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Abstract 

The perceived quality of synthetic speech strongly depends on 
its prosodic naturalness. Concerning the control of duration 
and fundamental frequency in a speech synthesis system, 
sophisticated models have been developed during the last 
decade. Departing from the syllable-based, adaptive prosody 
model IGM the authors surveyed a novel evolutionary 
approach to optimize the model structure itself and to finally 
improve the predicted prosodic contours.  
Therefore, a German newsreader corpus has been trained 
using a feed forward neural network. In parallel, network and 
data configurations were automatically optimized using the 
Strength Pareto Evolutionary Algorithm (SPEA). 
Achieving similar prediction results as in the original IGM 
configuration, the evolutionary optimization reduces the 
network complexity, in particular, the number of necessary 
input parameters from 24 to less than 10 by eliminating 
redundancies. This optimization method may be helpful in the 
further development of resource-saving prosody modules, 
e.g., for use in embedded text-to-speech applications and it 
also eases the difficult introspection of prosodic rules which 
are automatically generated during the training. 
Nevertheless, preliminary perceptive tests show no significant 
differences in comparison to synthetic stimuli based on 
prosodic contours predicted by the original model. 

1. Introduction 

The Intelligibility and the perceived naturalness of synthetic 
speech strongly depend on the prosodic quality. Recent 
systems concatenating larger chunks of speech from a 
database achieve a considerably high quality, as they widely 
preserve the natural prosodic structure. Because of resource 
limitations prediction and control of prosodic parameters will 
keep their importance. 
Adaptive (neural network) models for controlling segment 
durations or fundamental frequency were already suggested in 
1992 from Campbell [1] and Traber [2]. Meanwhile, adaptive 
prosody models using a neural network core are widely 
accepted since they can be efficiently used in multilingual 
systems and also easily be adapted to realize new speaking 
styles or other individual characteristics.  
Recently, Mixdorff and Jokisch suggested an integrated, 
adaptive model predicting f0, duration and intensity of 
syllables in German called IGM [3]. The neural network core 
of this model was successfully implemented into the Dresden 
Speech Synthesizer [4] and an analog design was tested for 
another language, as well [5]. 
There is a legitimate criticism concerning the difficult 
introspection of prosodic rules in data-driven models. The 
interesting objective to better understand the machine-based 
production process, or to achieve model improvements, is 

usually hidden, e. g., in the trained weight matrix of a neural 
network. To introspect data driven models, methods like 
classification and regression trees (CART) should be used 
alternatively. 
The authors want to improve accuracy and perceptual 
acceptance of the IGM by applying evolutionary algorithms. 
By optimizing, e. g. minimizing, the neural network core and/ 
or the input vector, also the introspection of trained network 
configurations becomes easier. Finally, minimized structures 
support the integration of resource-saving prosody modules 
into embedded text-to-speech applications. 

2. Integrated model of German prosody (IGM) 

2.1. Training data  

The analyzed data were part of a German corpus compiled by 
the Institute of Natural Language Processing, University of 
Stuttgart, and consists of 48 minutes of news messages from 
the radio station Deutschlandfunk, read by a male speaker. 
The database contains 356 sentences with 5.726 words 
including 13.151 syllables. The messages were recorded and 
partly repeated with an offset of 30 minutes. For the 
investigation 29.362 phonemes were available. 
Regardless of a few word replacements, selected message 
texts are identically stored in the database. These messages 
basically differ in their recording dates. The data analysis 
considers also these recurrences.  
This corpus does not contain spontaneous utterances. Both, 
news reading style and individual speaker characteristics are 
well-defined and reproducible. With regard to the prosodic 
target model for speech synthesis this reading corpus seems to 
be appropriate. 

2.2. Model approach 

Most conventional TTS systems calculate prosodic 
parameters sequentially, generating syllable durations first 
and then aligning the fundamental (f0) contour appropriately. 
This method does not sufficiently take into account that 
intonation and speech rhythm coherently exist.  
The modeling of the production process of prosody and the 
interrelations between the prosodic features of speech are far 
from being a solved problem. Based on these considerations, 
the objective of Mixdorff and Jokisch was the development of 
a prosodic model taking into account the coherence between 
melodic and rhythmic properties of speech [3]. 
The model was henceforth to be called an 'integrated prosodic 
model', as the prosodic parameters (1) syllable duration, (2) 
F0 (in terms of Fujisaki control parameters), (3) pause 
duration, and (4) syllable energy, are predicted from the same 
database. 



Table 1 lists the output parameters of the integrated model 
which treats the syllable as its basic rhythmic unit. For each 
syllable, the duration and, in the case of accented syllables 
and syllables bearing boundary tones, the parameters of the 
accent command assigned to the syllable, are calculated. 
Along with the amplitude Aa, the onset time T1 and offset 
time T2 of the accent command are output, the latter two 
relative to the onset and offset time of the syllable, 
respectively. 

Table 1: Output parameters of the integrated prosodic model. 
ton and toff  denote onset and offset time of the current syllable, 
respectively. The parameters alpha, beta and Fb are assumed 
to be constant [3]. 

