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Abstract.  The  Novamente  Cognition  Engine  (NCE)  architecture  for  Artificial 
General Intelligence is briefly reviewed, with a focus on exploring how the various 
cognitive  processes  involved  in  the  architecture  are  intended  to  cooperate  in 
carrying out moderately complex tasks involving controlling an agent embodied in 
the AGI-Sim 3D simulation world. A handful of previous conference papers have 
reviewed  the  overall  architecture  of  the  NCE,  and  discussed  some 
accomplishments  of  the  current,  as  yet  incomplete  version  of  the  system;  this 
paper is more speculative and focuses on the intended behaviors of the NCE once 
the implementation of all its major cognitive processes is complete. The “iterated 
Easter  Egg  Hunt”  scenario  is  introduced  and  used  as  a  running  example 
throughout, due to its combination of perceptual, physical-action, social and self-
modeling  aspects.  To  aid  in  explaining  the  intended  behavior  of  the  NCE,  a 
systematic  typology  of  NCE  cognitive  processes  is  introduced.  Cognitive 
processes  are  typologized  as  global,  operational  or  focused;  and,  the  focused 
processes  are  more  specifically  categorized  as  either  forward-synthesis  or 
backward-synthesis processes. The typical dynamics of focused cognition is then 
modeled  as  an  ongoing  oscillation  between  forward  and  backward  synthesis 
processes, with critical emergent structures such as self and consciousness arising 
as attractors of this oscillatory dynamic.  The emergence of models of self and 
others  from this  oscillatory  dynamic  is  reviewed,  along  with  other  aspects  of 
cognitive-process integration in the NCE, in the context of the iterated Easter Egg 
Hunt scenario.

Introduction

The  Novamente  Cognition  Engine  (NCE)  is  an  in-development  software  system, 
ultimately aimed toward artificial general intelligence at the human level and beyond. 
It is programmed in C++ and designed for large-scale implementation on a distributed 
network  of  Linux  machines.  The  overall  architecture  of  the  system  is  based  on 
principles from cognitive science and complex systems science,  and grounded in  a 
systems theory of intelligence; but the specific mechanisms used within the system are 
drawn from contemporary computer science, utilizing on a number of recent advances 
in AI theory and practice. Among the key cognitive mechanisms of the Novamente 
system are a probabilistic reasoning engine based on a novel variant of probabilistic 
logic called Probabilistic Logic Networks; an evolutionary learning engine that is based 
on  a  synthesis  of  probabilistic  modeling  and  evolutionary  programming  called 
MOSES, described in Moshe Looks’ 2006 PhD thesis from Washington University 



(see [1]); and an artificial economics based system for attention allocation and credit 
assignment. Implementation of the system has been underway for some time but is not 
yet complete1; however, the current incomplete system has nevertheless been used to 
experiment with various forms of learning and reasoning. Among other applications, 
the NCE is now being used to control a simulated humanoid agent in 3D simulation 
world called AGISim (see [2]), similar to a video game world, and in this context is 
being  taught  simple  behaviors  such  as  playing  fetch  and  tag,  finding  objects,  and 
recognizing objects by name. These teaching exercises serve to give the system basic 
world-knowledge  which  can  then  be  deployed  beyond the  scope  of  the  simulation 
world; and they serve as the first stage of a principled process of “AGI developmental 
psychology” based loosely on the ideas of Jean Piaget ([3]).

The Novamente design has been overviewed in a number of conference papers 
before2 ([4,5,6,7]) and our goal here is not to repeat this content, but rather to give a 
more  elegantly  conceptually  organized  perspective  on  the  cognitive  processes 
contained in the system, and to explore the means by which it is hypothesized these 
processes will be able to act together, in a coordinated way, to enable embodied social 
learning  and  to  spawn  the  emergence  within  a  Novamente  system’s  dynamic 
knowledge base of a structure fairly describable as a “self” (or, to use a more technical 
term introduced by [8]), a “phenomenal self”). To get the most out of this paper, the 
reader should first read these prior overviews; but nonetheless the current paper has 
been written to be minimally self-contained.

Two recent papers ([2,9]) discuss learning and reasoning experiments that have 
been conducted with the current system; and, two other papers in this volume  discuss 
aspects  of  the  Novamente  system  as  well.  Looks’  paper  discusses  the  MOSES 
probabilistic evolutionary learning system created for incorporation into Novamente; 
and the Ikle’ et al paper discusses some of the mathematics underlying Novamente’s 
Probabilistic  Logic Networks (PLN), including a simple example of PLN inference 
applied to embodied learning in the AGISim simulation world.  This paper  is  more 
speculative, and describes both implemented/tested and as-yet unimplemented/untested 
aspects of the NCE design, with a focus on some of the integrative cognitive dynamics 
and emergent structures that  are expected to be observed once the implementation, 
testing and tuning of the system is more complete.

Section 2 gives a brief overview of the Novamente architecture, largely covering 
ground  already  reviewed  in  prior  publications.  Section  3  presents  a  typology  of 
cognitive processes using the notions of forward and backward synthesis, and utilizes 
this to give a unified presentation of the various cognitive processes existing in the 
NCE, and to compose an hypothesis regarding the origins of the phenomenal self and 
the attentional focus from complex cognitive dynamics. Section 4 describes the iterated 
Easter  Egg  Hunt  scenario,  and  discusses  how  the  NCE’s  cognitive  dynamics  are 
expected to productively cooperate in this context, in a completely implemented NCE.

The system-theoretic focus makes this paper different than the typical paper in the 
AI literature; and this difference reflects the relatively unusual nature of the system-
theoretic  methodology underlying  the  NCE project.  In  our  view,  the  only  kind  of 
approach to AGI likely to meet with success is one in which the systematic coordinated 
behavior  of  a  holistic  AGI  system  is  carefully  envisioned  prior  to  the  detailed 
implementation and testing of the system. I.e., I suggest that the parts of an AGI system 

1 The implementation process is time-consuming not only due to the usual difficulties of large-scale 
software engineering, but also due to the need to carefully define and test a large number of details not fully 
specified in the overall AI design.
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must be designed, in detail, with a specific view toward causing the whole to behave 
appropriately. Consistently with this, I assign low success odds to “integrative” designs 
in  which  multiple  “best  of  breed”  narrow-AI  or  proto-AGI  components  created 
independently  by  multiple  research  teams  are  hooked  together  within  a  a  flexible 
overall design. And, I assign a fundamental necessity to in-depth speculative exercises 
such as the one reported in Section 4 here -- if AGI is to be achieved via computer 
science methods (rather than, for example, by detailed emulation of the human brain).

Above it was stated that the ultimate objective of NCE development is to create 
artificial intelligence at the human level and beyond. More specifically, the long-term 
objective of NCE development is  to create a powerful “artificial  scientist” that  can 
ingest a vast variety of quantitative, relational and textual data from the Internet and 
then  interact  with  human  scientists  to  produce  innovative  scientific  creations  and 
discoveries. It may seem that Easter Egg hunting – which in its more sophisticated 
social-learning aspects is still beyond the current Novamente implementation – is an 
extremely  long  way  from  this  sort  of  ambitious  goal.  But  according  to  the 
developmental-psychology paradigm outlined in ([9]), there is a very natural path from 
these  early-childhood-type  learning tasks to  the more  complex and formal  learning 
tasks required for doing science. The hypothesis motivating our current work on early-
childhood-level  learning tasks  is  that  doing science  does  not  require  any  cognitive 
mechanisms,  knowledge  representations  or  architecture  components  beyond  those 
required for doing Easter Egg hunting (or other similar tasks) in a robust, adaptive, 
socially and reflectively aware way.

1. Brief Overview of the Novamente Architecture

One may describe the Novamente AGI architecture in terms of four different aspects: 
knoweldge representation,  cognitive  architecture,  cognitive  processes,  and emergent 
structures. This section deals mainly with the former two; and the next section deals 
mainly with the latter two.



1.1.NCE Knowledge Representation

The  NCE  utilizes  a  knowledge  representation  in  which  declarative  knowledge  is 
represented using weighted, labeled hypergraphs; procedural knowledge is represented 
using programs in a customized functional programming language called Combo; and 
mechanisms  are  in  place  for  freely  converting  between  declarative  and  procedural 
knowledge.  Nodes  and  links  in  the  declarative-knowledge  hypergraph  are  grouped 
together into the category of “Atoms.” Atoms are quantified with truth values (see 
Figure  1)  that,  in  their  simplest  form,  have  two  components,  one  representing 
probability (“strength”) and the other representing “weight of evidence”; and also with 
“attention values” (see Figure 2) that have two components, short-term and long-term 
importance, representing the estimated value of the Atom on immediate and long-term 
time-scales. 

Figure 1. A coarse-grained view of the semantics of the truth values attached to Novamente Atoms.

Figure 2. A coarse-grained view of the semantics of the attention values attached to Novamente Atoms.

The vocabulary of node and link types used to represent knowledge in Novamente 
has been presented in ([4]). Figures 3 and 4 give some simple examples. An incomplete 
list of node types is as follows:



• ConceptNodes
o “tokens” for links to attach to

• PredicateNodes
• ProcedureNodes
• PerceptNodes

o Visual, acoustic percepts, etc.
• NumberNodes

And an incomplete list of link types is:

• Logical links
o InheritanceLink
o SimilarityLink
o ImplicationLink
o EquivalenceLink
o Intensional logical relationships

• HebbianLinks
• Procedure evaluation links

The semantics of these types is discussed in prior publications.



