with αi1(r)
in (24) and replacing αi(r) with αi2(r) in (25), (24), and (25),
they are transformed, respectively, to

αi1(r) = f1
(

x1, . . . , xp, gi1, . . . , gip, y
i
(r)
)

, i = 1, 2, . . . , p,

αi2(r) = f2
(

x1, . . . , xp, gi1, . . . , gip, yi(r)
)

, i = 1, 2, . . . , p.

(26)

However, αi1(r) is function of x1, . . . , xp, gi1, . . . , gip, y
i
(r),

αi2(r) is function of x1, . . . , xp, gi1, . . . , gip, yi(r) such that
αi1(r) and αi2(r) are obtained spreads of ith equation in system
(22). Perhaps, αi1(r) and αi2(r) do not satisfy the rest of interval
equations (22). Therefore, one should determine the reasonable
spreads according to decision makers. To this end, three type of
spreads are proposed as follows:

αL(r) = min{αi1(r),αi2(r)}, i = 1, 2, . . . , p, 0 ≤ r ≤ 1,

αU(r) = max{αi1(r),αi2(r)}, i = 1, 2, . . . , p, 0 ≤ r ≤ 1,

αλ(r) = λαU(r) + (1− λ)αL(r), i = 1, 2, . . . , p,

0 ≤ r ≤ 1, λ ∈ [0, 1].
(27)

Hence, by such computations, the fuzzy vector solution of
system (7) under proposed spreads (27) will be as follows. For
i = 1, 2, . . . , p, 0 ≤ r, λ ≤ 1:

˜XL =
(

x̃1(r), . . . , x̃p(r)
)t

,

x̃i(r) = (xi − αL(r), xi + αL(r)),

˜XU =
(

x̃1(r), . . . , x̃p(r)
)t

,

x̃i(r) = (xi − αU(r), xi + αU(r)),

˜Xλ =
(

x̃1(r), . . . , x̃p(r)
)t

,

x̃i(r) = (xi − αλ(r), xi + αλ(r)).

(28)
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Now, it is shown that this method always gives us a fuzzy vector
solution provided that the right-hand side of system (7) be a
triangular fuzzy vector with nonzero left and right spreads.

Theorem 16. Let the right-hand side of the system (14), be
ỹ(r) = ( ỹ1(r), . . . , ỹp(r))t, where ỹi(r) = [y

i
(1) − σi(1 −

r), yi(1) + βi(1 − r)], i = 1, 2, . . . , p and let αL(r), αU(r)
and αλ(r) be defined by (27), then αL(r), αU(r), and αλ(r) are
positive for all 0 ≤ r, λ ≤ 1, such that

αL(r) = min

⎧

⎨

⎩

σi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

,
βi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

⎫

⎬

⎭

, (29)

αU(r) = max

⎧

⎨

⎩

σi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

,
βi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

⎫

⎬

⎭

, (30)

αλ(r) = λmax

⎧

⎨

⎩

σi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

,
βi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

⎫

⎬

⎭

+ (1− λ) min

⎧

⎨

⎩

σi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

,
βi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

⎫

⎬

⎭

.

(31)

Proof. Let us consider the ith row of interval equations (22),
then by applying (24)-(25), we have

∑

j∈H
gi j
(

xj − αi1(r)
)

+
∑

j∈Q
gi j
(

xj + αi1(r)
)

=
p
∑

j=1

gi jx j −
p
∑

j=1

∣

∣

∣gi j
∣

∣

∣αi1(r) = y
i
(1)− σi(1− r),

∑

j∈H
gi j
(

xj + αi2(r)
)

+
∑

j∈Q
gi j
(

xj − αi2(r)
)

=
p
∑

j=1

gi jx j −
p
∑

j=1

∣

∣

∣gi j
∣

∣

∣αi2(r) = yi(1) + βi(1− r),

(32)

where H and Q include positive and negative components
of coefficient matrix G, respectively. Also, it is obvious that
σi, βi, and the denominator are positive numbers. Therefore,
αL(r) > 0.

Since that y
i
(1) = yi(1) = ∑p

j=1 gi jx j , it is sufficient to
show (29), that is,

αi1(r) = σi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

, αi2(r) = βi(1− r)
∑

∣

∣

∣gi j
∣

∣

∣

,

i = 1, 2, . . . , p, 0 ≤ r ≤ 1.