Output 
parameter 
 of model 

Calculated as N of tokens  
in 

database 
syllable duration toff - ton 13151 

Aa - 3022 
T1dist  T1-ton 3022 
T2dist  T2-toff 3022 
Ap - 1047 

T0dist ton-T0 1047 
energy mean frame power  

rms in syllable 
13151 

pause inter-phrase pause 
duration 

1047 

 
If a syllable is the first in a prosodic phrase, the onset time T0 
of the phrase command assigned to the phrase is defined with 
respect to the onset time of the syllable, and calculated 
together with the magnitude Ap of the phrase command. The 
speaker-dependent base frequency Fb and time constants 
alpha and beta are treated as constants.  
Phone duration is calculated from the superordinate syllable's 
duration taking into account the phone properties found in the 
training corpus. In order to capture potential interactions 
between intonation and rhythm, the prosodic parameters are 
predicted from a set of 24 linguistic and phonetic input 
features using a single, multi-layer feed-forward neural 
network (MFN, see Figure 1), since calculating syllable 
durations first and relating F0 to these in a second step would 
still result in a sequential model. MFNs have been shown 
capable of predicting prosodic parameters directly, as well as 
in terms of control parameters for the Fujisaki model. 

 

 
Figure 1: MFN structure (neural network core of IGM). 

3. Limitations and problems using IGM  

The IGM model uses an appropriate set of linguistic and 
phonetic input features (syntax, phrasing, accentuation, phone 
classes, etc.). The model was tested with resynthesis and 
synthesis stimuli [3] and its performance is suitable for 
several synthesis applications. 
Nevertheless, the following factors influence and limit the 
overall performance: 

3.1. Lack of semantic input information 

The model does not consider elements of meaning, 
components like semantic focus or derived features like the 
roles of local prominence in disambiguation of focal adverbs, 
relative prominence in anaphora resolution and global 
prominence (register features) in the discourse structure. 
Studying the correlation between prosody and semantics, the 
authors of [6] identified following discourse relevant register 
categories: 

 Modifying features, 
 Underlying features. 

 
According to Discourse Representation Theory (DRT), they 
tested, whether the local prominence influences the meaning 
resolution by assuming three types of reading: 

 First of sequence reading (FS), 
 Exclusion of preceding alternatives reading (EPA), 
 Retardation reading (R). 

 
Training data and input vector of the IGM model need to be 
systematically extended by such semantic information. 

3.2. Empirical neural network topology 

The neural network topology of the IGM model was designed 
according to experiences from similar tasks in pattern 
recognition and prediction. There is no determinate rule 
system to find the optimal configuration (number of hidden 
layers and neurons, transfer functions, etc.). 
The prediction performance of the final neural network is 
depending from well-defined training and testing sets, initial 
boundary conditions, learning rate and from other factors.  
Under certain conditions, an evolutionary optimization can 
eliminate redundancies in the topology and it can also 
improve the significance, e.g., of remaining input features in 
further training cycles of the neural network.  

3.3. Calculation complexity and memory consumption 

Considering implementation issues, neural network structures 
like MFN usually provoke a higher demand for system 
resources than conventional rule-based models. Currently, 
IGM is not suitable for use in embedded text-to-speech 
systems.  
Optimizing the empirical network topology and the dimension 
of the input vector can provide smaller model configurations, 
while widely keeping or even improving the prediction 
quality of the model. 

4. Evolutionary optimization 

Evolutionary algorithms (EA) may be described as stochastic 
optimization methods which simulate the process of natural 
evolution, feature selection and variation. Selection bases on 
the survival of the fittest. Individual solutions compete for 



resources and reproduction. The recombination and mutation 
of genomes is called variation. EA are commonly used to 
solve problems in a wide range of fields including speech 
recognition and speaker verification.  
In [7], Takagi gives a broad overview with regard to the use 
of interactive evolutionary computation (IEC) for optimizing 
systems based on subjective human evaluation as, e.g., in [8] 
and [9]. Beside IEC, there are surprisingly scarcely cases, in 
which EAs have been applied to prosodic issues. Recently, 
Kruschke proposed an evolutionary optimization for the 
automatic extraction of Fujisaki intonation parameters from a 
given speech database [10]. 

4.1. Multiobjective Optimization Problem (MOP) 

Most of the real-world problems contain more than one 
objective. Optimizing more than one parameter causes an 
infinite number of optimal problem solutions, generally 
known as Pareto-optimal solutions. This set of solutions is 
also called the Pareto Front. 
The concept of Pareto Dominance describes relationships 
between different solutions. One solution dominates another 
one, if exceeding it at least concerning a single parameter 
while no other parameter is worse. In Figure 2, solutions in 
the dark gray rectangle (bottom left) are dominated by B. But 
B itself is dominated by the rectangle upper right. Solutions F 
or C are neither dominated by B nor dominate B, although 
they are not optimal, as well. Solutions like A, along the 
Pareto Front, are optimal. 

Figure 2: Pareto Front. 