Figure 3.  HebbianLinks may denote generic association, calculated based on the 
degree to which two Atoms have proved simultaneously useful to the system.



Figure 4.  Links may also denote precise logical relationships, quantified with 
degrees of uncertainty and importance (quantifications not shown in the diagram).



Figure 5.  Novamente Atoms may refer to a variety of scales of specificity, from 
specific percepts or action-commands, to specific entities (like one particular table or 

one particular action of raising the arm), to general concepts.  Some nodes in the 
diagram are labeled and some are not, reflecting the fact that in the actual Novamente 

Atomspace many nodes do not correspond to any particular English word nor any 
concept or entity compactly describable in English.

It is important to note that the Novamente declarative knowledge representation is 
neither a neural net nor a semantic net, though it does have some commonalities with 
each  of  these  traditional  representations.  It  is  not  a  neural  net  because  it  has  no 
activation values,  and  involves  no  attempts  at  low-level  brain  modeling.  However, 
“attention  values”  are  very  loosely  analogous  to  time-averages  of  neural  net 
activations.On the other hand, it is not a semantic net because of the broad scope of the 
Atoms in  the  network (see  Figure  5):  for  example,  Atoms may represent  percepts, 



procedures,  or  parts  of  concepts.  Most  Novamente  Atoms  have  no  corresponding 
English label. However, most Novamente Atoms do have probabilistic truth values, 
allowing logical semantics.

1.2.NCE Cognitive and Software Architecture

The overall NCE software architecture consists  of a collection of specialized units, 
each of which uses the same knowledge representations and cognitive mechanisms to 
achieve  a  particular  aspect  of  intelligence,  such  as  perception,  language  learning, 
abstract cognition, action selection, procedure learning, etc. The breakdown into units, 
indicated in Figure 8, is based loosely on ideas from cognitive science, and is fairly 
similar to that presented in other integrative AGI architectures proposed by [11, 12] 
and others. However, the specifics of the breakdown have been chosen with care, with 
a view toward ensuring that the coordinated dynamics of the mechanisms and units will 
be  able  to  give  rise  to  the  emergent  structures  and  dynamics  associated  with 
intelligence,  including  a  sophisticated  self-model  and  an  appropriately  adaptive 
“moving focus of attention.”



Figure 6. A high-level cognitive architecture for Novamente, in which most of the boxes correspond to Units 
in the sense of Figure 7. This diagram is drawn from (XX).

As shown in Figure 7, each individual unit within the NCE architecture contains a 
table  of  Atoms and Combo trees  representing knowledge,  and then a collection of 
processes called MindAgents  that  collaboratively act  on the AtomTable.  The Mind 
Agents embody various cognitive processes, as will be described below. A unit may 
span several machines or may be localized on a single machine: in the multi-machine 
case, Nodes on one machine may link to Nodes living in other machines within the 
same unit. On the other hand, Atoms in one Unit may not directly link to Atoms in 
another  Unit;  though different  Units  may of  course  transport  Atoms amongst  each 
other.  This  architecture  is  workable  to  the  extent  that  Units  may  be  defined 
corresponding  to  pragmatically  distinct  areas  of  mental  function,  e.g.  a  Unit  for 
language processing, a Unit for visual perception, etc.



Figure 7. The architecture of a single Novamente “lobe”, involving a table of Atoms and then a collection of 
processes called MindAgents that collaboratively act on the AtomTable. A Lobe may run on one machine or 
several.  A Scheduler  object  regulates  the  activity  of  the  MindAgents;  and the  MindAgents  may spawn 
objects called Tasks that carry out one-time cognitive actions, and are scheduled using a ticketing system. 
Some  MindAgents  carry  out  actions  not  centered  on  the  AtomTable,  such  as  the  SchemaExecution 
MindAgent which executes procedures in the manner of a programming language interpreter.

 



Figure 8. The high-level architecture of Novamente consists of a set of Units, each of which consists of a set 
of machines embodying the basic one-machine Novamente architecture. All the machines in a Unit share a 
common Atomspace, i.e. links in the AtomTable of one machine in a Unit may point to Atoms in another 
machine in the Unit. On the other hand, different Units have separate Atomspaces and Atoms in one Unit 
may not  directly  link to  Atoms in  another  Unit;  though different  Units  may of course transport  Atoms 
amongst each other. This architecture is workable to the extent that Units may be defined corresponding to 
pragmatically  distinct  areas  of  mental  function,  e.g.  a  Unit  for  language  processing,  a  Unit  for  visual 
perception, etc.

Next,  Figure  9  gives  a  simplified,  schematic  view of  the  flow of  information 
through the Novamente system, in the context of its use to control an agent in the 
AGISim simulation world. This diagram does not cover “background reasoning and 
learning”  processes  that  serve  to  create  knowledge  useful  in  figuring  out  how  to 
achieve goals.



Figure 9. Schematic diagram of the architecture of the current NAIE implementation, which only 
implements part of the overall design, but successfully carried out various simple learning tasks in the 

AGISim environment.

The  full  cognitive  architecture  has  not  yet  been  implemented;  the  currently 
implemented subset of the architecture will be briefly reviewed at the start of Section 4.

2. A Typology of Cognitive Processes in Novamente

The most complex aspect of the NCE design is the set of cognitive processes involved. 
This set of processes may be presented in a number of different ways. One approach is 
to look at the set of fundamental “AI learning” algorithms that are involved. In this 
sense,  there  are  four  main  algorithmic  approaches  (each  one  of  which  involves  a 
combination of a number of specific algorithms):

• Probabilistic Term Logic,  a novel  approach to inference under uncertainty, 
which is partially described in ([13]) in this volume. 

• Probabilistic Evolutionary Learning, which in the current Novamente version 
takes the form of the MOSES algorithm, discussed in ([14]) in this volume.

• Stochastic pattern mining, which finds combinations of Atoms that satisfy a 
specified criterion (such as frequency of occurrence, statistical surprisingness, 
etc.)

• Artificial  economics,  used  for  attention  allocation  and  credit  assignment, 
leading  to  novel  forms  of  adaptively  evolving  distributed  knowledge 



representation.

In  previous  review  papers,  the  set  of  cognitive  processes  involved  in  the 
Novamente architecture has been presented in a somewhat unorganized manner, as a 
simple  list  of  MindAgents.  Such  a  presentation  is  not  inaccurate,  but  gives  the 
impression of even more conceptual complication than actually exists in the design. In 
this section I will present a typology of Novamente cognitive processes, which makes 
clear that the diverse population of MindAgents in Novamente naturally subdivides 
into a handful of high-level conceptual categories. Furthermore (though this has not 
been validated yet), I conjecture that this typologizing exercise may have conceptual 
value beyond the scope of Novamente, by imposing a natural ontology on the diversity 
of cognitive processes necessarily present in any complex, multifaceted AI system.

First  of  all,  at  the  highest  level,  I  divide  the  cognitive  processes  occurring  in 
Novamente into three categories:

• Global processes
o MindAgents that periodically iterate through all Atoms and act 

on them
o “Things that all Atoms do”

• Control Processes
o Processes  directly  involved  with  carrying  out  specifically 

orchestrated sequences of actions in the external world or in the 
system’s own infrastructure

• Focused processes
o MindAgents that begin by selecting a small set of important or 

relevant Atoms, and then act on these to generate a few more 
small sets of Atoms, and iterate.

I  suggest  that  processes  in  all  these  categories  are  critical  to  Novamente’s 
intelligence (and more hypothetically, to intelligence in general). However, we  also 
suggest that the greatest subtlety lies in the focused cognitive processes. The global and 
control  processes  are  extremely  necessary,  however,  my  conjecture  is  that  these 
processes  don’t  necessarily  need  to  be  a  lot  more  sophisticated  in  a  human-level 
intelligence  than in  a  significantly  sub-human-level  intelligence.  The  distinguishing 
characteristic of human-level intelligence, I suggest, is a much more highly-developed 
set of focused cognitive processes. To better understand focused cognitive processes in 
a general way, I will utilize the ideas of forward and backward synthesis developed in 
([15]).

Key examples of Novamente control processes are as follows:



• Schema Execution
o  This involves the “programming language interpreter” used to 

actually execute schemata created from NM Atoms
• Maintenance of “active schema pool” (SchemaSelection MindAgent)

o  This involves choosing which procedures to place in the pool of 
“currently  executing  schemata”  (meaning,  schemata  that  are 
currently ready to be activated if their input conditions are met )

• Maintenance of “active goal pool” (FeasibilityUpdating MindAgent)
o Determination of the set of predicates that are currently actively 

considered  as  system  goals,  which  is  done  by  updating 
“feasibility” information regarding the achievability of various 
goals given various committments of resources

These are processes that are necessary in order for the system to carry out actions; 
including  the  actual  execution  of  actions,  the  selection  of  subgoals  to  be  used  to 
determine which actions to carry out, the choice of which actions to carry out, and 
various specialized actions such as the updating of system control schemata based on 
meta-learning.  In  a  sense  these  are  “focused  cognitive  processes”  but  they  have  a 
different nature than the processes to be analyzed here under that label: they are not 
concerned with taking a set of knowledge items and focused-ly learning more about it, 
but are, rather, concerned with actually doing things either in the external world or in 
the system’s own infrastructure.

