
 Virtual Easter Egg Hunting: A Thought-
Experiment in Embodied Social Learning,

Cognitive Process Integration, and the
Dynamic Emergence of the Self

Ben GOERTZEL
Novamente LLC

Abstract. The Novamente Cognition Engine (NCE) architecture for Artificial
General Intelligence is briefly reviewed, with a focus on exploring how the various
cognitive processes involved in the architecture are intended to cooperate in
carrying out moderately complex tasks involving controlling an agent embodied in
the AGI-Sim 3D simulation world. A handful of previous conference papers have
reviewed the overall architecture of the NCE, and discussed some
accomplishments of the current, as yet incomplete version of the system; this
paper is more speculative and focuses on the intended behaviors of the NCE once
the implementation of all its major cognitive processes is complete. The “iterated
Easter Egg Hunt” scenario is introduced and used as a running example
throughout, due to its combination of perceptual, physical-action, social and self-
modeling aspects. To aid in explaining the intended behavior of the NCE, a
systematic typology of NCE cognitive processes is introduced. Cognitive
processes are typologized as global, operational or focused; and, the focused
processes are more specifically categorized as either forward-synthesis or
backward-synthesis processes. The typical dynamics of focused cognition is then
modeled as an ongoing oscillation between forward and backward synthesis
processes, with critical emergent structures such as self and consciousness arising
as attractors of this oscillatory dynamic. The emergence of models of self and
others from this oscillatory dynamic is reviewed, along with other aspects of
cognitive-process integration in the NCE, in the context of the iterated Easter Egg
Hunt scenario.

Introduction

The Novamente Cognition Engine (NCE) is an in-development software system,
ultimately aimed toward artificial general intelligence at the human level and beyond.
It is programmed in C++ and designed for large-scale implementation on a distributed
network of Linux machines. The overall architecture of the system is based on
principles from cognitive science and complex systems science, and grounded in a
systems theory of intelligence; but the specific mechanisms used within the system are
drawn from contemporary computer science, utilizing on a number of recent advances
in AI theory and practice. Among the key cognitive mechanisms of the Novamente
system are a probabilistic reasoning engine based on a novel variant of probabilistic
logic called Probabilistic Logic Networks; an evolutionary learning engine that is based
on a synthesis of probabilistic modeling and evolutionary programming called
MOSES, described in Moshe Looks’ 2006 PhD thesis from Washington University

(see [1]); and an artificial economics based system for attention allocation and credit
assignment. Implementation of the system has been underway for some time but is not
yet complete1; however, the current incomplete system has nevertheless been used to
experiment with various forms of learning and reasoning. Among other applications,
the NCE is now being used to control a simulated humanoid agent in 3D simulation
world called AGISim (see [2]), similar to a video game world, and in this context is
being taught simple behaviors such as playing fetch and tag, finding objects, and
recognizing objects by name. These teaching exercises serve to give the system basic
world-knowledge which can then be deployed beyond the scope of the simulation
world; and they serve as the first stage of a principled process of “AGI developmental
psychology” based loosely on the ideas of Jean Piaget ([3]).

The Novamente design has been overviewed in a number of conference papers
before2 ([4,5,6,7]) and our goal here is not to repeat this content, but rather to give a
more elegantly conceptually organized perspective on the cognitive processes
contained in the system, and to explore the means by which it is hypothesized these
processes will be able to act together, in a coordinated way, to enable embodied social
learning and to spawn the emergence within a Novamente system’s dynamic
knowledge base of a structure fairly describable as a “self” (or, to use a more technical
term introduced by [8]), a “phenomenal self”). To get the most out of this paper, the
reader should first read these prior overviews; but nonetheless the current paper has
been written to be minimally self-contained.

Two recent papers ([2,9]) discuss learning and reasoning experiments that have
been conducted with the current system; and, two other papers in this volume discuss
aspects of the Novamente system as well. Looks’ paper discusses the MOSES
probabilistic evolutionary learning system created for incorporation into Novamente;
and the Ikle’ et al paper discusses some of the mathematics underlying Novamente’s
Probabilistic Logic Networks (PLN), including a simple example of PLN inference
applied to embodied learning in the AGISim simulation world. This paper is more
speculative, and describes both implemented/tested and as-yet unimplemented/untested
aspects of the NCE design, with a focus on some of the integrative cognitive dynamics
and emergent structures that are expected to be observed once the implementation,
testing and tuning of the system is more complete.

Section 2 gives a brief overview of the Novamente architecture, largely covering
ground already reviewed in prior publications. Section 3 presents a typology of
cognitive processes using the notions of forward and backward synthesis, and utilizes
this to give a unified presentation of the various cognitive processes existing in the
NCE, and to compose an hypothesis regarding the origins of the phenomenal self and
the attentional focus from complex cognitive dynamics. Section 4 describes the iterated
Easter Egg Hunt scenario, and discusses how the NCE’s cognitive dynamics are
expected to productively cooperate in this context, in a completely implemented NCE.

The system-theoretic focus makes this paper different than the typical paper in the
AI literature; and this difference reflects the relatively unusual nature of the system-
theoretic methodology underlying the NCE project. In our view, the only kind of
approach to AGI likely to meet with success is one in which the systematic coordinated
behavior of a holistic AGI system is carefully envisioned prior to the detailed
implementation and testing of the system. I.e., I suggest that the parts of an AGI system

1 The implementation process is time-consuming not only due to the usual difficulties of large-scale
software engineering, but also due to the need to carefully define and test a large number of details not fully
specified in the overall AI design.

2

must be designed, in detail, with a specific view toward causing the whole to behave
appropriately. Consistently with this, I assign low success odds to “integrative” designs
in which multiple “best of breed” narrow-AI or proto-AGI components created
independently by multiple research teams are hooked together within a a flexible
overall design. And, I assign a fundamental necessity to in-depth speculative exercises
such as the one reported in Section 4 here -- if AGI is to be achieved via computer
science methods (rather than, for example, by detailed emulation of the human brain).

Above it was stated that the ultimate objective of NCE development is to create
artificial intelligence at the human level and beyond. More specifically, the long-term
objective of NCE development is to create a powerful “artificial scientist” that can
ingest a vast variety of quantitative, relational and textual data from the Internet and
then interact with human scientists to produce innovative scientific creations and
discoveries. It may seem that Easter Egg hunting – which in its more sophisticated
social-learning aspects is still beyond the current Novamente implementation – is an
extremely long way from this sort of ambitious goal. But according to the
developmental-psychology paradigm outlined in ([9]), there is a very natural path from
these early-childhood-type learning tasks to the more complex and formal learning
tasks required for doing science. The hypothesis motivating our current work on early-
childhood-level learning tasks is that doing science does not require any cognitive
mechanisms, knowledge representations or architecture components beyond those
required for doing Easter Egg hunting (or other similar tasks) in a robust, adaptive,
socially and reflectively aware way.

1. Brief Overview of the Novamente Architecture

One may describe the Novamente AGI architecture in terms of four different aspects:
knoweldge representation, cognitive architecture, cognitive processes, and emergent
structures. This section deals mainly with the former two; and the next section deals
mainly with the latter two.

1.1.NCE Knowledge Representation

The NCE utilizes a knowledge representation in which declarative knowledge is
represented using weighted, labeled hypergraphs; procedural knowledge is represented
using programs in a customized functional programming language called Combo; and
mechanisms are in place for freely converting between declarative and procedural
knowledge. Nodes and links in the declarative-knowledge hypergraph are grouped
together into the category of “Atoms.” Atoms are quantified with truth values (see
Figure 1) that, in their simplest form, have two components, one representing
probability (“strength”) and the other representing “weight of evidence”; and also with
“attention values” (see Figure 2) that have two components, short-term and long-term
importance, representing the estimated value of the Atom on immediate and long-term
time-scales.

Figure 1. A coarse-grained view of the semantics of the truth values attached to Novamente Atoms.

Figure 2. A coarse-grained view of the semantics of the attention values attached to Novamente Atoms.

The vocabulary of node and link types used to represent knowledge in Novamente
has been presented in ([4]). Figures 3 and 4 give some simple examples. An incomplete
list of node types is as follows:

• ConceptNodes
o “tokens” for links to attach to

• PredicateNodes
• ProcedureNodes
• PerceptNodes

o Visual, acoustic percepts, etc.
• NumberNodes

And an incomplete list of link types is:

• Logical links
o InheritanceLink
o SimilarityLink
o ImplicationLink
o EquivalenceLink
o Intensional logical relationships

• HebbianLinks
• Procedure evaluation links

The semantics of these types is discussed in prior publications.

Figure 3. HebbianLinks may denote generic association, calculated based on the
degree to which two Atoms have proved simultaneously useful to the system.

Figure 4. Links may also denote precise logical relationships, quantified with
degrees of uncertainty and importance (quantifications not shown in the diagram).

Figure 5. Novamente Atoms may refer to a variety of scales of specificity, from
specific percepts or action-commands, to specific entities (like one particular table or

one particular action of raising the arm), to general concepts. Some nodes in the
diagram are labeled and some are not, reflecting the fact that in the actual Novamente

Atomspace many nodes do not correspond to any particular English word nor any
concept or entity compactly describable in English.

