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Abstract—In order to identify the physical mechanisms behind
the negative bias temperature instability (NBTI), the time-
dependent defect spectroscopy (TDDS) has been recently pro-
posed. The TDDS takes advantage of the fact that in nano-
scaled devices only a handful of defects are present. As a
consequence, degradation and recovery proceed in discrete steps,
each of them corresponding to a charge capture or emission
event. By repeatedly applying stress and recovery conditions,
the TDDS analyzes the statistical properties of these discrete
events. The measurement window of the TDDS is very large,
but the occurrence of random telegraph noise (RTN) at certain
biases/temperatures can limit its applicability. We have developed
an advanced data analysis method which can also deal with
data contaminated by RTN. The algorithm is based on the
combination of a bootstrapping technique and cumulative sum
charts. A benefit of the new method is the possibility to detect
steps in a large class of different signals with a feasible amount
of parameters. Moreover, de-/trapping parameters of the random
telegraph noise (RTN) become accessible as well.

I. INTRODUCTION

In modern ultra-scaled MOSFETs the negative bias temper-

ature instability (NBTI) has become a major reliability issue

[1–3] and is particularly observed in pMOS devices when

stressed with negative gate voltages at elevated temperatures.

In general, the degradation due to NBTI lowers the drain

current and shifts the threshold voltage.

To study the recovery behavior of the devices after NBTI

stress, the time-dependent defect spectroscopy (TDDS) has

been recently introduced [4]. The TDDS exploits the discrete

nature of degradation and recovery visible in nano-scaled

devices. Therefore a fast measurement setup is necessary to

record the recovery behavior of the devices after negative gate

bias stress [5].

The detrapping events, visible in the recovery measurement

data as discrete steps at time instants τe with step height d, are
shown in the (τe, d) plane. We call such a graph a “spectral

map”, see Figure 1. To obtained sufficient statistics around 100

measurement/stress/measurement recording transitions have to

be evaluated for each bias/temperature condition.

In such a spectral map the detrapping events from a number

of relaxation traces for a constant stress time ts, ambient

temperature T , and stress voltage Vs, form clusters, which

are the fingerprints of individual defects contributing to the

recovery. In the case of RTN (τc ≈ τe) two bands symetrically

arranged around the abscissa are visible in the spectral maps.

By repeating the experiment under different conditions, τ̄e and
d of a handful of defects can be simultaneously extracted
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Fig. 1: Mapping of the single detrapping events from four recorded recovery
traces of a PMOS device after NBTI stress (top) into the (τe, d) plane, called
spectral map (bottom). From the discrete steps in the recovery traces the
transition time instances, which are the defect emission times τe, and the step
heights are extracted and contribute to single points in the resulting spectral
map. After collecting the steps of a large number of traces, for example 100,
clusters in the spectral maps are obtained. The defects #1 and #2 mark two
individual defects with an emission time in the TDDS measurement window.
Morevoer, a defect producing RTN leads to data points symetrically arrange
arround the abscissa in the spectral map. Each cluster is the fingerprint of a
single defect.

as a function of gate and/or drain voltage, and the ambient

temperature.

As long as the device-under-test contains only defects for

which τ̄e ≫ τ̄c holds, the TDDS data is straight-forward

to analyze. The intensity of the marked clusters reflect the

probability of a defect to relax within the observation time

window and also gives information about the defect capture

probability Pc(ts) at a certain stress time ts. In general τ̄e ≫ τ̄c
gives a single detrapping event for each defect in a relaxation

trace. The capture probability then follows an exponential law

Pc(ts) = A(1 − exp(−ts/τ̄c)) (1)

with A the occupancy, ts the stress time, and τ̄c the average

capture time of the single defect [3, 4, 6].

By carefully selecting the device bias and temperature,

the above condition can be usually satisfied, c.f. Figure 3.