Next, key examples of global processes are 

• Attention Allocation
o Updates short and long term importance values associated with 

Atoms
o Uses a “simulated economy” approach, with separate currencies 

for short and long term importance
• Stochastic pattern mining of the AtomTable

o A powerful technique for predicate formation
o Critical for perceptual pattern recognition as well as cognition

o Pattern  mining  of  inference  histories  critical  to  advanced 
inference control

• Building of the SystemActivityTable 
o Records  which  MindAgents  acted  on  which  Atoms  at  which 

times
o Table  is  used  for  building  HebbianLinks,  which  are  used  in 

attention allocation

Finally,  focused  cognitive  processes  may  be  decomposed  into  forward  versus 
backward  synthesis  processes.  The  distinction  between  forward  and  backward 
synthesis processes is drawn in detail in ([15]), and depicted in Figures 10 and 11. 
Roughly, forward synthesis begins with a small set of entities, and then combines them 
(with each other and with other entities) to form new entities, and iterates this process. 
On the other hand, backward synthesis begins with a small set of entities, and tries to 
figure out how to generate this set via forward synthesis starting from some other set of 
entities that meets certain criteria (such as, in the case of backward inference, being 



confidently known). 
Novamente’s key forward synthesis processes are as follows:

• Forward-Chaining Probabilistic Inference (see Figure 12)
o Given  a  set  of  knowledge  items,  figure  out  what  (definitely  or 

speculatively) follows from it according to the rules of probabilistic 
term logic

• Concept/Goal Formation (see Figure 13)
o “Blend” existing concepts or goals to form new ones
o [16] have explored the cognitive significance of this sort of blending 

operation in great detail.
• Map formation (see Figure 14)

o Create  new  Atoms  out  of  sets  of  Atoms  that  tend  to  be 
simultaneously  important  (or  whose  importance  tends  to  be 
coordinated according to some other temporal pattern)

• Language Generation
o A subcategory of forward-chaining inference, but important enough 

to be isolated and considered on its own
o Atoms representing semantic relationships are combined with Atoms 

representing linguistic mapping rules to produce Atoms representing 
syntactic relationships, which are then transformed into sentences

• Importance Propagation
o Atoms pass some of their “attentional currency” to Atoms that they 

estimate may help them become important again in the future



Figure 12.  Probabilistic  Logic Networks for uncertain inference:  an illustration of first-order deduction, 
induction and abduction acting on extensional InheritanceLinks. This is a forward-synthesis process which 
chooses pairs of links and combines them to form new links, with truth values determined by probabilistic 
inference rules.
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Figure 13. One of Novamente’s heuristics for new-concept creation is “blending,” in which some links from 
one concept are combined with some links from another concept.



Figure 14. Atoms commonly used together may be grouped together via linking them all to a newly created 
Atom. This process is called “map formation” and is one way that the Novamente system can effectively 
recognize patterns in itself.

Next, Novamente’s key backward synthesis processeses are:

• Backward-chaining probabilistic inference
o Given  a  target  Atom,  find  ways  to  produce  and  evaluate  it 

logically from other knowledge
• Inference process adaptation

o Given  a  set  of  inferential  conclusions,  find  ways  to  produce 
those conclusions more effectively than was done before

• Predicate Schematization (Figure 15)
o Given a goal,  and knowledge about how to achieve the goal, 

synthesize a procedure for achieving the goal
• Credit Assignment

o Given a goal, figure out which procedures’ execution, and which 
Atoms’  importance,  can  be  expected  to  lead  to  the  goal’s 
achievement

• Goal Refinement
o Given a goal, find other (sub)goals that imply that goal

• Model-Based Predicate Generation
o Given probabilistic knowledge about what patterns characterize 

predicates or procedures satisfying a certain criterion, generate 
new predicate/procedures satisfying the criterion

• Criterion-Based Predicate Modeling
o Building  of  probabilistic  knowledge  regarding  the  patterns 

characterizing predicates satisfying a certain criterion
• Language Comprehension

o Syntax parsing: given a sentence, or other utterance, search for 
assignments of syntactic relationships to words that will make 



the sentence grammatical
o Semantic mapping: Search for assignment of semantic meanings 

to words and syntactic relationships that will make the sentence 
contextually meaningful

Figure 15. Predicate schematization: the backward synthesis process that maps declarative knowledge about 
how to achieve goals, into procedural knowledge that may be executed to actually achieve goals.



                  

Figure 16. A simple illustration of symbol grounding achieved through integrative intelligence. Evolutionary 
pattern mining discovers the grounding of the word “near” in perceived (AGISim) relationships, and then 
discovers the transitivity of nearness through analysis of multiple examples of perceived nearness. Language 
processing understands that China and Korea are near each other, and that China and Pakistan are somewhat 
near each other. Inference may then combine these facts learned by language processing with the transitivity 
of nearness learned via evolutionary learning on percepts gained via embodied experience, and conclude that 
Pakistan is somewhat near Korea. While simple, this is a nontrivial example of grounding in the sense that 
involves the grounding of an abstract relationship (transitivity of nearness) in perceived reality and then 
transferral of this relationship to nonperceived reality.

As a simple example of forward and backward synthesis in action, observe the 
example  of  embodied  learning  of  commonsense  knowledge  shown  in  Figure  16, 
reflecting actual experiments conducted with the current version of the NCE. In these 
experiments, MOSES was used to ground the concept of “nearness” in a simulation 
world. MOSES was able to learn the rule that nearness is transitive – via “backward 
synthesis,” i.e. the search for rules simplifying and explaining the available data. Then, 
through use of the RelEx English language parsing front end, simple natural language 
sentences regarding the nearness of different countries to each other were entered in, 
and translated into semantic nodes and links in the NCE. (This is not the way a mature 
NCE  AGI  would  process  language,  but  it  is  a  useful  approach  for  preliminary 
experimentation  while  the  NCE is  not  yet  at  the  stage  where  it  can learn  English 
language on its own via its embodied social experience.) The PLN inference system 
can  then  apply  the  learned  transitivity  of  nearness  to  the  knowledge  gained  via 
language processing – a simple example of forward-chaining inference, resulting in the 
conclusion that (in the example in the Figure)  Korea is  slightly near Pakistan.  The 
general process exemplified in this Figure is an important one. Embodied experience is 
learned to gain commonsense knowledge, which is expressed in abstract form, and can 
then be inferentially applied to domains remote from the one in which the knowledge 
was originally gained.



3. Embodied Social Cognition in the AGISim Environment

Now we briefly move from cognitive processes to another critical topic: methodologies 
of instruction. There is a variety of methods by which an AGI system may viably gain 
knowledge, including but not limited to:

• physically embodied experience, via robotic embodiment 
• virtually embodied experience, via embodiment within a simulation world

o example: the AGISim world, shown in Figure 17
• non-embodied experience

o e.g. via interaction with various online software agents
• conversation with humans
• reading in structured data from databases

o databases of general knowledge constructed for other purposes
o relational databases
o the Mizar mathematics database
o quantitative scientific, financial, etc. data
o knowledge  DB’s  constructed  specifically  for  AI’s  and  other 

software programs

 everyday knowledge oriented DB’s, e.g. Cyc [17]

 linguistics oriented DB’s, e.g WordNet [18], FrameNet 
[19]

• reading knowledge encoded in language
o natural language texts, e.g. online texts or textbooks
o texts written for  AI’s in constructed languages like Lojban or 

Lojban++ [20]



Figure 17. The Piagetan “A not B” problem presented to Novamente (the small humanoid agent) in the 
AGISim simulation world.

One of the methodological principles underlying the Novamente approach to AGI 
education is that there is no need to choose between these. Given the right AI design 
you can have your cake and eat it  too.  Initially,  the NCE is being instructed via a 
combination  of  database-ingestion  and  virtually  embodied  experience.  In  the  next 
phase, we plan to augment this with a combination of instruction in English and in 
Lojban++.  This  flexibility  is  enabled  because  the  NCE’s  knowledge representation 
permits explicit representation of knowledge (e.g. the creation of nodes corresponding 
to  English-language  concepts),  but  also  permits  experiential  learning  and  implicit 
representation of knowledge in terms of learned patterns. The intention is that once the 
NCE becomes clever enough it will learn mainly via reading knowledge encoded in 
language, and conversational interaction with humans. Embodiment in physical robots 
may also be interesting but is not viewed as critically necessary.

Our initial goal in teaching the NCE in the AGISim world is simply to make the 
system able to  learn infant-level  behaviors  "without  cheating" --  i.e.  with  the only 
instruction being interactions with a human-controlled agent in the simulation world. 
Example  behaviors  desired  here  are:  naming  objects,  asking  for  objects,  fetching 



objects, finding hidden objects, playing tag. The system will be tested using a set of 
tasks derived from human developmental psychology, a process that is already ongoing 
with tasks such as word-object association and Piaget’s A-not-B task ([3], [21]); see 
Figure 17 for a depiction of this problem as presented to a Novamente-controlled agent 
in the AGISim simulation world).