It is important to note that the Novamente declarative knowledge representation is
neither a neural net nor a semantic net, though it does have some commonalities with
each of these traditional representations. It is not a neural net because it has no
activation values, and involves no attempts at low-level brain modeling. However,
“attention values” are very loosely analogous to time-averages of neural net
activations.On the other hand, it is not a semantic net because of the broad scope of the
Atoms in the network (see Figure 5): for example, Atoms may represent percepts,

procedures, or parts of concepts. Most Novamente Atoms have no corresponding
English label. However, most Novamente Atoms do have probabilistic truth values,
allowing logical semantics.

1.2.NCE Cognitive and Software Architecture

The overall NCE software architecture consists of a collection of specialized units,
each of which uses the same knowledge representations and cognitive mechanisms to
achieve a particular aspect of intelligence, such as perception, language learning,
abstract cognition, action selection, procedure learning, etc. The breakdown into units,
indicated in Figure 8, is based loosely on ideas from cognitive science, and is fairly
similar to that presented in other integrative AGI architectures proposed by [11, 12]
and others. However, the specifics of the breakdown have been chosen with care, with
a view toward ensuring that the coordinated dynamics of the mechanisms and units will
be able to give rise to the emergent structures and dynamics associated with
intelligence, including a sophisticated self-model and an appropriately adaptive
“moving focus of attention.”

Figure 6. A high-level cognitive architecture for Novamente, in which most of the boxes correspond to Units
in the sense of Figure 7. This diagram is drawn from (XX).

As shown in Figure 7, each individual unit within the NCE architecture contains a
table of Atoms and Combo trees representing knowledge, and then a collection of
processes called MindAgents that collaboratively act on the AtomTable. The Mind
Agents embody various cognitive processes, as will be described below. A unit may
span several machines or may be localized on a single machine: in the multi-machine
case, Nodes on one machine may link to Nodes living in other machines within the
same unit. On the other hand, Atoms in one Unit may not directly link to Atoms in
another Unit; though different Units may of course transport Atoms amongst each
other. This architecture is workable to the extent that Units may be defined
corresponding to pragmatically distinct areas of mental function, e.g. a Unit for
language processing, a Unit for visual perception, etc.

Figure 7. The architecture of a single Novamente “lobe”, involving a table of Atoms and then a collection of
processes called MindAgents that collaboratively act on the AtomTable. A Lobe may run on one machine or
several. A Scheduler object regulates the activity of the MindAgents; and the MindAgents may spawn
objects called Tasks that carry out one-time cognitive actions, and are scheduled using a ticketing system.
Some MindAgents carry out actions not centered on the AtomTable, such as the SchemaExecution
MindAgent which executes procedures in the manner of a programming language interpreter.

Figure 8. The high-level architecture of Novamente consists of a set of Units, each of which consists of a set
of machines embodying the basic one-machine Novamente architecture. All the machines in a Unit share a
common Atomspace, i.e. links in the AtomTable of one machine in a Unit may point to Atoms in another
machine in the Unit. On the other hand, different Units have separate Atomspaces and Atoms in one Unit
may not directly link to Atoms in another Unit; though different Units may of course transport Atoms
amongst each other. This architecture is workable to the extent that Units may be defined corresponding to
pragmatically distinct areas of mental function, e.g. a Unit for language processing, a Unit for visual
perception, etc.

Next, Figure 9 gives a simplified, schematic view of the flow of information
through the Novamente system, in the context of its use to control an agent in the
AGISim simulation world. This diagram does not cover “background reasoning and
learning” processes that serve to create knowledge useful in figuring out how to
achieve goals.

Figure 9. Schematic diagram of the architecture of the current NAIE implementation, which only
implements part of the overall design, but successfully carried out various simple learning tasks in the

AGISim environment.

The full cognitive architecture has not yet been implemented; the currently
implemented subset of the architecture will be briefly reviewed at the start of Section 4.

2. A Typology of Cognitive Processes in Novamente

The most complex aspect of the NCE design is the set of cognitive processes involved.
This set of processes may be presented in a number of different ways. One approach is
to look at the set of fundamental “AI learning” algorithms that are involved. In this
sense, there are four main algorithmic approaches (each one of which involves a
combination of a number of specific algorithms):

• Probabilistic Term Logic, a novel approach to inference under uncertainty,
which is partially described in ([13]) in this volume.

• Probabilistic Evolutionary Learning, which in the current Novamente version
takes the form of the MOSES algorithm, discussed in ([14]) in this volume.

• Stochastic pattern mining, which finds combinations of Atoms that satisfy a
specified criterion (such as frequency of occurrence, statistical surprisingness,
etc.)

• Artificial economics, used for attention allocation and credit assignment,
leading to novel forms of adaptively evolving distributed knowledge

representation.

In previous review papers, the set of cognitive processes involved in the
Novamente architecture has been presented in a somewhat unorganized manner, as a
simple list of MindAgents. Such a presentation is not inaccurate, but gives the
impression of even more conceptual complication than actually exists in the design. In
this section I will present a typology of Novamente cognitive processes, which makes
clear that the diverse population of MindAgents in Novamente naturally subdivides
into a handful of high-level conceptual categories. Furthermore (though this has not
been validated yet), I conjecture that this typologizing exercise may have conceptual
value beyond the scope of Novamente, by imposing a natural ontology on the diversity
of cognitive processes necessarily present in any complex, multifaceted AI system.

First of all, at the highest level, I divide the cognitive processes occurring in
Novamente into three categories:

• Global processes
o MindAgents that periodically iterate through all Atoms and act

on them
o “Things that all Atoms do”

• Control Processes
o Processes directly involved with carrying out specifically

orchestrated sequences of actions in the external world or in the
system’s own infrastructure

• Focused processes
o MindAgents that begin by selecting a small set of important or

relevant Atoms, and then act on these to generate a few more
small sets of Atoms, and iterate.

I suggest that processes in all these categories are critical to Novamente’s
intelligence (and more hypothetically, to intelligence in general). However, we also
suggest that the greatest subtlety lies in the focused cognitive processes. The global and
control processes are extremely necessary, however, my conjecture is that these
processes don’t necessarily need to be a lot more sophisticated in a human-level
intelligence than in a significantly sub-human-level intelligence. The distinguishing
characteristic of human-level intelligence, I suggest, is a much more highly-developed
set of focused cognitive processes. To better understand focused cognitive processes in
a general way, I will utilize the ideas of forward and backward synthesis developed in
([15]).

Key examples of Novamente control processes are as follows:

• Schema Execution
o This involves the “programming language interpreter” used to

actually execute schemata created from NM Atoms
• Maintenance of “active schema pool” (SchemaSelection MindAgent)

o This involves choosing which procedures to place in the pool of
“currently executing schemata” (meaning, schemata that are
currently ready to be activated if their input conditions are met)

• Maintenance of “active goal pool” (FeasibilityUpdating MindAgent)
o Determination of the set of predicates that are currently actively

considered as system goals, which is done by updating
“feasibility” information regarding the achievability of various
goals given various committments of resources

These are processes that are necessary in order for the system to carry out actions;
including the actual execution of actions, the selection of subgoals to be used to
determine which actions to carry out, the choice of which actions to carry out, and
various specialized actions such as the updating of system control schemata based on
meta-learning. In a sense these are “focused cognitive processes” but they have a
different nature than the processes to be analyzed here under that label: they are not
concerned with taking a set of knowledge items and focused-ly learning more about it,
but are, rather, concerned with actually doing things either in the external world or in
the system’s own infrastructure.

Next, key examples of global processes are

• Attention Allocation
o Updates short and long term importance values associated with

Atoms
o Uses a “simulated economy” approach, with separate currencies

for short and long term importance
• Stochastic pattern mining of the AtomTable

o A powerful technique for predicate formation
o Critical for perceptual pattern recognition as well as cognition

o Pattern mining of inference histories critical to advanced
inference control

• Building of the SystemActivityTable
o Records which MindAgents acted on which Atoms at which

times
o Table is used for building HebbianLinks, which are used in

attention allocation

Finally, focused cognitive processes may be decomposed into forward versus
backward synthesis processes. The distinction between forward and backward
synthesis processes is drawn in detail in ([15]), and depicted in Figures 10 and 11.
Roughly, forward synthesis begins with a small set of entities, and then combines them
(with each other and with other entities) to form new entities, and iterates this process.
On the other hand, backward synthesis begins with a small set of entities, and tries to
figure out how to generate this set via forward synthesis starting from some other set of
entities that meets certain criteria (such as, in the case of backward inference, being

confidently known).
Novamente’s key forward synthesis processes are as follows:

• Forward-Chaining Probabilistic Inference (see Figure 12)
o Given a set of knowledge items, figure out what (definitely or

speculatively) follows from it according to the rules of probabilistic
term logic

• Concept/Goal Formation (see Figure 13)
o “Blend” existing concepts or goals to form new ones
o [16] have explored the cognitive significance of this sort of blending

operation in great detail.
• Map formation (see Figure 14)

o Create new Atoms out of sets of Atoms that tend to be
simultaneously important (or whose importance tends to be
coordinated according to some other temporal pattern)

• Language Generation
o A subcategory of forward-chaining inference, but important enough

to be isolated and considered on its own
o Atoms representing semantic relationships are combined with Atoms

representing linguistic mapping rules to produce Atoms representing
syntactic relationships, which are then transformed into sentences

• Importance Propagation
o Atoms pass some of their “attentional currency” to Atoms that they

estimate may help them become important again in the future

Figure 12. Probabilistic Logic Networks for uncertain inference: an illustration of first-order deduction,
induction and abduction acting on extensional InheritanceLinks. This is a forward-synthesis process which
chooses pairs of links and combines them to form new links, with truth values determined by probabilistic
inference rules.