4.2. Strength Pareto Evolutionary Algorithm (SPEA) 

To approximate the Pareto Front, different algorithms have 
been developed. Considering the multiple input parameters 
and the topology of the IGM model, the comparably new 
Strength Pareto Evolutionary Algorithm (SPEA) seems to be 
appropriate. 
It externally stores all non-dominated solutions found so far 
as the elite. The fitness of an individual solution is only 
determined by the relationship to the others from the elite. 
The number of solutions of the elite is kept small by means of 
clustering, and dominated ones are removed. 
The SPEA algorithm is described in [11], in more detail. 

4.3. SPEA application to the neural network 

The neural network design process is limited by two 
extremes: Either the network is so small that it is incapable of 
learning all training patterns and their dependencies, or it is 

too big to generalize the available data, and therefore it is 
learning each pattern separately. 
There are three potential methods for the optimization of the 
described network core (MFN) in the IGM model: 

1. The topology of the network, 
2. Decreasing number of input parameters, 
3. Increasing number of input parameters. 

 
Third method would require a redesign of the whole model 
approach and is not pursued further in this paper. By using 
EA, there are the following optimization goals: 

 Minimization of root mean square error (RMSE), 
 Minimization of the number of links/ connections, 
 Minimization of the number of inputs, 
 Minimization of hidden layers. 

 
To solve the mentioned multiobjective problem, the concept 
of Pareto Dominance is used.  

4.4. Experiments and results 

The original MFN consists of 24 inputs, 744 connections, 30 
hidden neurons, and 8 outputs. The minimal, observed RMSE 
after training amounts to 0.139. 
Method 1 - enlarging the MFN topology does not lead to 
significant results. Two bigger network configurations (40 
and 50 hidden neurons) perform similar as the original net. 
Probably, the original topology is already task-appropriate. 
Running SPEA to reduce the overall network topology by 
deleting connections and neurons (whereby all iterations are 
followed by new standard back-propagation training) shows 
no significant variation of the resulting RMSE. Considering 
the time consumption of a few hours per evolution generation, 
experiments were stopped after several hundred iterations. 
 
Method 2 – decreasing the number of inputs is leading to 
significant results as shown in Figure 3. An example network 
with only six inputs achieves a RMSE of about 0.145 which is 
only 4.4 % worse than the original one. 

Figure 3: Several optimization runs compared to the original 
performance (bottom line) from [12]. 
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The remaining six inputs after optimization are: 
 Bi_syn_r (break index to the right), 
 Syl_prec (syllable no. in preceding phrase), 
 Bi_syn_l (break index to the left), 
 Schwa (schwa vowel), 
 Intoneme (accent type), 
 O_dur (sum of mean phone duration in onset). 

 
The complete input description of the MFN is given in [12]. 
Correlation analysis in [3] confirms that about 80-95 % of the 
prediction capabilities are basing on just 5-8 input parameters. 
Preliminary, subjective perception tests prove no significant 
audible differences among the resulting f0/ duration contours 
generated by different solutions. 

4.5. Input data inconsistency 

A further evolutionary experiment was addressing the correct 
selection of training and testing data. During the original 
training and adaptation of the IGM model, the recording 
conditions of the used part from the Stuttgart radio corpus 
were considered as almost constant during both sessions. 
Since the EA showed significant preferences for special 
training and testing set combinations, an inconsistency of the 
input data was discovered. The database contains speech 
signals recorded on two different days. The waveforms of the 
first day seem to be normalized to the peak amplitude 
resulting in an average RMS power of about -17 dB. The 
waveforms of the second day were not modified and achieve 
an average RMS power of about -21 dB, a decrease of 4 dB. 
This inconsistency explains different mean and standard 
deviation values of the parameter Energy (see table 2). The 
also varying values of the important output parameter Aa can 
be explained by different styles of speaking. 

Table 2: Inconsistencies with regard to the input data. 

Parameter Mean Standard deviation 
Energy (day 1) 2437 1085 
Energy (day 2) 1526 6198 

Aa (day 1) 0.373 0.165 
Aa (day 2) 0.2561 0.118 

5. Conclusions 

The proposed evolutionary optimization method SPEA seems 
to be an appropriate mean to verify empirical neural network 
configurations for the training of prosodic parameters. The 
vector dimension of a set of linguistic-phonetic input features 
can be reduced since SPEA is eliminating redundancies. So, 
this approach can reduce system resources, e.g. for designing 
embedded text-to-speech systems. 
Furthermore, this evolutionary optimization method is able to 
highlight inconsistencies or contradictions in the training set 
and eases the potential introspection of implicit rules learned 
by the prosody model during adaptation. 
Obviously, it was not possible to increase prediction accuracy 
or perceptive quality of the resulting synthetic speech. 
 
Data-driven prosody models, such as IGM, need to be further 
qualified by additional knowledge sources, e.g., by semantic 
information or by language/ speaker-dependent data analyses 
(compare also IGM-related study on intensities [13]).  
The proposed method can optimize the model structure but 
not the information content in the prosody model. 
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