The next step beyond this has to do with language understanding. Via instructing 
the system in language simultaneously with interacting with it in the simulation world, 
we believe that the system will be taught language in a way that it really understands it 
pragmatically  and  personally,  unlike  the  kind  of  quasi-understanding  possessed  by 
current statistical or rule-based natural language systems. Once it is partway through 
this  stage,  it  will  possess  the  ability  to  learn  from  human  teachers  via  linguistic 
communication utilizing complex recursive phrase structure grammar and grounded 
semantics. After this point is reached, we anticipate that future progress will accelerate 
considerably.3 

Tied up with language understanding, of course, are social interaction and self-
understanding, as argued by [22]. If all goes as envisioned, then as NCE improves its 
communicative ability, it will also improve its self-understanding. This process may be 
understood in  terms of the concepts  of  forward and backward synthesis  introduced 
above, as will be discussed a little later.

3.1.The Currently Implemented NCE/AGISim Architecture

Currently,  as we work toward making a more and more completely functional  and 
robust “artificial baby,” we are working with a partial version of the NCE as depicted 
in Figure 9 above, incorporating the following components:

• Novamente core system
o AtomTable, MindAgents, Scheduler, etc.
o Now runs on one machine; designed for distributed processing

• PLN
o Relatively crude inference control heuristics
o Simplistic predicate schematization
o
o

• MOSES
o Little experimentation has been done evolving procedures with 

complex control structures
o Not yet fully integrated with PLN

• Schema execution framework
o Enacts learned procedures

• AGISim
o And proxy for communication with NM core

• Perception
o Stochastic  conjunctive  pattern  mining  for  finding  repeated 

patterns in data coming in from AGISim
• NLP front end

3 Also, at this stage, the symbol groundings learned by the system will be valuable for various narrow-
AI purposes, such as natural language question answering.



o External NLP system for “cheating” style knowledge ingestion 
in the form of logical predicates, without the AGI system itself 
understanding the syntactic rules

Using this restricted system, we are working with simple tasks such as fetch, tag, 
word-object association and the Piagetan A-not-B experiment. The current version has 
proved capable of carrying out these tasks in various cases, and we conjecture that it 
will be capable of robustly carrying out a variety of similar tasks. However, to move 
beyond  the  infantile  level  we  will  clearly  need  to  implement  more  of  the  NCE 
architecture,  including most  critically  the economic  attention allocation component; 
and we will need to integrate the MOSES and PLN components more fully than has 
been done so far.

3.2.The Emergence of the Self via Embodied Social Learning

As noted above, one of the key things we hope to see via teaching the NCE in the 
AGISim environment is the adaptive emergence within the NCE’s knowledge base of 
an active and effectively evolving “phenomenal self.” The process of the emergence of 
the self may, we hypothesize, be productively modeled in terms of the processes of 
forward and backward synthesis discussed above. This point is made carefully in [14] 
and just briefly summarized here.

What  is  ventured  there  is  that  the  dynamic  pattern  of  alternating  forward  and 
backward synthesis may play a  fundamental  role  in  cognition. Put  simply,  forward 
synthesis  creates  new  mental  forms  by  combining  existing  ones.  Then,  backward 
synthesis seeks simple explanations for the forms in the mind, including the newly 
created ones; and, this explanation itself then comprises additional new forms in the 
mind, to be used as fodder for the next round of forward synthesis. Or, to put it yet 
more simply:

… Combine … Explain … Combine … Explain … Combine …

This sort of dynamic may be expressed formally, in a Novamente context, as a 
dynamical iteration on the space of Atoms. One may then speak about attractors of this 
iteration: fixed points, limit cycles and strange attractors. And one may hypothesize 
some key emergent cognitive structures are strange attractors of this equation. I.e., the 
iterative dynamic of combination and explanation leads to the emergence of certain 
complex structures that are, in essence, maintained when one recombines their parts 
and then seeks to explain the recombinations.  These structures are built  in the first 
place through iterative recombination and explanation, and then survive in the mind 
because they are conserved by this process. They then ongoingly guide the construction 
and destruction of various other temporary mental structures that are not so conserved. 
Specifically, we suggest that both self and attentional focus may be viewed as strange 
attractors of this iteration. Here we will focus only on self.

The “self”  in  the  present  context  refers to  the “phenomenal  self”  [8]  or  “self-
model.” That is, the self is the model that a system builds internally, reflecting the 
patterns observed in the (external and internal) world that directly pertain to the system 
itself. As is well known in everyday human life, self-models need not be completely 
accurate  to be useful;  and in  the presence of  certain psychological  factors,  a  more 
accurate self-model may not necessarily be advantageous. But a self-model that is too 
badly inaccurate will lead to a badly-functioning system that is unable to effectively act 
toward the achievement of its own goals.



The  value  of  a  self-model  for  any  intelligent  system  carrying  out  embodied 
agentive cognition is obvious. And beyond this, another primary use of the self is as a 
foundation for metaphors and analogies in various domains. A self-model can in many 
cases form a self-fulfilling prophecy (to make an obvious double-entendre’!). Actions 
are generated based on one’s model of what sorts of actions one can and/or should 
take; and the results of these actions are then incorporated into one’s self-model. If a 
self-model  proves  a  generally  bad  guide  to  action  selection,  this  may  never  be 
discovered,  unless  said  self-model  includes  the  knowledge  that  semi-random 
experimentation is often useful.

In what sense, then, may it be said that self is an attractor of iterated forward-
backward synthesis? Backward synthesis infers the self from observations of system 
behavior. The system asks: What kind of system might we be, in order to give rise to 
these  behaviors  that  we  observe  myself  carrying  out?  Based  on  asking  itself  this 
question, it constructs a model of itself, i.e. it constructs a self. Then, this self guides 
the system’s behavior: it  builds new logical relationships its self-model and various 
other entities, in order to guide its future actions oriented toward achieving its goals. 
Based on the behaviors new induced via this constructive, forward-synthesis activity, 
the system may then engage in backward synthesis again and ask: What must we be 
now, in order to have carried out these new actions? And so on.

Our hypothesis  is  that  after  repeated  iterations  of  this  sort,  in  infancy,  finally 
during early childhood a kind of self-reinforcing attractor occurs, and we have a self-
model that is resilient and doesn’t change dramatically when new instances of action- 
or explanation-generation occur. This is not strictly a mathematical attractor, though, 
because over a long period of time the self may well shift  significantly.  But, for a 
mature self, many hundreds of thousands or millions of forward-backward synthesis 
cycles may occur before the self-model is dramatically modified. For relatively long 
periods of time, small changes within the context of the existing self may suffice to 
allow the system to control itself intelligently.

This sort of system-theoretic speculation is difficult to validate scientifically, at the 
present stage of development of AI and cognitive science; yet, it is critical in terms of 
guiding the education of proto-AGI systems like the NCE as they interact with humans 
in environments like the NCE. The goal of educating the NCE in AGISim is not just to 
give it practical understanding of the world around it, but above all to give it a practical 
understanding of its own self, in relation to the world around it.  By watching it do 
things, and explaining to it what it does; and having it watch others do things, and 
explain these things and react to them – in this way the baby AGI’s systems self-model 
will originate and mature. The AGI’s learning processes must be calibrated to allow 
both forward and backward synthesis operations to occur,  specifically pertaining to 
patterns  involving  the  system’s  perceptions  of  its  own  actions,  behaviors  and 
cognitions. In this way (assuming the cognitive operations are powerful enough and the 
environmental  and  social  interactions  are  rich  enough)  the  natural  interaction  of 
forward  and  backward  cognition  will  lead  to  the  emergence  of  an  effective  and 
growing self-model…

It is with this in mind that the Iterated Easter Egg Hunt scenario, described in 
Section 5 below, has been chosen for discussion and future experimentation. The goal 
has not been merely to choose a challenging learning problem (there are plenty of more 
challenging ones,  of  course),  but  rather  to  choose  a  learning problem that  focuses 
specifically on the interaction between perception, cognition, action, and the pragmatic, 
contextual modeling of self and others. From this sort of interaction emerges the self; 
and  from  the  actively  evolving  self-model  emerge  the  seeds  of  more  advanced 
autonomous general cognition.



4. An Economic Approach to Attention Allocation and Action Selection

This section briefly describes the economics-based approach to attention allocation and 
action selection contained in the NCE design. Along with PLN and MOSES, this is the 
third of the original and critical cognitive processes existing in the NCE. There are 
other  cognitive processes,  described above,  that  are critical  but  not  that  original  in 
content: for instance, concept creation via blending, which is a very simple heuristic 
process of “cutting and pasting” Atoms; and map formation, which is essentially just 
conjunctive pattern mining applied to the Atom table. Although not yet in final form, 
PLN and MOSES have been fully implemented and experimented with, and are treated 
in other papers in this volume, as noted above.  On the other hand, economic attention 
allocation and action selection have currently been implemented only in an incomplete 
prototype form. They will be discussed here only briefly and somewhat cursorily, the 
goal  being to  provide sufficient  background that  their role  in  the discussion of  the 
iterated Easter Egg Hunt scenario in the following section may be understood. In terms 
of the above typology of cognitive processes, economic attention allocation underlies a 
number of processes: credit assignment, importance propagation, attention allocation, 
schema execution, and maintenance of the active schema and goal pools.