A B

B C
|-

A C

A B

A C
|-

B C

A C

B C
|-

A B

A

B

C

Deduction

A

B

C

Induction

A

B

C

Abduction

Figure 13. One of Novamente’s heuristics for new-concept creation is “blending,” in which some links from
one concept are combined with some links from another concept.

Figure 14. Atoms commonly used together may be grouped together via linking them all to a newly created
Atom. This process is called “map formation” and is one way that the Novamente system can effectively
recognize patterns in itself.

Next, Novamente’s key backward synthesis processeses are:

• Backward-chaining probabilistic inference
o Given a target Atom, find ways to produce and evaluate it

logically from other knowledge
• Inference process adaptation

o Given a set of inferential conclusions, find ways to produce
those conclusions more effectively than was done before

• Predicate Schematization (Figure 15)
o Given a goal, and knowledge about how to achieve the goal,

synthesize a procedure for achieving the goal
• Credit Assignment

o Given a goal, figure out which procedures’ execution, and which
Atoms’ importance, can be expected to lead to the goal’s
achievement

• Goal Refinement
o Given a goal, find other (sub)goals that imply that goal

• Model-Based Predicate Generation
o Given probabilistic knowledge about what patterns characterize

predicates or procedures satisfying a certain criterion, generate
new predicate/procedures satisfying the criterion

• Criterion-Based Predicate Modeling
o Building of probabilistic knowledge regarding the patterns

characterizing predicates satisfying a certain criterion
• Language Comprehension

o Syntax parsing: given a sentence, or other utterance, search for
assignments of syntactic relationships to words that will make

the sentence grammatical
o Semantic mapping: Search for assignment of semantic meanings

to words and syntactic relationships that will make the sentence
contextually meaningful

Figure 15. Predicate schematization: the backward synthesis process that maps declarative knowledge about
how to achieve goals, into procedural knowledge that may be executed to actually achieve goals.

Figure 16. A simple illustration of symbol grounding achieved through integrative intelligence. Evolutionary
pattern mining discovers the grounding of the word “near” in perceived (AGISim) relationships, and then
discovers the transitivity of nearness through analysis of multiple examples of perceived nearness. Language
processing understands that China and Korea are near each other, and that China and Pakistan are somewhat
near each other. Inference may then combine these facts learned by language processing with the transitivity
of nearness learned via evolutionary learning on percepts gained via embodied experience, and conclude that
Pakistan is somewhat near Korea. While simple, this is a nontrivial example of grounding in the sense that
involves the grounding of an abstract relationship (transitivity of nearness) in perceived reality and then
transferral of this relationship to nonperceived reality.

As a simple example of forward and backward synthesis in action, observe the
example of embodied learning of commonsense knowledge shown in Figure 16,
reflecting actual experiments conducted with the current version of the NCE. In these
experiments, MOSES was used to ground the concept of “nearness” in a simulation
world. MOSES was able to learn the rule that nearness is transitive – via “backward
synthesis,” i.e. the search for rules simplifying and explaining the available data. Then,
through use of the RelEx English language parsing front end, simple natural language
sentences regarding the nearness of different countries to each other were entered in,
and translated into semantic nodes and links in the NCE. (This is not the way a mature
NCE AGI would process language, but it is a useful approach for preliminary
experimentation while the NCE is not yet at the stage where it can learn English
language on its own via its embodied social experience.) The PLN inference system
can then apply the learned transitivity of nearness to the knowledge gained via
language processing – a simple example of forward-chaining inference, resulting in the
conclusion that (in the example in the Figure) Korea is slightly near Pakistan. The
general process exemplified in this Figure is an important one. Embodied experience is
learned to gain commonsense knowledge, which is expressed in abstract form, and can
then be inferentially applied to domains remote from the one in which the knowledge
was originally gained.

3. Embodied Social Cognition in the AGISim Environment

Now we briefly move from cognitive processes to another critical topic: methodologies
of instruction. There is a variety of methods by which an AGI system may viably gain
knowledge, including but not limited to:

• physically embodied experience, via robotic embodiment
• virtually embodied experience, via embodiment within a simulation world

o example: the AGISim world, shown in Figure 17
• non-embodied experience

o e.g. via interaction with various online software agents
• conversation with humans
• reading in structured data from databases

o databases of general knowledge constructed for other purposes
o relational databases
o the Mizar mathematics database
o quantitative scientific, financial, etc. data
o knowledge DB’s constructed specifically for AI’s and other

software programs

 everyday knowledge oriented DB’s, e.g. Cyc [17]

 linguistics oriented DB’s, e.g WordNet [18], FrameNet
[19]

• reading knowledge encoded in language
o natural language texts, e.g. online texts or textbooks
o texts written for AI’s in constructed languages like Lojban or

Lojban++ [20]

Figure 17. The Piagetan “A not B” problem presented to Novamente (the small humanoid agent) in the
AGISim simulation world.

One of the methodological principles underlying the Novamente approach to AGI
education is that there is no need to choose between these. Given the right AI design
you can have your cake and eat it too. Initially, the NCE is being instructed via a
combination of database-ingestion and virtually embodied experience. In the next
phase, we plan to augment this with a combination of instruction in English and in
Lojban++. This flexibility is enabled because the NCE’s knowledge representation
permits explicit representation of knowledge (e.g. the creation of nodes corresponding
to English-language concepts), but also permits experiential learning and implicit
representation of knowledge in terms of learned patterns. The intention is that once the
NCE becomes clever enough it will learn mainly via reading knowledge encoded in
language, and conversational interaction with humans. Embodiment in physical robots
may also be interesting but is not viewed as critically necessary.

Our initial goal in teaching the NCE in the AGISim world is simply to make the
system able to learn infant-level behaviors "without cheating" -- i.e. with the only
instruction being interactions with a human-controlled agent in the simulation world.
Example behaviors desired here are: naming objects, asking for objects, fetching

objects, finding hidden objects, playing tag. The system will be tested using a set of
tasks derived from human developmental psychology, a process that is already ongoing
with tasks such as word-object association and Piaget’s A-not-B task ([3], [21]); see
Figure 17 for a depiction of this problem as presented to a Novamente-controlled agent
in the AGISim simulation world).

The next step beyond this has to do with language understanding. Via instructing
the system in language simultaneously with interacting with it in the simulation world,
we believe that the system will be taught language in a way that it really understands it
pragmatically and personally, unlike the kind of quasi-understanding possessed by
current statistical or rule-based natural language systems. Once it is partway through
this stage, it will possess the ability to learn from human teachers via linguistic
communication utilizing complex recursive phrase structure grammar and grounded
semantics. After this point is reached, we anticipate that future progress will accelerate
considerably.3

Tied up with language understanding, of course, are social interaction and self-
understanding, as argued by [22]. If all goes as envisioned, then as NCE improves its
communicative ability, it will also improve its self-understanding. This process may be
understood in terms of the concepts of forward and backward synthesis introduced
above, as will be discussed a little later.

3.1.The Currently Implemented NCE/AGISim Architecture

Currently, as we work toward making a more and more completely functional and
robust “artificial baby,” we are working with a partial version of the NCE as depicted
in Figure 9 above, incorporating the following components:

• Novamente core system
o AtomTable, MindAgents, Scheduler, etc.
o Now runs on one machine; designed for distributed processing

• PLN
o Relatively crude inference control heuristics
o Simplistic predicate schematization
o
o

• MOSES
o Little experimentation has been done evolving procedures with

complex control structures
o Not yet fully integrated with PLN

• Schema execution framework
o Enacts learned procedures

• AGISim
o And proxy for communication with NM core

• Perception
o Stochastic conjunctive pattern mining for finding repeated

patterns in data coming in from AGISim
• NLP front end

3 Also, at this stage, the symbol groundings learned by the system will be valuable for various narrow-
AI purposes, such as natural language question answering.

o External NLP system for “cheating” style knowledge ingestion
in the form of logical predicates, without the AGI system itself
understanding the syntactic rules

Using this restricted system, we are working with simple tasks such as fetch, tag,
word-object association and the Piagetan A-not-B experiment. The current version has
proved capable of carrying out these tasks in various cases, and we conjecture that it
will be capable of robustly carrying out a variety of similar tasks. However, to move
beyond the infantile level we will clearly need to implement more of the NCE
architecture, including most critically the economic attention allocation component;
and we will need to integrate the MOSES and PLN components more fully than has
been done so far.