(33)

For results (30)-(31), the proofs are similar.

Theorem 17. Consider spreads (29)–(31) and corresponding
solutions ˜XL, ˜XU , then we one gets

(1) ˜XL ∈ TSS,

(2) ˜XU ∈ CSS.

In addition, one can find the maximal and minimal
solutions of fuzzy linear system (7) which are placed in TSS
and CSS when the cores of compared solutions in each cases are
equal.

Theorem 18. ˜XL is maximal symmetric solution in TSS, ˜XU is
minimal symmetric solution in CSS.

Proof. Using definitions of TSS and CSS, the proofs are
obvious.

Moreover, we could express our proposed method by
algorithm as follows.

Algorithm 19.

(1) We convert the fuzzy linear matrix equation (7) to
a fuzzy system of linear equations (14) based on the
Kronecker product of matrices.

(2) We solve system (21) and obtain its crisp solution,
that is, x = (x1, . . . , xq), xi ∈ R.

(3) By applying crisp solution (solution of 1-cut), system
(14) is transformed to the system of interval equa-
tions (22).

(4) The spread of all elements of fuzzy vector solution
will be obtained by solving system (22), whereas,
spreads are named as αi1(r), αi2(r), respectively, i =
1, 2, . . . , q, 0 ≤ r ≤ 1.

(5) The symmetric spreads can be assessed using (27).

(6) The fuzzy vector solutions are derived by (28).

4. Numerical Examples

Example 20. Consider the following fuzzy matrix system:

(

1 −1
1 3

)(

x̃11 x̃12

x̃21 x̃22

)

=
(

(r, 2− r) (1 + r, 3− r)
(4 + r, 7− 2r) (4 + 2r, 6− 2r)

)

.

(34)

By calculations, we know that the exact solution of above
fuzzy matrix system is

⎛

⎜

⎜

⎜

⎝

(

11
8

+
5
8
r,

23
8
− 7

8
r
) (

16
8

+
4
8
r,

24
8
− 4

8
r
)

(

7
8

+
1
8
r,

11
8
− 3

8
r
) (

4
8
r,

8
8
− 4

8
r
)

⎞

⎟

⎟

⎟

⎠

, (35)

it admits a strong fuzzy solution.
By Theorems 10 and 11, the original fuzzy matrix

equation is equivalent to the following fuzzy linear system
Gx̃ = ỹ, that is,

⎛

⎜

⎜

⎜

⎝

1 −1 0 0
1 3 0 0
0 0 1 −1
0 0 1 3

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x̃11

x̃21

x̃12

x̃22

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

(r, 2− r)
(4 + r, 7− 2r)
(1 + r, 3− r)

(4 + 2r, 6− 2r)

⎞

⎟

⎟

⎟

⎠

. (36)
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Then, 1-cut of system is

⎛

⎜

⎜

⎜

⎝

1 −1 0 0
1 3 0 0
0 0 1 −1
0 0 1 3

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x11

x21

x12

x22

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1
5
2
4

⎞

⎟

⎟

⎟

⎠

. (37)

Therefore, the crisp solution is x = (2, 1, 2.5, 0.5)ᵀ. Now, the
system of interval equations (22) is as follows:

(2− α1(r), 2 + α1(r))− (1− α1(r), 1 + α1(r))

= (r, 2− r),

(2− α2(r), 2 + α2(r)) + 3(1− α2(r), 1 + α2(r))

= (4 + r, 7− 2r),

(2.5− α3(r), 2.5 + α3(r))− (0.5− α3(r), 0.5 + α3(r))

= (1 + r, 3− r),

(2.5− α4(r), 2.5 + α4(r)) + 3(0.5− α4(r), 0.5 + α4(r))

= (2 + 2r, 6− 2r).

(38)

Hence, the following results are obtained for all r ∈ [0, 1] as

α11(r) = α13(r) = α14(r) = 1− r

2
, α12(r) = 1− r

4
,

α21(r) = α22(r) = α23(r) = α24(r) = 1− r

2
,

(39)

and applying (27) we get for all 0 ≤ r, λ ≤ 1,

αL(r) = 1− r

4
, αU(r) = 1− r

2
,

αλ(r) = (1− r)(1 + λ)
4

.