4.1.Economic Attention Allocation

This section outlines an approach to the allocation of processor time and memory to 
NCE Atoms based on the introduction of a concept of “currency” (money) into the 
NCE.  The  general  advantages  of  currency-based  attention  allocation  and  credit 
assignment have been emphasized by Eric Baum in various papers (e.g. [23]; and see 
also discussion in [24]). The specific approach described here is not directly related to 
any of Baum’s detailed ideas, but is grounded in the same philosophical ideas.

Two separate types of currency are introduced: STICurrency and LTICurrency, 
corresponding to short  and long term importance values.4 Atoms, MindAgents,  and 
Units  (the  Unit,  in  the  Novamente  architecture,  being  a  possibly  distributed set  of 
Novamente Lobes that are considered as sharing a common AtomTable for purposes of 
attention allocation) are then all considered as financial agents. The Units also have a 
unique role, as “mints” capable of producing new money. Money is not transferred 
between Units in this approach; each Unit has its own local,  closed economy. It is 
assumed here, for sake of discussion, each Unit has a certain fixed total amount of 
currency of each type in it5. For starters, we may assume that this total amount is fixed 
for all eternity.

In the following discussion, the forgetting mechanism is assumed to be as follows: 
When the need to free up memory occurs, the Atoms with the least amount of LTI (i.e. 
of  Currency  of  CurrencyType  LTI)  are  removed  from  RAM.  This  is  a  simplistic 
forgetting mechanism which ignores subtler possibilities such as removing some links 
from some nodes with low LTI, but then letting them stay around a while in shrunken 
form.

On the other hand, the main point of STI is to govern the Atom-selection behavior 
of  MindAgents.  Many MindAgents  choose  Atoms to  act  upon based  on  their  STI 
(STICurrency level). And, note that, in the economic approach described here, STI can 
pretty easily go to zero (or even become negative, representing “STI debt”) if an Atom 
is useless for a while (i.e. an Atom can go “STI bankrupt”). If an Atom has negative 
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STI, it won’t be selected by MindAgents using STI as a selection criterion, but it may 
receive STI from other Atoms related to it via the “importance spreading” dynamic, 
which may increase its STI to the level where it  may once again be selected more 
frequently as an object of cognitive action.

Only the simplest variety of economic attention allocation is described here. More 
complexity is  introduced when, for example,  one introduces additional  MindAgent-
specific currencies, representing the STI of an Atom relative to the purposes of a given 
MindAgent. But these complexities are not needed for the discussion of goal and action 
selection and embodied social learning in the following sections, so they will be passed 
by for now.

4.1.1.Simple Equations for the Economics of Attention

The default equations for updating the amount of currency possessed by an Atom A, a 
MindAgent MA and a Unit U at a certain moment in time t are as follows. 

First, equations for LTI currency:

LTI_Atom(A,t+1) = LTI_Atom(A,t) – LTIAtomRent * 
memoryUsage(A,t) + LTI_Atom_fee * (#times A used in cycle 
t) + LTI_Atom_rewards 

LTI_MindAgent(MA,t+1) = LTI_MindAgent(MA,t) – 
LTI_fees_paid(MA,t) – processor_fees_paid(MA,t) + 
rewards_received(MA,t)

LTI_Unit(U,t+1) = LTI_Unit(U,t) + 
LTI_rents_received(U,t) – LTI_rewards_paid(U,t)

Note that LTI values may go below zero, which is fine. In this case forgetting may 
remove the Atoms with the biggest debt; and if there are not enough Atoms in debt, it 
may remove some Atoms with positive LTI net worth as well.

Next,  very similar  but  not quite  identical equations for STI currency (the only 
difference is the lack of the memoryUsage term in the first equation):

STI_Atom(A,t+1) = STI_Atom(A,t) – STIAtomRent  + 
STI_Atom_fee * (#times A used in cycle t) + 
STI_Atom_rewards

STI_MindAgent(MA,t+1) = STI_MindAgent(MA,t) – 
STI_fees_paid(MA,t) –  

STI_Unit(U,t+1) = STI_Unit(U,t) + 
STI_rents_received(U,t) – STI_rewards_paid(U,t)

Unlike with LTI, it seems best for Atoms with STI net worth <=T, where T is a 
specified threshold, to not be charged STIAtomRent. The argument is that if Atoms 
have such low net worth, they are not in the short-term memory in any useful sense, so 
they shouldn’t have to pay for being in short-term memory. Letting Atoms accumulate 
a lot of STI debt would make the attentional focus sluggish to respond to new stimuli, 
destroying its ability to rapidly and spontaneously change focus. The threshold T is the 



“attentional  focus  boundary,”  whose  existence  induces  an  emergent  “short  term 
memory” within the overall AtomTable.

Note  that  in  this  approach,  unlike  in  many  other  cognitive-science-based  AI 
architectures, STM is not a separate system component but rather a systemic-dynamic 
phenomenon that emerges as an outgrowth of the dynamics of STI.  This emergence is 
not magical but occurs because of specific choices in setting up the dynamics, i.e. the 
attentional focus boundary and its interaction with the rest of the economic attention 
allocation dynamics. But it has properties going beyond the existence of the attentional 
focus  boundary:  the  setting  of  the  boundary  encourages  the  formation  of  complex 
strange  attractors  of  attentional  flow  between  entities  that  habitually  surpass  the 
attentional focus boundary at the same time.

Note also that  the sets of equations for the LTI and STI currencies are totally 
separate from each other. This is intentional and represents a reasoned choice. In the 
currently  proposed  scheme,  both  LTI  and  STI  currencies  are  proper,  conserved 
currencies, but there is no mechanism for conversion between the two of them. What is 
not desired is for Atoms with high LTI to be able to purchase current attention just by 
virtue of having high LTI. Current attention must be purchased with the currency of 
recent  utility  (STI  currency),  whereas  memory  space  must  be  purchased  with  the 
currency of long-term utility (LTI currency).

The meaning of the terms in the above equations will now be explained. I will first 
explain  the  equations  for  LTI  currency,  and  then  afterwards  discuss  STI  currency 
(which is similar, but has the added complexity of Hebbian currency exchange).

4.1.2.LTI Economics

The LTIAtomRent is a an amount charged to each Atom each cycle, by the Unit, for 
the privilege of remaining in the AtomTable.  This money is  decremented from the 
Atom’s  currency  balance  and  incremented  to  the  Unit’s  currency  balance.  The 
LTIAtomRent is defined as the rent payable by an Atom per unit of memory usage, so 
that  Atoms  that  are  extremely  consumptive  of  memory  (for  instance  Atoms 
corresponding to large Combo trees in the ProcedureRepository) may be charged more 
total rent. In the initial version this dependency on memory usage may be omitted.

The LTIWage is the amount that a Unit pays a MindAgent for being utilized by a 
MindAgent. This enables an Atom to accumulate more currency if it is utilized more 
often by MindAgents. It seems optimal to enforce the rule that all Atoms must get paid 
the same wage. Note that, if Atoms could charge different wages (for example, based 
on their STI values), and wages were decremented from the MA’s individual wealth 
stores directly, then MA’s would be in the position of sometimes hiring inferior Atoms 
just to save money, and this would lead to suboptimal intelligence on the MA’s part. 
It’s true that this would serve to force competition between MA’s, and that competition 
between MA’s will be useful in future system versions where the system is evolving its 
own MA’s. But even in these future systems, I think we can use better methods of 
enforcing competition among MA’s, which do not involve artificially impairing the 
MA’s intelligences.

Note that, in spite of charging the same fee, some Atoms will accumulate more 
LTI  currency than others,  because they will  be selected by  MA’s more often than 
others. And the selection, by MA’s, is based in large part on the ShortTermImportance 
(STI) quantity associated with Atoms. STI is not the only criterion for selection that 
MA’s may use:  in  any particular  instance,  a  MA may select  Atoms based on any 
method it wants, which will often mean the use of criteria specific to the particular 
problem and context it has at hand. But as a default, once a MA has applied any other 



relevant  selection  filters,  STI  is  the  criterion  it  should  use  to  select  among  the 
remaining Atoms available. This means that there is an influence relationship between 
STI currency and LTI currency, but it is an indirect relationship, not based on currency 
transfer. Of course, there is also an influence relationship in the reverse direction: LTI 
values affect STI values because if an Atom’s LTI gets too low, it gets forgotten and 
therefore cannot get utilized and cannot accumulate any STI currency. So, just because 
there is no direct mechanism for transforming the two currency types into each other, 
doesn’t  mean  the  two  are  unrelated;  it  just  means  the  relationship  is  not  directly 
“financial.”

Now  let  us  look  at  economics  from  the  MindAgent’s  perspective.  When  a 
MindAgent  utilizes  processor  time,  it  must  pay  the  Unit  some  of  its  currency  in 
recompense for this time (and, symmetrically, the more time it uses, the more Atoms it 
will stimulate, therefore the more the Unit will pay out to Atoms on account of the 
MA’s  activity.)  On  the  other  hand,  the  MindAgents  are  paid  by  the  Unit  for 
contributing to  system goals.  This  means that  MindAgents  that  are generally  more 
useful will be able to carry out operations involving more Atoms, and more processor 
time.