3.2.The Emergence of the Self via Embodied Social Learning

As noted above, one of the key things we hope to see via teaching the NCE in the
AGISim environment is the adaptive emergence within the NCE’s knowledge base of
an active and effectively evolving “phenomenal self.” The process of the emergence of
the self may, we hypothesize, be productively modeled in terms of the processes of
forward and backward synthesis discussed above. This point is made carefully in [14]
and just briefly summarized here.

What is ventured there is that the dynamic pattern of alternating forward and
backward synthesis may play a fundamental role in cognition. Put simply, forward
synthesis creates new mental forms by combining existing ones. Then, backward
synthesis seeks simple explanations for the forms in the mind, including the newly
created ones; and, this explanation itself then comprises additional new forms in the
mind, to be used as fodder for the next round of forward synthesis. Or, to put it yet
more simply:

… Combine … Explain … Combine … Explain … Combine …

This sort of dynamic may be expressed formally, in a Novamente context, as a
dynamical iteration on the space of Atoms. One may then speak about attractors of this
iteration: fixed points, limit cycles and strange attractors. And one may hypothesize
some key emergent cognitive structures are strange attractors of this equation. I.e., the
iterative dynamic of combination and explanation leads to the emergence of certain
complex structures that are, in essence, maintained when one recombines their parts
and then seeks to explain the recombinations. These structures are built in the first
place through iterative recombination and explanation, and then survive in the mind
because they are conserved by this process. They then ongoingly guide the construction
and destruction of various other temporary mental structures that are not so conserved.
Specifically, we suggest that both self and attentional focus may be viewed as strange
attractors of this iteration. Here we will focus only on self.

The “self” in the present context refers to the “phenomenal self” [8] or “self-
model.” That is, the self is the model that a system builds internally, reflecting the
patterns observed in the (external and internal) world that directly pertain to the system
itself. As is well known in everyday human life, self-models need not be completely
accurate to be useful; and in the presence of certain psychological factors, a more
accurate self-model may not necessarily be advantageous. But a self-model that is too
badly inaccurate will lead to a badly-functioning system that is unable to effectively act
toward the achievement of its own goals.

The value of a self-model for any intelligent system carrying out embodied
agentive cognition is obvious. And beyond this, another primary use of the self is as a
foundation for metaphors and analogies in various domains. A self-model can in many
cases form a self-fulfilling prophecy (to make an obvious double-entendre’!). Actions
are generated based on one’s model of what sorts of actions one can and/or should
take; and the results of these actions are then incorporated into one’s self-model. If a
self-model proves a generally bad guide to action selection, this may never be
discovered, unless said self-model includes the knowledge that semi-random
experimentation is often useful.

In what sense, then, may it be said that self is an attractor of iterated forward-
backward synthesis? Backward synthesis infers the self from observations of system
behavior. The system asks: What kind of system might we be, in order to give rise to
these behaviors that we observe myself carrying out? Based on asking itself this
question, it constructs a model of itself, i.e. it constructs a self. Then, this self guides
the system’s behavior: it builds new logical relationships its self-model and various
other entities, in order to guide its future actions oriented toward achieving its goals.
Based on the behaviors new induced via this constructive, forward-synthesis activity,
the system may then engage in backward synthesis again and ask: What must we be
now, in order to have carried out these new actions? And so on.

Our hypothesis is that after repeated iterations of this sort, in infancy, finally
during early childhood a kind of self-reinforcing attractor occurs, and we have a self-
model that is resilient and doesn’t change dramatically when new instances of action-
or explanation-generation occur. This is not strictly a mathematical attractor, though,
because over a long period of time the self may well shift significantly. But, for a
mature self, many hundreds of thousands or millions of forward-backward synthesis
cycles may occur before the self-model is dramatically modified. For relatively long
periods of time, small changes within the context of the existing self may suffice to
allow the system to control itself intelligently.

This sort of system-theoretic speculation is difficult to validate scientifically, at the
present stage of development of AI and cognitive science; yet, it is critical in terms of
guiding the education of proto-AGI systems like the NCE as they interact with humans
in environments like the NCE. The goal of educating the NCE in AGISim is not just to
give it practical understanding of the world around it, but above all to give it a practical
understanding of its own self, in relation to the world around it. By watching it do
things, and explaining to it what it does; and having it watch others do things, and
explain these things and react to them – in this way the baby AGI’s systems self-model
will originate and mature. The AGI’s learning processes must be calibrated to allow
both forward and backward synthesis operations to occur, specifically pertaining to
patterns involving the system’s perceptions of its own actions, behaviors and
cognitions. In this way (assuming the cognitive operations are powerful enough and the
environmental and social interactions are rich enough) the natural interaction of
forward and backward cognition will lead to the emergence of an effective and
growing self-model…

It is with this in mind that the Iterated Easter Egg Hunt scenario, described in
Section 5 below, has been chosen for discussion and future experimentation. The goal
has not been merely to choose a challenging learning problem (there are plenty of more
challenging ones, of course), but rather to choose a learning problem that focuses
specifically on the interaction between perception, cognition, action, and the pragmatic,
contextual modeling of self and others. From this sort of interaction emerges the self;
and from the actively evolving self-model emerge the seeds of more advanced
autonomous general cognition.

4. An Economic Approach to Attention Allocation and Action Selection

This section briefly describes the economics-based approach to attention allocation and
action selection contained in the NCE design. Along with PLN and MOSES, this is the
third of the original and critical cognitive processes existing in the NCE. There are
other cognitive processes, described above, that are critical but not that original in
content: for instance, concept creation via blending, which is a very simple heuristic
process of “cutting and pasting” Atoms; and map formation, which is essentially just
conjunctive pattern mining applied to the Atom table. Although not yet in final form,
PLN and MOSES have been fully implemented and experimented with, and are treated
in other papers in this volume, as noted above. On the other hand, economic attention
allocation and action selection have currently been implemented only in an incomplete
prototype form. They will be discussed here only briefly and somewhat cursorily, the
goal being to provide sufficient background that their role in the discussion of the
iterated Easter Egg Hunt scenario in the following section may be understood. In terms
of the above typology of cognitive processes, economic attention allocation underlies a
number of processes: credit assignment, importance propagation, attention allocation,
schema execution, and maintenance of the active schema and goal pools.

4.1.Economic Attention Allocation

This section outlines an approach to the allocation of processor time and memory to
NCE Atoms based on the introduction of a concept of “currency” (money) into the
NCE. The general advantages of currency-based attention allocation and credit
assignment have been emphasized by Eric Baum in various papers (e.g. [23]; and see
also discussion in [24]). The specific approach described here is not directly related to
any of Baum’s detailed ideas, but is grounded in the same philosophical ideas.

Two separate types of currency are introduced: STICurrency and LTICurrency,
corresponding to short and long term importance values.4 Atoms, MindAgents, and
Units (the Unit, in the Novamente architecture, being a possibly distributed set of
Novamente Lobes that are considered as sharing a common AtomTable for purposes of
attention allocation) are then all considered as financial agents. The Units also have a
unique role, as “mints” capable of producing new money. Money is not transferred
between Units in this approach; each Unit has its own local, closed economy. It is
assumed here, for sake of discussion, each Unit has a certain fixed total amount of
currency of each type in it5. For starters, we may assume that this total amount is fixed
for all eternity.

In the following discussion, the forgetting mechanism is assumed to be as follows:
When the need to free up memory occurs, the Atoms with the least amount of LTI (i.e.
of Currency of CurrencyType LTI) are removed from RAM. This is a simplistic
forgetting mechanism which ignores subtler possibilities such as removing some links
from some nodes with low LTI, but then letting them stay around a while in shrunken
form.

On the other hand, the main point of STI is to govern the Atom-selection behavior
of MindAgents. Many MindAgents choose Atoms to act upon based on their STI
(STICurrency level). And, note that, in the economic approach described here, STI can
pretty easily go to zero (or even become negative, representing “STI debt”) if an Atom
is useless for a while (i.e. an Atom can go “STI bankrupt”). If an Atom has negative

4

5

STI, it won’t be selected by MindAgents using STI as a selection criterion, but it may
receive STI from other Atoms related to it via the “importance spreading” dynamic,
which may increase its STI to the level where it may once again be selected more
frequently as an object of cognitive action.

Only the simplest variety of economic attention allocation is described here. More
complexity is introduced when, for example, one introduces additional MindAgent-
specific currencies, representing the STI of an Atom relative to the purposes of a given
MindAgent. But these complexities are not needed for the discussion of goal and action
selection and embodied social learning in the following sections, so they will be passed
by for now.

4.1.1.Simple Equations for the Economics of Attention

The default equations for updating the amount of currency possessed by an Atom A, a
MindAgent MA and a Unit U at a certain moment in time t are as follows.

First, equations for LTI currency:

LTI_Atom(A,t+1) = LTI_Atom(A,t) – LTIAtomRent *
memoryUsage(A,t) + LTI_Atom_fee * (#times A used in cycle
t) + LTI_Atom_rewards

LTI_MindAgent(MA,t+1) = LTI_MindAgent(MA,t) –
LTI_fees_paid(MA,t) – processor_fees_paid(MA,t) +
rewards_received(MA,t)

LTI_Unit(U,t+1) = LTI_Unit(U,t) +
LTI_rents_received(U,t) – LTI_rewards_paid(U,t)

Note that LTI values may go below zero, which is fine. In this case forgetting may
remove the Atoms with the biggest debt; and if there are not enough Atoms in debt, it
may remove some Atoms with positive LTI net worth as well.