(40)

Thus, the fuzzy symmetric solutions of the (14) are obtained
as follows:

x̃L(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2− 1− r

4
, 2 +

1− r

4

)

(

1− 1− r

4
, 1 +

1− r

4

)

(

2.5− 1− r

4
, 2.5 +

1− r

4

)

(

0.5− 1− r

4
, 0.5 +

1− r

4

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

x̃U(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2− 1− r

2
, 2 +

1− r

2

)

(

1− 1− r

2
, 1 +

1− r

2

)

(

2.5− 1− r

2
, 2.5 +

1− r

2

)

(

0.5− 1− r

2
, 0.5 +

1− r

2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

x̃λ(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2− (1− r)(1 + λ)
4

, 2 +
(1− r)(1 + λ)

4

)

(

1− (1− r)(1 + λ)
4

, 1 +
(1− r)(1 + λ)

4

)

(

2.5− (1− r)(1 + λ)
4

, 2.5 +
(1− r)(1 + λ)

4

)

(

0.5− (1− r)(1 + λ)
4

, 0.5 +
(1− r)(1 + λ)

4

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(41)

According to Theorem 15, we know that the fuzzy
approximate symmetric solutions of the original fuzzy
matrix equation A ˜X = ˜B are

˜XL(r) =
(

x̃11 x̃12

x̃21 x̃22

)

=

⎛

⎜

⎜

⎜

⎝

(

2− 1− r

4
, 2 +

1− r

4

) (

2.5− 1− r

4
, 2.5 +

1− r

4

)

(

1− 1− r

4
, 1 +

1− r

4

) (

0.5− 1− r

4
, 0.5 +

1− r

4

)

⎞

⎟

⎟

⎟

⎠

,

˜XU(r) =
(

x̃11 x̃12

x̃21 x̃22

)

=

⎛

⎜

⎜

⎜

⎝

(

2− 1− r

2
, 2 +

1− r

2

) (

2.5− 1− r

2
, 2.5 +

1− r

2

)

(

1− 1− r

2
, 1 +

1− r

2

) (

0.5− 1− r

2
, 0.5 +

1− r

2

)

⎞

⎟

⎟

⎟

⎠

,

˜Xλ(r) =
(

x̃11 x̃12

x̃21 x̃22

)

=

⎛

⎜

⎜

⎜

⎝

(

2− (1− r)(1 + λ)
2

, 2 +
(1− r)(1 + λ)

2

) (

2.5− (1− r)(1 + λ)
2

, 2.5 +
(1− r)(1 + λ)

2

)

(

1− (1− r)(1 + λ)
2

, 1 +
(1− r)(1 + λ)

2

) (

0.5− (1− r)(1 + λ)
2

, 0.5 +
(1− r)(1 + λ)

2

)

⎞

⎟

⎟

⎟

⎠

,

(42)

respectively.
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Example 21. Consider the fuzzy matrix system:
(

1 0
−1 1

)(

x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

)

=
(

(1 + r, 3− r) (5 + r, 7− r) (2 + r, 4− r)
(6 + r, 8− r) (3 + r, 5− r) (r, 2− r)

)

.

(43)

The exact solution of above fuzzy matrix system is
(

(1 + r, 3− r) (5 + r, 7− r) (2 + r, 4− r)
(9, 9) (6, 6) (4, 4)

)

, (44)

and it is a weak fuzzy solution.
By Theorems 10 and 11, the original fuzzy matrix

equation is equivalent to the following fuzzy linear system
Gx̃ = ỹ, that is,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
0 0 0 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x̃11

x̃21

x̃12

x̃22

x̃13

x̃23

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1 + r, 3− r)
(6 + r, 8− r)
(5 + r, 7− r)
(3 + r, 5− r)
(2 + r, 4− r)

(r, 2− r)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (45)

Then, 1-cut of system is
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
0 0 0 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11

x21

x12

x22

x13

x23

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2
7
6
4
3
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (46)

Therefore, the crisp solution is x = (2, 9, 6, 10, 3, 4)ᵀ. Now,
the system of interval equations (22) is as follows:

(2− α1(r), 2 + α1(r)) = (1 + r, 3− r),

− (2− α2(r), 2 + α2(r)) + (9− α2(r), 9 + α2(r))

= (6 + r, 8− r),

(6− α3(r), 6 + α3(r)) = (5 + r, 7− r),

− (6− α4(r), 6 + α4(r)) + (10− α4(r), 10 + α4(r))

= (3 + r, 5− r),

(3− α5(r), 3 + α5(r)) = (2 + r, 4− r),

− (3− α6(r), 3 + α6(r)) + (4− α6(r), 4 + α6(r))

= (r, 2− r).