From the Unit’s  point  of  view,  finally,  revenue comes from the  rents  paid by 
Atoms, and funds are disbursed to Atoms in the form of rewards for utilization by 
MindAgents.

4.1.3.STI Economics

STI economics is basically the same as LTI economics, but with different parameter 
values. STI rents are higher, so that Atoms much more easily become STI-bankrupt; 
and the higher rents of necessity mean the other quantities in the economy must be 
different (Atoms must charge higher fees, so Units must give bigger rewards). And 
recall that STI rents are only charged to Atoms with positive STI net worth.

4.1.4.Hebbian Rewards

Next we introduce the notion of Hebbian rewards. 
The basic idea is that Atoms pay other Atoms whose utilization is expected to pave 

the way for their own future utilization. That is, if there is a link 

CausalHebbianLink A B

(denoting the fact that utilization of A seems to cause utilization of B) then it may 
be worthwhile for B to give some of its wealth to A – so as to (in the case of STI 
currency) increase the odds that A will be chosen by MA’s, or (in the case of LTI 
currency) increase the odds that A will be retained in memory.

CausalHebbianLinks may come with time-interval stamps. STI Hebbian rewards 
should be given based on CHLinks with relatively brief time-interval stamps, whereas 
LTI Hebbian rewards should be given based on CHLinks with any time-interval stamp.

The total amount of wealth that an Atom should be willing to give to other Atoms 
at  any point  in time is  capped (no sense to  an Atom bankrupting itself  to support 
others), and depends on the truth value of the CausalHebbianLinks that actually exist 
pointing to the Atom. 



4.2.Economics of Goal and Action Selection

Now we will describe how these economic mechanisms are intended to interact with 
the processes of subgoal selection and action selection, in the NCE design. The main 
actors (apart from the usual ones like the AtomTable, economic attention allocation, 
etc.) in the tale to be told here are as follows:

• Structures:
o Supergoal Pool
o Active Schema Pool

• MindAgents:
o GoalBasedSchemaSelection
o GoalBasedSchemaLearning
o GoalAttentionAllocation
o FeasibilityUpdating
o SchemaActivation

4.2.1.Supergoal Pool

The Supergoal Pool contains the Atoms that the system considers as top-level goals. 
These  goals  must  be  treated  specially  by  attention  allocation:  they  must  be  given 
funding by the Lobe so that they can use it to pay for getting themselves achieved. The 
weighting  among different  top-level  goals  is  achieved  via  giving  them differential 
amounts  of  currency.  STICurrency  is  the  key  kind  here,  but  of  course  top-level 
supergoals must also get some LTICurrency so they won’t be forgotten. (Inadvertently 
deleting your top-level supergoals from memory is considered to be a bad thing!)

4.2.2.Promissory transfer of STI funds between goals

Transfer of “attentional funds” from goals to subgoals, and schema modules to other 
schema modules in the same schema, takea place via  a mechanism of  promises of  
funding (or “requests for service,” to be called “RFS’s” from here on). This mechanism 
relies  upon  and  interacts  with  ordinary  economic  attention  allocation  but  also  has 
special properties.

The logic of these RFS’s is as follows. If agent A issues a RFS of value x to agent 
B, then

1. When B judges it appropriate, B may redeem the note and ask A to transfer 
currency of value x to B. 

2. A may withdraw the note from B at any time. 

(There is also a little more complexity here, in that we will shortly introduce the 
notion of RFS’s whose value is defined by a set of constraints. But this complexity 
does not contradict the two above points.) The total value of the of RFS’s possessed by 
an Atom may be referred to as its “promise.”

Now we explain how RFS’s may be passed between goals. Given two predicates A 
and B, if A is being considered as a goal, then B may be considered as a subgoal of A 
(and A the supergoal of B) if there exists a relationship of the form

PredictiveImplication B A



I.e., achieving B may help to achieve A. Of course, the strength of this link and the 
temporal characteristics of this link are important in terms of quantifying how strongly 
and how usefully B is a subgoal of A.

Supergoals  (not  only  top-level  ones)  allocate  RFS’s  to  subgoals  as  follows. 
Supergoal  A may issue  a  RFS to  subgoal  B  if  it  is  judged that  achievement  (i.e., 
predicate satisfaction) of B implies achievement of A. This may proceed recursively: 
subgoals may allocate RFS’s to subsubgoals according to the same justification.

Unlike actual currency, RFS’s are not conserved. However, the actual payment of 
real currency upon redemption of RFS’s obeys the conservation of real currency. This 
means that agents need to be responsible in issuing and withdrawing RFS’s. In practice 
this may be ensured by having agents follow a couple simple rules in this regard.

3. 1.  If  B  and  C are  two alternatives  for  achieving  A,  and  A has  x  units  of 
currency, then A may promise both B and C x units of currency. Whomever 
asks for a redemption of the promise first, will get the money, and then the 
promise will be rescinded from the other one.

4. 2. On the other hand, if the achievement of A requires both B and C to be 
achieved, then B and C may be granted RFS’s that are defined by constraints. 
If A has x units of currency, then B and C receive an RFS tagged with the 
constraint (B+C<10). This means that in order to redeem the note, either one of 
B or C must confer with the other one, so that they can simultaneously request 
constraint-consistent amounts of money from A.

As an example of the role of constraints, suppose that the goal is to play fetch 
successfully (a subgoal of "get reward")… Then suppose it is learned that

ImplicationLink
AND

get_ball
deliver_ball

play_fetch
 
Then, if play_fetch has $10 in STICurrency, it may know it has $10 to spend on a 

combination of get_ball and deliver_ball. In this case both get_ball and deliver_ball 
would be given RFS's labeled with the contraint

RFS.get_ball + RFS.deliver_ball <= 10

The  issuance  of  RFS's  embodying  constraints  is  different  from (and  generally 
carried out prior to) the evaluation of whether the constraints can be fulfilled.

A supergoal may rescind offers of reward for service at any time. And, generally, 
if a subgoal gets achieved and has not spent all the money it needed, the supergoal will 
not offer any more funding to the subgoal (until/unless it needs that subgoal achieved 
again).

As  there  are  no  ultimate  sources  of  RFS  in  Novamente  besides  top-level 
supergoals, promise may be considered as a measure of “goal-related importance.”

Transfer  of RFS’s among Atoms is carried out  by the GoalAttentionAllocation 
MindAgent.



4.2.3.Feasibility Structures

Next, there is a numerical data structure associated with goal Atoms, which is called 
the feasibility structure. The feasibility structure of an Atom G indicates the feasibility 
of achieving G as a goal using various amounts of effort. It contains triples of the form 
(t, p, E) indicating the truth value t of achieving goal G to degree p using effort E. 
Feasibility structures must be updated periodically, via scanning the links coming into 
an Atom G; this may be done by a FeasibilityUpdating MindAgent. Feasibility may be 
calculated for any Atom G for which there are links of the form

Implication
Execution S
G

for some S. Once a schema has actually been executed on various inputs, its cost 
of execution on other inputs may be empirically estimated. But this is not the only case 
in  which  feasibility  may  be  estimated.  For  example, if  goal  G  inherits  from goal 
G1,and most children of G1 are achievable with a certain feasibility, then probably G is 
achievable with that same feasibility as well. This allows feasibility estimation even in 
cases where no plan for achieving G yet exists, e.g. if the plan can be produced via 
predicate schematization, but such schematization has not yet been carried out. 

Feasibility  then  connects  with  importance  as  follows.  Important  goals  will  get 
more STICurrency to spend, thus will be able to spawn more costly schemata. So, the 
GoalBasedSchemaSelection MindAgent, when choosing which schemata to push into 
the ActiveSchemaPool, will be able to choose more costly schemata corresponding to 
goals with more STICurrency to spend.

4.2.4.Goal Based Schema Selection

Next,  the  GoalBasedSchemaSelection  selects  schemata  to  be  placed  into  the 
ActiveSchemaPool. It does this by choosing goals G, and then choosing schemata that 
are alleged to be useful for achieving these goals. It chooses goals via a fitness function 
that combines promise and feasibility. This involves solving an optimization problem: 
figuring out how to maximize the odds of getting a lot of goal-important stuff done 
within the available amount of (memory and space) effort. Potentially this optimization 
problem can get quite subtle, but initially some simple heuristics are satisfactory. (One 
subtlety involves handling dependencies between goals, as represented by constraint-
bearing RFS’s.).

Given a goal, the GBSS MindAgent chooses a schema to achieve that goal via the 
heuristic of selecting the one that maximizes a fitness function balancing the estimated 
effort  required  to  achieve  the  goal  via  executing  the  schema,  with  the  estimated 
probability that executing the schema will cause the goal to be achieved.