Next, very similar but not quite identical equations for STI currency (the only
difference is the lack of the memoryUsage term in the first equation):

STI_Atom(A,t+1) = STI_Atom(A,t) – STIAtomRent +
STI_Atom_fee * (#times A used in cycle t) +
STI_Atom_rewards

STI_MindAgent(MA,t+1) = STI_MindAgent(MA,t) –
STI_fees_paid(MA,t) –

STI_Unit(U,t+1) = STI_Unit(U,t) +
STI_rents_received(U,t) – STI_rewards_paid(U,t)

Unlike with LTI, it seems best for Atoms with STI net worth <=T, where T is a
specified threshold, to not be charged STIAtomRent. The argument is that if Atoms
have such low net worth, they are not in the short-term memory in any useful sense, so
they shouldn’t have to pay for being in short-term memory. Letting Atoms accumulate
a lot of STI debt would make the attentional focus sluggish to respond to new stimuli,
destroying its ability to rapidly and spontaneously change focus. The threshold T is the

“attentional focus boundary,” whose existence induces an emergent “short term
memory” within the overall AtomTable.

Note that in this approach, unlike in many other cognitive-science-based AI
architectures, STM is not a separate system component but rather a systemic-dynamic
phenomenon that emerges as an outgrowth of the dynamics of STI. This emergence is
not magical but occurs because of specific choices in setting up the dynamics, i.e. the
attentional focus boundary and its interaction with the rest of the economic attention
allocation dynamics. But it has properties going beyond the existence of the attentional
focus boundary: the setting of the boundary encourages the formation of complex
strange attractors of attentional flow between entities that habitually surpass the
attentional focus boundary at the same time.

Note also that the sets of equations for the LTI and STI currencies are totally
separate from each other. This is intentional and represents a reasoned choice. In the
currently proposed scheme, both LTI and STI currencies are proper, conserved
currencies, but there is no mechanism for conversion between the two of them. What is
not desired is for Atoms with high LTI to be able to purchase current attention just by
virtue of having high LTI. Current attention must be purchased with the currency of
recent utility (STI currency), whereas memory space must be purchased with the
currency of long-term utility (LTI currency).

The meaning of the terms in the above equations will now be explained. I will first
explain the equations for LTI currency, and then afterwards discuss STI currency
(which is similar, but has the added complexity of Hebbian currency exchange).

4.1.2.LTI Economics

The LTIAtomRent is a an amount charged to each Atom each cycle, by the Unit, for
the privilege of remaining in the AtomTable. This money is decremented from the
Atom’s currency balance and incremented to the Unit’s currency balance. The
LTIAtomRent is defined as the rent payable by an Atom per unit of memory usage, so
that Atoms that are extremely consumptive of memory (for instance Atoms
corresponding to large Combo trees in the ProcedureRepository) may be charged more
total rent. In the initial version this dependency on memory usage may be omitted.

The LTIWage is the amount that a Unit pays a MindAgent for being utilized by a
MindAgent. This enables an Atom to accumulate more currency if it is utilized more
often by MindAgents. It seems optimal to enforce the rule that all Atoms must get paid
the same wage. Note that, if Atoms could charge different wages (for example, based
on their STI values), and wages were decremented from the MA’s individual wealth
stores directly, then MA’s would be in the position of sometimes hiring inferior Atoms
just to save money, and this would lead to suboptimal intelligence on the MA’s part.
It’s true that this would serve to force competition between MA’s, and that competition
between MA’s will be useful in future system versions where the system is evolving its
own MA’s. But even in these future systems, I think we can use better methods of
enforcing competition among MA’s, which do not involve artificially impairing the
MA’s intelligences.

Note that, in spite of charging the same fee, some Atoms will accumulate more
LTI currency than others, because they will be selected by MA’s more often than
others. And the selection, by MA’s, is based in large part on the ShortTermImportance
(STI) quantity associated with Atoms. STI is not the only criterion for selection that
MA’s may use: in any particular instance, a MA may select Atoms based on any
method it wants, which will often mean the use of criteria specific to the particular
problem and context it has at hand. But as a default, once a MA has applied any other

relevant selection filters, STI is the criterion it should use to select among the
remaining Atoms available. This means that there is an influence relationship between
STI currency and LTI currency, but it is an indirect relationship, not based on currency
transfer. Of course, there is also an influence relationship in the reverse direction: LTI
values affect STI values because if an Atom’s LTI gets too low, it gets forgotten and
therefore cannot get utilized and cannot accumulate any STI currency. So, just because
there is no direct mechanism for transforming the two currency types into each other,
doesn’t mean the two are unrelated; it just means the relationship is not directly
“financial.”

Now let us look at economics from the MindAgent’s perspective. When a
MindAgent utilizes processor time, it must pay the Unit some of its currency in
recompense for this time (and, symmetrically, the more time it uses, the more Atoms it
will stimulate, therefore the more the Unit will pay out to Atoms on account of the
MA’s activity.) On the other hand, the MindAgents are paid by the Unit for
contributing to system goals. This means that MindAgents that are generally more
useful will be able to carry out operations involving more Atoms, and more processor
time.

From the Unit’s point of view, finally, revenue comes from the rents paid by
Atoms, and funds are disbursed to Atoms in the form of rewards for utilization by
MindAgents.

4.1.3.STI Economics

STI economics is basically the same as LTI economics, but with different parameter
values. STI rents are higher, so that Atoms much more easily become STI-bankrupt;
and the higher rents of necessity mean the other quantities in the economy must be
different (Atoms must charge higher fees, so Units must give bigger rewards). And
recall that STI rents are only charged to Atoms with positive STI net worth.

4.1.4.Hebbian Rewards

Next we introduce the notion of Hebbian rewards.
The basic idea is that Atoms pay other Atoms whose utilization is expected to pave

the way for their own future utilization. That is, if there is a link

CausalHebbianLink A B

(denoting the fact that utilization of A seems to cause utilization of B) then it may
be worthwhile for B to give some of its wealth to A – so as to (in the case of STI
currency) increase the odds that A will be chosen by MA’s, or (in the case of LTI
currency) increase the odds that A will be retained in memory.

CausalHebbianLinks may come with time-interval stamps. STI Hebbian rewards
should be given based on CHLinks with relatively brief time-interval stamps, whereas
LTI Hebbian rewards should be given based on CHLinks with any time-interval stamp.

The total amount of wealth that an Atom should be willing to give to other Atoms
at any point in time is capped (no sense to an Atom bankrupting itself to support
others), and depends on the truth value of the CausalHebbianLinks that actually exist
pointing to the Atom.

4.2.Economics of Goal and Action Selection

Now we will describe how these economic mechanisms are intended to interact with
the processes of subgoal selection and action selection, in the NCE design. The main
actors (apart from the usual ones like the AtomTable, economic attention allocation,
etc.) in the tale to be told here are as follows:

• Structures:
o Supergoal Pool
o Active Schema Pool

• MindAgents:
o GoalBasedSchemaSelection
o GoalBasedSchemaLearning
o GoalAttentionAllocation
o FeasibilityUpdating
o SchemaActivation

4.2.1.Supergoal Pool

The Supergoal Pool contains the Atoms that the system considers as top-level goals.
These goals must be treated specially by attention allocation: they must be given
funding by the Lobe so that they can use it to pay for getting themselves achieved. The
weighting among different top-level goals is achieved via giving them differential
amounts of currency. STICurrency is the key kind here, but of course top-level
supergoals must also get some LTICurrency so they won’t be forgotten. (Inadvertently
deleting your top-level supergoals from memory is considered to be a bad thing!)

4.2.2.Promissory transfer of STI funds between goals

Transfer of “attentional funds” from goals to subgoals, and schema modules to other
schema modules in the same schema, takea place via a mechanism of promises of
funding (or “requests for service,” to be called “RFS’s” from here on). This mechanism
relies upon and interacts with ordinary economic attention allocation but also has
special properties.

The logic of these RFS’s is as follows. If agent A issues a RFS of value x to agent
B, then

1. When B judges it appropriate, B may redeem the note and ask A to transfer
currency of value x to B.

2. A may withdraw the note from B at any time.

(There is also a little more complexity here, in that we will shortly introduce the
notion of RFS’s whose value is defined by a set of constraints. But this complexity
does not contradict the two above points.) The total value of the of RFS’s possessed by
an Atom may be referred to as its “promise.”

Now we explain how RFS’s may be passed between goals. Given two predicates A
and B, if A is being considered as a goal, then B may be considered as a subgoal of A
(and A the supergoal of B) if there exists a relationship of the form

PredictiveImplication B A

I.e., achieving B may help to achieve A. Of course, the strength of this link and the
temporal characteristics of this link are important in terms of quantifying how strongly
and how usefully B is a subgoal of A.

Supergoals (not only top-level ones) allocate RFS’s to subgoals as follows.
Supergoal A may issue a RFS to subgoal B if it is judged that achievement (i.e.,
predicate satisfaction) of B implies achievement of A. This may proceed recursively:
subgoals may allocate RFS’s to subsubgoals according to the same justification.