(47)

Hence, the following results are obtained for all r ∈ [0, 1] as

α11(r) = α13(r) = α15(r) = 1− r,

α12(r) = α14(r) = α16(r) = 1− r

2
,

α21(r) = α23(r) = α25(r) = 1− r,

α22(r) = α24(r) = α26(r) = 1− r

2
,

(48)

and applying (27), we get for all 0 ≤ r, λ ≤ 1,

αL(r) = 1− r

2
, αU(r) = 1− r,

αλ(r) = (1− r)(1 + λ)
2

.

(49)

Thus, the fuzzy symmetric solutions of the (14) are obtained
as follows:

x̃L(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2− 1− r

2
, 2 +

1− r

2

)

(

9− 1− r

2
, 9 +

1− r

2

)

(

6− 1− r

2
, 6 +

1− r

2

)

(

10− 1− r

2
, 10 +

1− r

2

)

(

3− 1− r

2
, 3 +

1− r

2

)

(

4− 1− r

2
, 4 +

1− r

2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

x̃U(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(2− (1− r), 2 + 1− r)

(9− (1− r), 9 + (1− r))

(6− (1− r), 6 + (1− r))

(10− (1− r), 10 + (1− r))

(3− (1− r), 3 + (1− r))

(4− (1− r), 4 + (1− r))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

x̃λ(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2− (1− r)(1 + λ)
2

, 2 +
(1− r)(1 + λ)

2

)

(

9− (1− r)(1 + λ)
2

, 9 +
(1− r)(1 + λ)

2

)

(

6− (1− r)(1 + λ)
2

, 6 +
(1− r)(1 + λ)

2

)

(

10− (1− r)(1 + λ)
2

, 10 +
(1− r)(1 + λ)

2

)

(

3− (1− r)(1 + λ)
2

, 3 +
(1− r)(1 + λ)

2

)

(

4− (1− r)(1 + λ)
2

, 4 +
(1− r)(1 + λ)

2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(50)

respectively.
According to Theorem 11, we know that the fuzzy

approximate symmetric solutions of the original fuzzy
matrix equation A ˜X = ˜B are
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˜XL(r) =
(

x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

)

=

⎛

⎜

⎜

⎜

⎝

(

2− 1− r

2
, 2 +

1− r

2

) (

6− 1− r

2
, 6 +

1− r

2

) (

3− 1− r

2
, 3 +

1− r

2

)

(

9− 1− r

2
, 9 +

1− r

2

) (

10− 1− r

2
, 10 +

1− r

2

) (

4− 1− r

2
, 4 +

1− r

2

)

⎞

⎟

⎟

⎟

⎠

,

˜XU(r) =
(

x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

)

=
⎛

⎝

(1 + r, 3− r) (5 + r, 7− r) (2 + r, 4− r)

(8 + r, 10− r) (9 + r, 11− r) (3 + r, 5− r)

⎞

⎠,

˜Xλ(r) =
(

x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

)

=

⎛

⎜

⎜

⎜

⎝

(

2− A

2
, 2 +

A

2

) (

6− A

2
, 6 +

A

2

) (

3− A

2
, 3 +

A

2

)

(

9− A

2
, 9 +

A

2

) (

10− A

2
, 10 +

A

2

) (

4− A

2
, 4 +

A

2

)

⎞

⎟

⎟

⎟

⎠

,

(51)

respectively, where A denotes (1− r)(1 + λ).

5. Conclusion

In this work, we presented a model for solving fuzzy matrix
equations A ˜X = ˜B in which A is crisp m × m nonsingular
matrix and ˜B is an m×n arbitrary fuzzy numbers matrix with
nonzero spreads. The model was proposed in this way, that
is, we converted the fuzzy linear matrix equation to a fuzzy
system of linear equations based on the Kronecker product
of matrices, and then we extended the fuzzy linear system
into a crisp system of linear equations and a fuzzified interval
system of linear equations. The fuzzy symmetric solutions of
the fuzzy linear matrix equation were derived from solving
the crisp systems of linear equations. Numerical examples
showed that our method is feasible to solve this type of fuzzy
matrix equations.
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