When searching for schemata to achieve G, and estimating their effort, one factor 
to be taken into account is the set of schemata already in the ActiveSchemaPool. Some 
schemata  S  may  simultaneously  achieve  two  goals;  or  two  schemata  achieving 
different goals may have significant overlap of modules. In this case G may be able to 
get achieved using very little or no effort (no additional effort, if there is already a 
schema S in the ActiveSchemaPool that is going to cause G to be achieved). But if G 
decides it can be achieved via a schema S already in the ActiveSchemaPool, then it 
should still notify the ActiveSchemaPool of this, so that G can be added to S’s index 
(see below). If the other goal G1 that placed S in the ActiveSchemaPool decides to 



withdraw S, then S may need to hit up G1 for money, in order to keep itself in the 
ActiveSchemaPool with enough funds to actually execute.

4.2.5.SchemaActivation

Next, what happens with schemata that are actually in the ActiveSchemaPool? Let us 
assume  that  each  of  these  schema  is  a  collection  of  modules,  connected  via 
ActivationLinks, which have semantics: (ActivationLink A B) means that if the schema 
that placed module A in the schema pool is to be completed, then after A is activated, 
B should be activated.

When a goal places a schema in the ActiveSchemaPool, it grants that schema an 
RFS equal in value to the (some fraction of) the (promissory+real) currency it has in its 
possession. The heuristics for determining how much currency to grant may become 
sophisticated; but initially we may just have a goal give a schema all its promissory 
currency; or in the case of a top-level supergoal, all its actual currency.

When a module within a schema actually executes, then it must redeem some of its 
promissory currency to turn it  into actual  currency, because executing costs money 
(paid to  the Lobe).  Once a schema is  done executing,  if  it  hasn’t  redeemed all  its 
promissory  currency,  it  gives  the  remainder  back  to  the  goal  that  placed  it  in  the 
ActiveSchemaPool.

When a  module finishes  executing,  it  passes  promissory  currency  to  the  other 
modules to which it points with ActivationLinks.

The network of modules in the ActiveSchemaPool is a digraph (whose links are 
ActivationLinks),  because  some  modules  may  be  shared  within  different  overall 
schemata.  Each  module  must  be  indexed  via  which  schemata  contain  it,  and  each 
schema must be indexed via which goal(s) want it in the ActiveSchemaPool.

4.2.6.GoalBasedSchemaLearning

This, finally, refers to the process of trying to figure out how to achieve goals, i.e. 
trying to  learn links  between ExecutionLinks and goals  G.  This  process  should be 
focused on goals that  have a  high importance but  for  which feasible  achievement-
methodologies are not yet known. Predicate schematization is one way of achieving 
this; another is MOSES procedure evolution.

5. Embodied Social Learning in the Iterated Easter Egg Hunt Scenario

The goal of this section is to discuss how all the different aspects of the NCE design 
are intended cooperate to allow the system to carry out a moderately complex early-
childhood-level task (iterated Easter Egg Hunt, or IEEH) in the AGISim world. The 
skeptical reader may be justified in viewing this section as a kind of highly technical 
science fiction, as the NCE has not yet been applied to this task, and will not be until a 
bit  more  development  has  been  done.  However,  as  argued  above,  I  believe  it  is 
necessary to richly and deeply conceptualize the holistic behavior of an AGI system 
prior to designing its parts in detail (let alone implementing and testing its parts).

Note, it is not claimed that the approach described here is the optimal approach to 
solving the IEEH problem, either within the NCE or outside of it.  Rather, IEEH is 
being used to exemplify the interaction of various cognitive mechanisms. An optimal 
IEEH agent would likely learn much less from IEEH than either the NCE or a young 
human child.



An  expected  consequence  of  solving  IEEH  using  a  sophisticated  cognitive 
approach (rather  than, say,  an operations-research or  machine-learning approach) is 
superior generalization capability. For instance, suppose an NCE instance has learned 
how to play IEEH effectively using the general approach described here. Then it should 
have a much easier time learning to play hide-and-seek than an NM instance that has a 
similar background except that it has not learned how to play IEEH effectively. This 
kind of “transfer learning” is a key method of assessing the extent to which a task (like 
IEEH) has  been learned in  a  way supporting general  intelligence versus  a  narrow-
AI/machine-learning  sort  of  way  (the  latter  tending  to  involve  overfitting  to  the 
particular task). What one expects to see is that after a task T is learned, the learning of 
other tasks S becomes easier, with the degree of increased easiness being proportional 
to the similarity between S and T. While it is not clear what similarity measure is best 
used  here,  if  we  are  aiming  for  roughly  human-like  intelligence  then  qualitative 
similarity according to human judgment is adequate.

5.1.Definition of Iterated Easter Egg Hunt

Firstly, “Easter Egg Hunt” is defined as a game in which one agent hides a bunch of 
eggs, and a group of other agents try to find them.

The main goal of each finder agent is to find as many eggs as possible. There may 
be other  goals  too,  such as allowing each other  agent to find at  least  one egg; or, 
finding more eggs than any other agent.

And, the main goal of the hider agent is to cause the finder agents to need to take a 
long time to find the eggs. Again, other goals may also be used in parallel, such as 
making it  likely that each finder will get to find some eggs, rather than one seeker 
finding all the eggs.

Next, “Iterated Easter Egg Hunt” is defined as repetition of Easter Egg Hunt N 
times within a group of K agents, with different agents being the hider each time (the 
most interesting case is where N>K so everyone gets to be hider more than once).

5.2.Examples of Learning in IEEH

Useful patterns that may be recognized by an intelligent agent operating in an IEEH 
scenario include:

• Short agents cannot either hide or find eggs in very high places
• Short agents are more likely than tall ones to find eggs hidden in very low 

places (e.g. under a couch)
• Some agents may repetitively hide eggs in the same places each time they’re 

serving as hider
• Some agents may try to hide eggs in different places each time they’re serving 

as hider
• Once an agent A has found an egg in a certain place P, or seen another agent 

finding an egg in that place, then A is more likely to look in P again in the 
future

These patterns may be helpful to guide both hiding and finding behavior.



5.3.Pattern Mining, MOSES and Inference in IEEH

Many of  the  patterns  discussed  above  may  be  found  by  pattern  mining,  and  then 
validated by inference. In this subsection specific examples of this are described.

First of all, we may suppose that the system collects information such as

egg_134 found under couch_4 by agent_3

because it knows that “find” is a relevant predicate to the IEEH situation, so it tells 
the perception MindAgent to identify and record observed instances of “find”-ing.

If the system also has a general inclination to think about the effort levels being 
expended by agents, it may also collect information such as

egg_134 found under couch_4 by agent_3 with apparent 
relative effort level LOW

(which might be expressed explicitly in Novamente Atoms, e.g., by

Evaluation [1]
find

agent_3
egg_134
SatisfyingSet

Evaluation
under

$1
couch

Inheritance [2] Easter_Egg_Hunt
Inheritance [2] indoor

Context
[2]
Evaluation

Effort
[1]
Low

)

Mining a collection of relationships of this form, using simple conjunctive pattern 
mining, may lead to patterns such as

Finding eggs hidden in drawers tends to be hard

The system may also record knowledge such as

agent_3 has height around 1 meter

as well, if it has the habit of recording physical properties of other agents. 



Based on all  this  data,  MOSES-driven pattern mining may easily  discover  the 
pattern

Short  agents  have  much  higher  odds  of  finding  eggs 
hidden under the couch than tall agents do

It may also perhaps discover patterns such as

Short  agents  have  much  higher  odds  of  finding  eggs 
hidden in the bottom drawer of a cabinet than tall agents 
do

(For this,  MOSES would be given a  fitness function defined by a measure of 
“statistical interestingness.”)

Now, where does PLN come into the process? Well, the system may also have a 
concept  of  “low”  (in  terms  of  height)  and  then  be  able  to  learn  from  the  above 
knowledge, via simple PLN inference, that

Short  agents  have  much  higher  odds  of  finding  eggs 
hidden in low places than tall agents do

Next, supposing this statement has been learned via a combination of conjunctive 
pattern mining, MOSES and PLN, as described above. Then, it may be given a high 
importance value, because of its relevance to the current goals, and its surprisingly high 
truth value. Given this high importance, more attention will be focused on it. 

Among other things that may happen because of this attention, inference will focus 
on the Atom, and resulting from this, generalization may occur. A good generalization 
would be

Agents have relatively high odds of finding eggs that 
they can relatively easily see

Further generalization may teach the system that

RetroactiveImplication
Evaluation find ($1, $2, *)
Evaluation see ($1, $2)

(i.e.,  usually  when an  agent  finds  something,  the  agent  has  recently  seen  that 
thing.)

This may make the system assign the “see” predicate a high importance, which 
among other things may cause MOSES to focus on this predicate.  The system has 
many examples of things it has seen and things it has not seen, and may mine this 
database of knowledge to learn patterns regarding seeing. It may note, for instance, that 
on several occasions it could not see a certain egg, and then when another agent moved 
some object that was in front of that egg, afterwards it could see that egg. If the system 
has a general category “agent” that abstracts both itself and the other agents, then it 
may learn from this the predicate



If I move an object, I may see an egg that I did not 
see before

This predicate may then, via the process of predicate schematization, be used to 
generate a schema that finds and moves objects, hoping to find eggs behind them.