Unlike actual currency, RFS’s are not conserved. However, the actual payment of
real currency upon redemption of RFS’s obeys the conservation of real currency. This
means that agents need to be responsible in issuing and withdrawing RFS’s. In practice
this may be ensured by having agents follow a couple simple rules in this regard.

3. 1. If B and C are two alternatives for achieving A, and A has x units of
currency, then A may promise both B and C x units of currency. Whomever
asks for a redemption of the promise first, will get the money, and then the
promise will be rescinded from the other one.

4. 2. On the other hand, if the achievement of A requires both B and C to be
achieved, then B and C may be granted RFS’s that are defined by constraints.
If A has x units of currency, then B and C receive an RFS tagged with the
constraint (B+C<10). This means that in order to redeem the note, either one of
B or C must confer with the other one, so that they can simultaneously request
constraint-consistent amounts of money from A.

As an example of the role of constraints, suppose that the goal is to play fetch
successfully (a subgoal of "get reward")… Then suppose it is learned that

ImplicationLink
AND

get_ball
deliver_ball

play_fetch

Then, if play_fetch has $10 in STICurrency, it may know it has $10 to spend on a

combination of get_ball and deliver_ball. In this case both get_ball and deliver_ball
would be given RFS's labeled with the contraint

RFS.get_ball + RFS.deliver_ball <= 10

The issuance of RFS's embodying constraints is different from (and generally
carried out prior to) the evaluation of whether the constraints can be fulfilled.

A supergoal may rescind offers of reward for service at any time. And, generally,
if a subgoal gets achieved and has not spent all the money it needed, the supergoal will
not offer any more funding to the subgoal (until/unless it needs that subgoal achieved
again).

As there are no ultimate sources of RFS in Novamente besides top-level
supergoals, promise may be considered as a measure of “goal-related importance.”

Transfer of RFS’s among Atoms is carried out by the GoalAttentionAllocation
MindAgent.

4.2.3.Feasibility Structures

Next, there is a numerical data structure associated with goal Atoms, which is called
the feasibility structure. The feasibility structure of an Atom G indicates the feasibility
of achieving G as a goal using various amounts of effort. It contains triples of the form
(t, p, E) indicating the truth value t of achieving goal G to degree p using effort E.
Feasibility structures must be updated periodically, via scanning the links coming into
an Atom G; this may be done by a FeasibilityUpdating MindAgent. Feasibility may be
calculated for any Atom G for which there are links of the form

Implication
Execution S
G

for some S. Once a schema has actually been executed on various inputs, its cost
of execution on other inputs may be empirically estimated. But this is not the only case
in which feasibility may be estimated. For example, if goal G inherits from goal
G1,and most children of G1 are achievable with a certain feasibility, then probably G is
achievable with that same feasibility as well. This allows feasibility estimation even in
cases where no plan for achieving G yet exists, e.g. if the plan can be produced via
predicate schematization, but such schematization has not yet been carried out.

Feasibility then connects with importance as follows. Important goals will get
more STICurrency to spend, thus will be able to spawn more costly schemata. So, the
GoalBasedSchemaSelection MindAgent, when choosing which schemata to push into
the ActiveSchemaPool, will be able to choose more costly schemata corresponding to
goals with more STICurrency to spend.

4.2.4.Goal Based Schema Selection

Next, the GoalBasedSchemaSelection selects schemata to be placed into the
ActiveSchemaPool. It does this by choosing goals G, and then choosing schemata that
are alleged to be useful for achieving these goals. It chooses goals via a fitness function
that combines promise and feasibility. This involves solving an optimization problem:
figuring out how to maximize the odds of getting a lot of goal-important stuff done
within the available amount of (memory and space) effort. Potentially this optimization
problem can get quite subtle, but initially some simple heuristics are satisfactory. (One
subtlety involves handling dependencies between goals, as represented by constraint-
bearing RFS’s.).

Given a goal, the GBSS MindAgent chooses a schema to achieve that goal via the
heuristic of selecting the one that maximizes a fitness function balancing the estimated
effort required to achieve the goal via executing the schema, with the estimated
probability that executing the schema will cause the goal to be achieved.

When searching for schemata to achieve G, and estimating their effort, one factor
to be taken into account is the set of schemata already in the ActiveSchemaPool. Some
schemata S may simultaneously achieve two goals; or two schemata achieving
different goals may have significant overlap of modules. In this case G may be able to
get achieved using very little or no effort (no additional effort, if there is already a
schema S in the ActiveSchemaPool that is going to cause G to be achieved). But if G
decides it can be achieved via a schema S already in the ActiveSchemaPool, then it
should still notify the ActiveSchemaPool of this, so that G can be added to S’s index
(see below). If the other goal G1 that placed S in the ActiveSchemaPool decides to

withdraw S, then S may need to hit up G1 for money, in order to keep itself in the
ActiveSchemaPool with enough funds to actually execute.

4.2.5.SchemaActivation

Next, what happens with schemata that are actually in the ActiveSchemaPool? Let us
assume that each of these schema is a collection of modules, connected via
ActivationLinks, which have semantics: (ActivationLink A B) means that if the schema
that placed module A in the schema pool is to be completed, then after A is activated,
B should be activated.

When a goal places a schema in the ActiveSchemaPool, it grants that schema an
RFS equal in value to the (some fraction of) the (promissory+real) currency it has in its
possession. The heuristics for determining how much currency to grant may become
sophisticated; but initially we may just have a goal give a schema all its promissory
currency; or in the case of a top-level supergoal, all its actual currency.

When a module within a schema actually executes, then it must redeem some of its
promissory currency to turn it into actual currency, because executing costs money
(paid to the Lobe). Once a schema is done executing, if it hasn’t redeemed all its
promissory currency, it gives the remainder back to the goal that placed it in the
ActiveSchemaPool.

When a module finishes executing, it passes promissory currency to the other
modules to which it points with ActivationLinks.

The network of modules in the ActiveSchemaPool is a digraph (whose links are
ActivationLinks), because some modules may be shared within different overall
schemata. Each module must be indexed via which schemata contain it, and each
schema must be indexed via which goal(s) want it in the ActiveSchemaPool.

4.2.6.GoalBasedSchemaLearning

This, finally, refers to the process of trying to figure out how to achieve goals, i.e.
trying to learn links between ExecutionLinks and goals G. This process should be
focused on goals that have a high importance but for which feasible achievement-
methodologies are not yet known. Predicate schematization is one way of achieving
this; another is MOSES procedure evolution.

5. Embodied Social Learning in the Iterated Easter Egg Hunt Scenario

The goal of this section is to discuss how all the different aspects of the NCE design
are intended cooperate to allow the system to carry out a moderately complex early-
childhood-level task (iterated Easter Egg Hunt, or IEEH) in the AGISim world. The
skeptical reader may be justified in viewing this section as a kind of highly technical
science fiction, as the NCE has not yet been applied to this task, and will not be until a
bit more development has been done. However, as argued above, I believe it is
necessary to richly and deeply conceptualize the holistic behavior of an AGI system
prior to designing its parts in detail (let alone implementing and testing its parts).

Note, it is not claimed that the approach described here is the optimal approach to
solving the IEEH problem, either within the NCE or outside of it. Rather, IEEH is
being used to exemplify the interaction of various cognitive mechanisms. An optimal
IEEH agent would likely learn much less from IEEH than either the NCE or a young
human child.

An expected consequence of solving IEEH using a sophisticated cognitive
approach (rather than, say, an operations-research or machine-learning approach) is
superior generalization capability. For instance, suppose an NCE instance has learned
how to play IEEH effectively using the general approach described here. Then it should
have a much easier time learning to play hide-and-seek than an NM instance that has a
similar background except that it has not learned how to play IEEH effectively. This
kind of “transfer learning” is a key method of assessing the extent to which a task (like
IEEH) has been learned in a way supporting general intelligence versus a narrow-
AI/machine-learning sort of way (the latter tending to involve overfitting to the
particular task). What one expects to see is that after a task T is learned, the learning of
other tasks S becomes easier, with the degree of increased easiness being proportional
to the similarity between S and T. While it is not clear what similarity measure is best
used here, if we are aiming for roughly human-like intelligence then qualitative
similarity according to human judgment is adequate.

5.1.Definition of Iterated Easter Egg Hunt

Firstly, “Easter Egg Hunt” is defined as a game in which one agent hides a bunch of
eggs, and a group of other agents try to find them.

The main goal of each finder agent is to find as many eggs as possible. There may
be other goals too, such as allowing each other agent to find at least one egg; or,
finding more eggs than any other agent.

And, the main goal of the hider agent is to cause the finder agents to need to take a
long time to find the eggs. Again, other goals may also be used in parallel, such as
making it likely that each finder will get to find some eggs, rather than one seeker
finding all the eggs.

Next, “Iterated Easter Egg Hunt” is defined as repetition of Easter Egg Hunt N
times within a group of K agents, with different agents being the hider each time (the
most interesting case is where N>K so everyone gets to be hider more than once).