However, under certain bias or temperature conditions, τ̄e ≈ τ̄c
for a certain defect, resulting in the occurrence of random
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Fig. 2: Comparison of typical spectral maps obtained from past measurements in 2010 (left) and the latest ones with a new defect producing RTN (right) for
100 traces. The defects from previously recorded data result in clean clusters. In contrast, the new defect produces RTN visible as a band between the defects
#1 and #3. In the case of the measurement data at T = 175◦ (bottom right) the previously obtained defects #1 and #3 are visibly blurred and joined due
to the new RTN defect. As a consequence, a new advanced algorithm is necessary to analyze the recovery behavior of our ‘Golden Device’. Moreover, the
clusters move to smaller τe with increased temperature (T = 125◦ top spectral maps and T = 175◦ bottom spectral maps). When varying the stress time
the clusters remain in their positions with increased intensity.
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Fig. 3: The capture times τ̄c typically decrease with increased magnitude of
VG = Vs. In the case of τ̄e ≈ τ̄c the defect produces RTN and the simple
extraction algorithm fails. The above shows the data extracted for defect #1.

telegraph noise (RTN), which then severely contaminates the

data.

Due to the strong bias- and temperature-dependencies of τ̄e
and τ̄c, the occurrence of this scenario is difficult to predict

while pre-screening the device. Even worse, new defects

can be created during the measurements. In a particularly

unfortunate case, the ‘Golden Device’ of our previous studies

[4, 7], which we had been analyzing for over three years,

suddenly showed a defect producing RTN, thereby obscuring

the analysis of defects #1 and #3, see Figure 2. In order to

salvage the data and continue our analysis, more sophisticated

data analysis algorithms are required.

Moreover, the measurement window of the TDDS can get

very large. Defects show emission time contants from the

µs regime, directly after stress release, up to weeks, month

or even years. A measurment window spread over several

decades in time goes hand in hand with the necessity of finding

a trade-off between the sample intervals and the amount of

measurement data recorded. An adjustment of the sampling

time intervals to higher values for larger recovery times is

therefore necessary. The Fourier transform scaling property

reads [8]

r(at)
F⇐===⇒ 1

a
R
(ω

a

)

(2)

where a compression in the time domain is transfered into a

dilatation in the frequency domain and vice versa, F denotes

the Fourier transform operator and R(ω) = F {r(t)} is

the Fourier transform of the time signal r(t). An on-the-fly

adjustment of the sampling rate directly decreases/increases

the noise power of the measurement signal when the sampling

rate is decreased or increased, respectively. It is therefore

necessary that the step detection of the advanced algorithm

can operate on non-uniformly sampled measurement data as

well.

To detect fast RTN signals with τc ≈ τe together with

changes in the sampling rates, very short pulses, have to be

detected.

In the following the evaluation of heavily contaminated data

for the analysis of hole capture events for single defects and

fast carrier capture and emission events stemming from RTN

is presented.

II. THE ADVANCED DETECTION ALGORITHM

The step detection algorithm has to extract the un-

known step-heights d given an unknown mean value of

the signal, µ(tr). Based on the mean shift model given by
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r = µ+dσ(tr− τe) with the step function σ and the emission

time τe, a statistical treatment of this problem is possible using

the bootstrapping and cumulative sum (BCSUM) algorithm

[9].

The BCSUM detection algorithm has the ability of detecting

either positive or negative steps in a data set. From the

BCSUM procedure the decision that either a change point

in the underlying data samples exists or not is obtained

by selection of a detection sensitivity parameter ǫ. In the

following the cumulative sum charts [10, 11] are discussed, the

bootstrapping mechanism is discussed and finally the advanced

detection method is presented.

A. Cumulative Sum Charts

First consider a series of independent samples

r = [r0, r1, . . . , rN−1] with N the number of samples.

The signal distributions before and after a change in the

signal mean are given by p0(r) and p1(r), respectively, with
their corresponding means µ0 and µ1 = µ0 + d, where d is

the step height. Introducing the log-likelihood ratio given by

si = ln
p1(ri)

p0(ri)
(3)

a change in the signal mean is reflected by a change of the

sign of the mean value of the log-likelihood ratio Sn
m

[11] of
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Fig. 4: The log-likelihood ratio (bottom) is calulated for Gaussian distributed
data for N1(0, 1), N2(15, 1.5) and N2(7.5, 0.5) (top). When the test signal
r changes its underlying distribution function from N1 to N2 the resulting
log-likelihood ratio s2,1 = ln p2(r)/p1(r), whereas p1 is the Gaussian
distribution function for N1 and p2 the Gaussian distribution function for
N2, shows a change in the sign at the transition time instance, called change
point. When the underlying data distribution of r goes from N2 to N3 a sign
change is observed in the log-likelihood ration s3,2 = ln p3(r)/p2(r).

the data set [rm, . . . , rn] given by

Sn
m =

n
∑

i=m

si. (4)

This is illustrated in Figure 4.