5.4.Schema Execution in IEEH

Next, as an example of the role of multiple goals and schema execution in the Easter 
Egg Hunt scenario, let us consider the goals of:

• G1: Find as many eggs as possible
• G2: Find more eggs than anybody else

Suppose the NCE-controlled agent sees one egg (Egg_1) across the room, under 
the couch, with no one else evidently pursuing it; and sees two other eggs (Egg_2 and 
Egg_3) on a shelf across the room, and is not sure whether Agent_2 is pursuing Egg_2 
or some other egg. Then

• G1 will spawn a schema S1 oriented toward retrieving Egg_2 and Egg_3 
• G2 will spawn a schema S2 oriented toward retrieving Egg_1

Now there are a couple possibilities:

• Both schemata (S1 and S2) may be put into the ActiveSchemaPool at the same 
time, and given an amount of STICurrency commensurate with the importance 
of the parent goal.  

• Predicate schematization may be asked to find a single schema serving the 
combined  goal  (G1  OR  G2);  and  this  single  schema  is  then  put  in  the 
ActiveSchemaPool

As an example of subgoaling, consider G2 above: find more eggs than anybody 
else.  It may be difficult for the system to continually monitor how many eggs each 
other  agent  is  finding.  Thus,  a  good  strategy  would  be  for  the  system  to  learn 
implications such as

Implication (G3 AND G4) G2 <.9>

where

• G3 = find more eggs than Bill
• G4 = find more eggs than Bob

(which would be the case e.g. if Bill and Bob were generally the fastest egg-finders 
in  the  bunch.)  Once  this  implication  has  been  learned,  the  FeasibilityUpdating 
MindAgent  has  to  notice  it  (which  it  will  do,  since  it  looks  for  potentially  useful 
implications implying currently important goals), and then make feasibility evaluations 
regarding G3 and G4. A little inference will tell it that G3 and G4 are probably both 
more feasible (lower-cost) to achieve than G2, information that may then be recorded 



in the feasibility structures attached to these Atoms. Then, the GoalAttentionAllocation 
MindAgent  will  cause  G2  to  issue  RFS’s  to  G3  and  G4;  and  the 
GoalBasedSchemaSelection MindAgent will quite likely select G3 and G4 to generate 
schemata to be placed in the ActiveSchemaPool.

5.5.Map formation in the Understanding of Self and others

Recall that one of the above inferences assumes the system has learned a notion of 
Agent that encompasses both itself and the other agents in the game. It’s fair to assume 
that this abstraction has been learned prior to the system being able to grapple with a 
game as socially complex as IEEH. But still it’s worth discussing how this learning 
may occur.  This  topic does  not  have to  do with IEEH in particular,  so it  may be 
considered a kind of digression or appendix to the overall theme of IEEH.

Among other  possible  routes,  this  general  notion of  Agent  may potentially  be 
learned via pure unsupervised pattern mining.

First of all, the collection of body parts associated with a particular agent is a good 
example of a learned map: the body parts associated with some particular agent are all 
going  to  be  associated  with  each  other  habitually,  according  to  many  different 
associations, and so a map should form for each one. (This is just an example of the 
role of map formation in “object recognition”.) Mechanistically, these maps are initiall 
formed via the implicit  activity  of  attention allocation and HebbianLink formation, 
which causes links to form between Atoms that are often utilized together in cognitive 
processes. Then the MapEncapsulation MindAgent will cause Atoms to form explicitly 
representing these maps, which means that the maps may be explicitly utilized within 
processes such as inference, pattern mining and MOSES.

So, suppose the agent has a body-map Atom for each of a number of other agents 
and also a body-map Atom for itself, then it has the opportunity to observe that all 
these body-maps are somewhat similar, and hence to cluster them together (via the 
Clustering MindAgent). Now there is a BodyMapCluster node, which may be studied 
analytically via inference and MOSES, leading to the emergence of explicit general 
knowledge regarding what constitutes a  body, and the relations between aspects of 
bodies.  For  instance,  it  may  be  noted  that  when  a  body  moves,  this  is  generally 
associated with certain classes of leg and foot movements.

The  system  may  then  note  that  when  its  own  body-map  displays  movement-
associated leg and foot  movements,  this is  associated with the execution of certain 
motoric schemata, internally. This merely requires conjunctive pattern mining, applied 
to  a set  of  predicates  involving both abstract  predicates observed in the perceptual 
stream (the abstract predicate of movement-associated leg and foot movements), and 
also predicates involving motoric commands. What the system learns here is “When I 
carry out these particular actions, the result is that I carry out the action that I have 
identified  as  ‘walking’.”  In  other  words,  it  has  learned  that  certain  leg  and  foot 
movements cause it to move in the same way that it observes other agents moving.

A  host  of  different  associations  similar  to  this  one  may  be  mined,  based  on 
studying internal actions (mostly motoric, at this early stage) and their relationship to 
observed events  involving the body-map.  And,  these  various  associations  are  often 
usefully  considered  together  in  reasoning  about  how  to  achieve  various  goals  via 
coordinating actions. Because of these, these various associations will be Hebbianly 
associated – and ultimately the MapEncapsulation MindAgent may form a number of 
maps involving them. This  is  the  root  of  the  “self-model,”  as  it  exists  in  infantile 



embodied agents.
The use of this kind of self-model and other-model in the IEEH context should be 

fairly obvious. For instance, the system may observe that Agent_4 and Agent_7 are 
more similar to it body-map-wise than any of the other agents. If it has learned that 
agents with similar body-maps often carry out similar behaviors, then it may figure that 
it is better off trying to imitate what Agent_4 and Agent_7 do, egg-hunting-wise, rather 
than trying to imitate other agents. It may then focus its imitative efforts on imitating 
the best egg-finders, and also the egg-finders most similar to it.

6. Conclusion

Achieving artificial general intelligence at the human level and ultimately beyond is a 
large, ambitious task. Above, building on prior review papers, I have summarized some 
general aspects of the NCE design, and explained roughly how we intend them to work 
together in addressing a moderately complex early-childhood-level task, the iterated 
Easter  Egg Hunt.  /  And I  have  professed  the  opinion  that  the  cognitive  processes 
required for this scenario are the same ones required for more complex, adult-level 
learning and reasoning.

More generally, why do I believe it is plausible to assert that the NCE design may 
actually be capable of achieving highly advanced general intelligence? The simplest 
answer consists of two very general points:

• The  NCE  is  based  on  a  well-reasoned,  truly  comprehensive  theory  of  
cognition, covering both the concretely-implemented and emergent aspects

• The specific algorithms and data structures chosen to implement this theory of 
mind are efficient, robust and scalable. And, so is the software implementation

A more nuanced answer refers to the system-theoretic ideas introduced in ([14, 25, 
26]) and elaborated above: In the NCE design, forward and backward synthesis are 
implemented in a powerful and general enough way adequate to give rise to self and 
focused consciousness as strange attractors. This, is the crux of why, in my view, the 
NCE will very likely be able to give rise to powerful general intelligence. To yield 
powerful AGI, the “mechanics” of a system has to be right – procedures have to get 
executed, basic probabilistic conclusions have to be drawn, useless knowledge has to 
be forgotten, etc. But all this won’t give rise to powerful intelligence unless the overall 
system is properly configured so as to give rise to the right emergent structures, key 
among which are the phenomenal self and the moving bubble of consciousness. NCE 
has  been designed with this  sort  of  emergence specifically  in  mind.  Assuming the 
project  continues  as  planned,  the  next  years  of  work  will  tell  us  whether  this 
methodology of emergence-oriented design, as instantiated in the NCE, is  really as 
powerful as expected.

Endnotes

2 A thorough technical review of the Novamente design has not yet been published; and whether and 
when such publication will  occur is a subject of uncertainty. The main issue is  not that  the Novamente 
codebase is proprietary, but rather the issue of “AI safety” ([10, 27, 28, 29]). Given the premise that the 
Novamente design may actually be capable of being used to create a human-level software intelligence, it 
then becomes ethically  debatable whether the design should be placed in the public domain, due to the 



potential  that  someone may use the  design to  create a  dangerous human-level  software  intelligence.  Of 
course, going from a design to a working and educated implementation would be a large task for anyone, but 
the  possibility  is  there,  and  has  given  us  pause  regarding  the  publication  of  too  many  details  of  the 
Novamente approach. On the other hand, we are still interested in sharing ideas with the research community 
and getting their feedback, and thus for the time being we have chosen the path of discussing the high-level 
aspects of the system design in papers such as this one, but not sharing technical details.

4 An  alternate  approach  involving  only  one  currency  was  also  considered.  In  this  approach, 
STICurrency was taken as the basic currency, and the role of LTICurrency was played by the notion of a 
“credit  rating.”  While  interesting and workable,  the added complexity  of  this  approach was judged not 
worthwhile, in spite of the conceptual elegance of having only a single currency type.

5 Later on, in a more advanced version of the NCE, this amount may eventually be allowed to change 
slowly over time – if it is found, for example, that periodically inserting more currency into the economy to 
cause a small rate of inflation encourages intelligence. This would not be the case in the current system 
because none of the financial agents are initially carrying out economic actions with any real flexibility or 
intelligence (though their simple and mechanistic economic actions are enabling the system as a whole to 
carry out actions with some level of intelligence).
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