5.2.Examples of Learning in IEEH

Useful patterns that may be recognized by an intelligent agent operating in an IEEH
scenario include:

• Short agents cannot either hide or find eggs in very high places
• Short agents are more likely than tall ones to find eggs hidden in very low

places (e.g. under a couch)
• Some agents may repetitively hide eggs in the same places each time they’re

serving as hider
• Some agents may try to hide eggs in different places each time they’re serving

as hider
• Once an agent A has found an egg in a certain place P, or seen another agent

finding an egg in that place, then A is more likely to look in P again in the
future

These patterns may be helpful to guide both hiding and finding behavior.

5.3.Pattern Mining, MOSES and Inference in IEEH

Many of the patterns discussed above may be found by pattern mining, and then
validated by inference. In this subsection specific examples of this are described.

First of all, we may suppose that the system collects information such as

egg_134 found under couch_4 by agent_3

because it knows that “find” is a relevant predicate to the IEEH situation, so it tells
the perception MindAgent to identify and record observed instances of “find”-ing.

If the system also has a general inclination to think about the effort levels being
expended by agents, it may also collect information such as

egg_134 found under couch_4 by agent_3 with apparent
relative effort level LOW

(which might be expressed explicitly in Novamente Atoms, e.g., by

Evaluation [1]
find

agent_3
egg_134
SatisfyingSet

Evaluation
under

$1
couch

Inheritance [2] Easter_Egg_Hunt
Inheritance [2] indoor

Context
[2]
Evaluation

Effort
[1]
Low

)

Mining a collection of relationships of this form, using simple conjunctive pattern
mining, may lead to patterns such as

Finding eggs hidden in drawers tends to be hard

The system may also record knowledge such as

agent_3 has height around 1 meter

as well, if it has the habit of recording physical properties of other agents.

Based on all this data, MOSES-driven pattern mining may easily discover the
pattern

Short agents have much higher odds of finding eggs
hidden under the couch than tall agents do

It may also perhaps discover patterns such as

Short agents have much higher odds of finding eggs
hidden in the bottom drawer of a cabinet than tall agents
do

(For this, MOSES would be given a fitness function defined by a measure of
“statistical interestingness.”)

Now, where does PLN come into the process? Well, the system may also have a
concept of “low” (in terms of height) and then be able to learn from the above
knowledge, via simple PLN inference, that

Short agents have much higher odds of finding eggs
hidden in low places than tall agents do

Next, supposing this statement has been learned via a combination of conjunctive
pattern mining, MOSES and PLN, as described above. Then, it may be given a high
importance value, because of its relevance to the current goals, and its surprisingly high
truth value. Given this high importance, more attention will be focused on it.

Among other things that may happen because of this attention, inference will focus
on the Atom, and resulting from this, generalization may occur. A good generalization
would be

Agents have relatively high odds of finding eggs that
they can relatively easily see

Further generalization may teach the system that

RetroactiveImplication
Evaluation find ($1, $2, *)
Evaluation see ($1, $2)

(i.e., usually when an agent finds something, the agent has recently seen that
thing.)

This may make the system assign the “see” predicate a high importance, which
among other things may cause MOSES to focus on this predicate. The system has
many examples of things it has seen and things it has not seen, and may mine this
database of knowledge to learn patterns regarding seeing. It may note, for instance, that
on several occasions it could not see a certain egg, and then when another agent moved
some object that was in front of that egg, afterwards it could see that egg. If the system
has a general category “agent” that abstracts both itself and the other agents, then it
may learn from this the predicate

If I move an object, I may see an egg that I did not
see before

This predicate may then, via the process of predicate schematization, be used to
generate a schema that finds and moves objects, hoping to find eggs behind them.

5.4.Schema Execution in IEEH

Next, as an example of the role of multiple goals and schema execution in the Easter
Egg Hunt scenario, let us consider the goals of:

• G1: Find as many eggs as possible
• G2: Find more eggs than anybody else

Suppose the NCE-controlled agent sees one egg (Egg_1) across the room, under
the couch, with no one else evidently pursuing it; and sees two other eggs (Egg_2 and
Egg_3) on a shelf across the room, and is not sure whether Agent_2 is pursuing Egg_2
or some other egg. Then

• G1 will spawn a schema S1 oriented toward retrieving Egg_2 and Egg_3
• G2 will spawn a schema S2 oriented toward retrieving Egg_1

Now there are a couple possibilities:

• Both schemata (S1 and S2) may be put into the ActiveSchemaPool at the same
time, and given an amount of STICurrency commensurate with the importance
of the parent goal.

• Predicate schematization may be asked to find a single schema serving the
combined goal (G1 OR G2); and this single schema is then put in the
ActiveSchemaPool

As an example of subgoaling, consider G2 above: find more eggs than anybody
else. It may be difficult for the system to continually monitor how many eggs each
other agent is finding. Thus, a good strategy would be for the system to learn
implications such as

Implication (G3 AND G4) G2 <.9>

where

• G3 = find more eggs than Bill
• G4 = find more eggs than Bob

(which would be the case e.g. if Bill and Bob were generally the fastest egg-finders
in the bunch.) Once this implication has been learned, the FeasibilityUpdating
MindAgent has to notice it (which it will do, since it looks for potentially useful
implications implying currently important goals), and then make feasibility evaluations
regarding G3 and G4. A little inference will tell it that G3 and G4 are probably both
more feasible (lower-cost) to achieve than G2, information that may then be recorded

in the feasibility structures attached to these Atoms. Then, the GoalAttentionAllocation
MindAgent will cause G2 to issue RFS’s to G3 and G4; and the
GoalBasedSchemaSelection MindAgent will quite likely select G3 and G4 to generate
schemata to be placed in the ActiveSchemaPool.

5.5.Map formation in the Understanding of Self and others

Recall that one of the above inferences assumes the system has learned a notion of
Agent that encompasses both itself and the other agents in the game. It’s fair to assume
that this abstraction has been learned prior to the system being able to grapple with a
game as socially complex as IEEH. But still it’s worth discussing how this learning
may occur. This topic does not have to do with IEEH in particular, so it may be
considered a kind of digression or appendix to the overall theme of IEEH.

Among other possible routes, this general notion of Agent may potentially be
learned via pure unsupervised pattern mining.

First of all, the collection of body parts associated with a particular agent is a good
example of a learned map: the body parts associated with some particular agent are all
going to be associated with each other habitually, according to many different
associations, and so a map should form for each one. (This is just an example of the
role of map formation in “object recognition”.) Mechanistically, these maps are initiall
formed via the implicit activity of attention allocation and HebbianLink formation,
which causes links to form between Atoms that are often utilized together in cognitive
processes. Then the MapEncapsulation MindAgent will cause Atoms to form explicitly
representing these maps, which means that the maps may be explicitly utilized within
processes such as inference, pattern mining and MOSES.

So, suppose the agent has a body-map Atom for each of a number of other agents
and also a body-map Atom for itself, then it has the opportunity to observe that all
these body-maps are somewhat similar, and hence to cluster them together (via the
Clustering MindAgent). Now there is a BodyMapCluster node, which may be studied
analytically via inference and MOSES, leading to the emergence of explicit general
knowledge regarding what constitutes a body, and the relations between aspects of
bodies. For instance, it may be noted that when a body moves, this is generally
associated with certain classes of leg and foot movements.

The system may then note that when its own body-map displays movement-
associated leg and foot movements, this is associated with the execution of certain
motoric schemata, internally. This merely requires conjunctive pattern mining, applied
to a set of predicates involving both abstract predicates observed in the perceptual
stream (the abstract predicate of movement-associated leg and foot movements), and
also predicates involving motoric commands. What the system learns here is “When I
carry out these particular actions, the result is that I carry out the action that I have
identified as ‘walking’.” In other words, it has learned that certain leg and foot
movements cause it to move in the same way that it observes other agents moving.

A host of different associations similar to this one may be mined, based on
studying internal actions (mostly motoric, at this early stage) and their relationship to
observed events involving the body-map. And, these various associations are often
usefully considered together in reasoning about how to achieve various goals via
coordinating actions. Because of these, these various associations will be Hebbianly
associated – and ultimately the MapEncapsulation MindAgent may form a number of
maps involving them. This is the root of the “self-model,” as it exists in infantile

embodied agents.
The use of this kind of self-model and other-model in the IEEH context should be

fairly obvious. For instance, the system may observe that Agent_4 and Agent_7 are
more similar to it body-map-wise than any of the other agents. If it has learned that
agents with similar body-maps often carry out similar behaviors, then it may figure that
it is better off trying to imitate what Agent_4 and Agent_7 do, egg-hunting-wise, rather
than trying to imitate other agents. It may then focus its imitative efforts on imitating
the best egg-finders, and also the egg-finders most similar to it.

6. Conclusion

Achieving artificial general intelligence at the human level and ultimately beyond is a
large, ambitious task. Above, building on prior review papers, I have summarized some
general aspects of the NCE design, and explained roughly how we intend them to work
together in addressing a moderately complex early-childhood-level task, the iterated
Easter Egg Hunt. / And I have professed the opinion that the cognitive processes
required for this scenario are the same ones required for more complex, adult-level
learning and reasoning.

More generally, why do I believe it is plausible to assert that the NCE design may
actually be capable of achieving highly advanced general intelligence? The simplest
answer consists of two very general points:

• The NCE is based on a well-reasoned, truly comprehensive theory of
cognition, covering both the concretely-implemented and emergent aspects

• The specific algorithms and data structures chosen to implement this theory of
mind are efficient, robust and scalable. And, so is the software implementation

A more nuanced answer refers to the system-theoretic ideas introduced in ([14, 25,
26]) and elaborated above: In the NCE design, forward and backward synthesis are
implemented in a powerful and general enough way adequate to give rise to self and
focused consciousness as strange attractors. This, is the crux of why, in my view, the
NCE will very likely be able to give rise to powerful general intelligence. To yield
powerful AGI, the “mechanics” of a system has to be right – procedures have to get
executed, basic probabilistic conclusions have to be drawn, useless knowledge has to
be forgotten, etc. But all this won’t give rise to powerful intelligence unless the overall
system is properly configured so as to give rise to the right emergent structures, key
among which are the phenomenal self and the moving bubble of consciousness. NCE
has been designed with this sort of emergence specifically in mind. Assuming the
project continues as planned, the next years of work will tell us whether this
methodology of emergence-oriented design, as instantiated in the NCE, is really as
powerful as expected.

Endnotes

2 A thorough technical review of the Novamente design has not yet been published; and whether and
when such publication will occur is a subject of uncertainty. The main issue is not that the Novamente
codebase is proprietary, but rather the issue of “AI safety” ([10, 27, 28, 29]). Given the premise that the
Novamente design may actually be capable of being used to create a human-level software intelligence, it
then becomes ethically debatable whether the design should be placed in the public domain, due to the

potential that someone may use the design to create a dangerous human-level software intelligence. Of
course, going from a design to a working and educated implementation would be a large task for anyone, but
the possibility is there, and has given us pause regarding the publication of too many details of the
Novamente approach. On the other hand, we are still interested in sharing ideas with the research community
and getting their feedback, and thus for the time being we have chosen the path of discussing the high-level
aspects of the system design in papers such as this one, but not sharing technical details.

4 An alternate approach involving only one currency was also considered. In this approach,
STICurrency was taken as the basic currency, and the role of LTICurrency was played by the notion of a
“credit rating.” While interesting and workable, the added complexity of this approach was judged not
worthwhile, in spite of the conceptual elegance of having only a single currency type.

5 Later on, in a more advanced version of the NCE, this amount may eventually be allowed to change
slowly over time – if it is found, for example, that periodically inserting more currency into the economy to
cause a small rate of inflation encourages intelligence. This would not be the case in the current system
because none of the financial agents are initially carrying out economic actions with any real flexibility or
intelligence (though their simple and mechanistic economic actions are enabling the system as a whole to
carry out actions with some level of intelligence).

References

[1] Looks, Moshe (2006). Program Evolution for General Intelligence. Proceeding of AGI Workshop 2006,
Bethesda MD, IOS Press

[2] Goertzel, Ben, Ari Heljakka, Stephan Vladimir Bugaj, Cassio Pennachin, Moshe Looks (2006).
Exploring Android Developmental Psychology in a Simulation World. Proceedings of ICCS-2006,
Vancouver

[3] Inhelder B. and J. Piaget. The Growth of Logical Thinking from Childhood to Adolescence. New York:
Basic Books, 1958.

[4] Goertzel, Ben and Cassio Pennachin (2006). The Novamente Design for Artificial General Intelligence.
In Artificial General Intelligence, Springer-Verlag.

[5] Goertzel, Ben (2006). Patterns, Hypergraphs and General Intelligence. Proceedings of International Joint
Conference on Neural Networks, IJCNN 2006, Vancouver CA, to appear

[6] Goertzel, Ben, C. Pennachin, A. Senna, T. Maia, G. Lamacie. (2003) “Novamente: an integrative
architecture for Artificial General Intelligence.” Proceedings of IJCAI 2003 Workshop on Cognitive
Modeling of Agents. Acapulco, Mexico, 2003

[7] Goertzel, Ben, C. Pennachin, A. Senna,, M. Looks. (2004) “The Novamente Artificial General
Intelligence Architecture.” Proceedings of AAAI Symposium on Achieving Intelligence Through
Integrated Systems And Research. Washington DC, 2004

[8] Metzinger, Thomas (2004). Being No One. MIT Press

[9] Goertzel, Izabela, Ben Goertzel, Ari Heljakka, Hugo Pinto and Cassio Pennachin (2006). Automated
Biological Hypothesis Discovery via Probabilistic Inference on Dependency Grammar Parses of
PubMed Abstracts, Proceeding of AGI Workshop 2006, Bethesda MD, IOS Press

[10] Goertzel, Ben and Stephan Vladimir Bugaj (2006). Stages of Development in Uncertain-Logic-Based AI
Systems, Proceeding of AGI Workshop 2006, Bethesda MD, IOS Press

[11] Franklin, Stan (2006). A Foundational Architecture for Artificial General Intelligence. Proceeding of
AGI Workshop 2006, Bethesda MD, IOS Press

[12] Sloman, A. 1999. What Sort of Architecture is Required for a Human-like Agent? In Foundations of
Rational Agency, ed. M. Wooldridge, and A. S. Rao. Dordrecht, Netherlands: Kluwer Academic
Publishers.

[13] Ikle', Matthew, Ben Goertzel and Izabela Goertzel (2006). Indefinite Probabilities for General
Intelligence, Proceeding of AGI Workshop 2006, Bethesda MD, IOS Press

[14] Looks, Moshe (2006). Program Evolution for General Intelligence. Proceeding of AGI Workshop 2006,
Bethesda MD, IOS Press

[15] Goertzel, Ben (2006a). A System-Theoretic Analysis of Focused Cognition, and its Implications for the
Emergence of Self and Attention. Dynamical Psychology.

[16] Fauconnier, Gilles and Turner, Mark (2002). The Way We Think: Conceptual Blending and the Mind's
Hidden Complexities. Basic Books.

[17] Lenat, D. and R. V. Guha. (1990). Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley

[18] Feldbaum, Christiane (1998) "WordNet: an electronic lexical database", Cambridge, The MIT press.

[19] Fillmore, Charles J., Collin F. Baker, and Hiroaki Sato. (2002). The framenet database and software
tools. In Proceedings of the Third International Conference on Languag Resources and Evaluation,
volume IV, Las Palmas. LREC.

[20] Goertzel, Ben (2006b). Lojban++: An Efficient, Minimally Ambiguous, User-Friendly Natural-Like
Language for Human-Computer, Computer-Computer and Human-Human Communication, online at
http://www.goertzel.org/papers/lojbanplusplus.pdf

[21] Thelen, E. and L. Smith. (1994). A Dynamic Systems Approach to the Development of Cognition and
Action. Cambridge, MA: MIT Press.

[22] Tomasello, Michael (2005). Constructing a Language. Harvard University Press.

[23] Baum, Eric (1998). "Manifesto for an Evolutionary Economics of Intelligence" in "Neural Networks and
Machine Learning" Editor C. M. Bishop, Springer-Verlag (1998), pp 285-344.

[24] Baum, Eric (2004). What Is Thought? MIT Press

[25] Goertzel, Ben (1994). Chaotic Logic. Plenum, New York.

[26] Goertzel, Ben (1997). From Complexity Creativity. Plenum, New York.

[27] Bostrom, Nick (2002). Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards.
Journal of Evolution and Technology, vol. 9

[28] Yudkowsky, Eliezer (2007). Cognitive Biases Potentially Affecting Judgment of Global Risks, in Global
Catastrophic Risks, Ed. by Nick Bostrom and Milan Cirkovic, Oxford University Press

[29] Yudkowsky, Eliezer (2007). Artificial Intelligence and Global Risk, in Global Catastrophic Risks, Ed.
by Nick Bostrom and Milan Cirkovic, Oxford University Press

mailto:faucon@cogsci.ucsd.edu
mailto:mark.turner@case.edu

	1.Brief Overview of the Novamente Architecture
	1.1.NCE Knowledge Representation
	1.2.NCE Cognitive and Software Architecture

	2.A Typology of Cognitive Processes in Novamente
	3.Embodied Social Cognition in the AGISim Environment
	3.1.The Currently Implemented NCE/AGISim Architecture
	3.2.The Emergence of the Self via Embodied Social Learning

	4.An Economic Approach to Attention Allocation and Action Selection
	4.1.Economic Attention Allocation
	4.1.1.Simple Equations for the Economics of Attention
	4.1.2.LTI Economics
	4.1.3.STI Economics
	4.1.4.Hebbian Rewards

	4.2.Economics of Goal and Action Selection
	4.2.1.Supergoal Pool
	4.2.2.Promissory transfer of STI funds between goals
	4.2.3.Feasibility Structures
	4.2.4.Goal Based Schema Selection
	4.2.5.SchemaActivation
	4.2.6.GoalBasedSchemaLearning

	5.Embodied Social Learning in the Iterated Easter Egg Hunt Scenario
	5.1.Definition of Iterated Easter Egg Hunt
	5.2.Examples of Learning in IEEH
	5.3.Pattern Mining, MOSES and Inference in IEEH
	5.4.Schema Execution in IEEH
	5.5.Map formation in the Understanding of Self and others

	6.Conclusion