Together with the assumption of Gaussian distributed sam-

ples with the probability density function

pµ,σ(ri) =
1

σ
√
2π

exp

(

− (ri − µ)2

2σ2

)

, (5)

the log-likelihood ratio for d = µ1−µ0 > 0 and σ = σ0 = σ1

is

s↑i = A

(

ri − µ− d

2

)

with A =
µ1 − µ0

σ2
, (6)

and the change point position is at the sample with index

i↑τe = {k : min
0<k<N−1

Sk
0
}. (7)

In the case of trapping events, a negative mean shift is obtained

and the log-likelihood ratio for d < 0 reads

s↓i = A

(

ri + µ− d

2

)

with A =
µ1 − µ0

σ2
. (8)

with the change point at the sample index position

i↓τe = {k : max
0<k<N−1

Sk
0
} (9)

Since the change of the mean is unknown the detection of

either positive or negative changes has to be provided by the

algorithm. Combining both cases, d > 0 and d < 0, the
log-likelihood ratio for Gaussian distributed samples can be

formulated as

si = ri − ν (10)

where the threshold value ν already considers the prefactor A.
With the choice of A = 1 the CSUM chart function is

C =
∑

N

ri − ν with ν =
1

N

∑

N

ri (11)

The sample index of the change point is given by

iτe = {k : max
(

|i↓τe|, |i↑τe |
)

} = {k : max (|C|)} (12)

B. Bootstrapping

A frequently used method for parameter estimation of a

set of data samples for unkown underlying distributions is

bootstrapping. Its big advantage is that it is fully automatic and

it does not matter how complicated the mathematical model

for the probability distribution is.

For a given set of samples r of length N a bootstrap sample

r
∗ is obtained by randomly choosing N samples from r with

replacement. Since bootstrapping is a resample technique with

replacement, the samples out of r can occur never, once or

more often in the bootstrap estimate r
∗ [12].

The statistical nature of bootstrapping includes the neces-

sity of a huge number B of bootstrap samples r
∗
b . This

circumstance inevitably leads to computationally expensive

procedures.
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Fig. 5: Illustration of the bootstrap and cumulative sum algorithm to detect one step in a very noisy data set. Even though the data set contains two steps
the algorithm has to be applied recursively because at most one, that is, the biggest change point is detected. Based on an initial data set, B bootstraps r

∗

b
,

that are resampled data sets with replacement of the initial data set r, are calculated. Afterwards, the cumulative sum charts of the bootstrapped and the
original data are created. The spans of the single CSUM charts of the bootstrapped data are collected by a sorted list, from the minimum to the maximum,
Γ. The decision threshold γǫ equals the element of Γ with index i = Bǫ, with ǫ ∈ [0, 1] called the detection sensitivity. Finally, the decision threshold γǫ is
compared to the span of the CSUM chart obtained from the initial data set γ. For γ > γǫ the initial data set contains a change point. In that case the initial
data set has to be split at the change point and the algorithm is applied recursively to both sequences. This devide and conquer procedure is continued until
no further change points larger than a threshold are detected in the subsequences.

C. The Algorithm

The BCSUM algorithm is a Monte Carlo based combination

of bootstraps and cumulative sum charts to detect changes in

the signal mean. The divide and conquer procedure to detect

one change point in the measurement data set r is:

1) Calculate the B bootstrap samples r∗
1
, r∗

2
, . . . r∗B from r.

2) Create the cumulative sum charts C∗
b for each bootstrap

sample r
∗
b with b ∈ [1, B].

3) Estimate the spans of each chart C∗
b and collect them

into a sorted list from the minimum to the maximum Γ.

4) With the detection sensitivity ǫ the decision threshold is

obtained as γǫ = Γ[floor(Bǫ)], where [·] denotes the list
index operator. For a data set r = [r0, r1, . . . , rN−1] the
list index operator is

r[i] = ri. (13)

5) Create the CSUM chart C from the initial data set and

evaluate γ = spanC
6) A change point in the underlying sequence occurs if

γǫ < γ. Split the data set at the change point position

and recursively continue with 1) for each subsequence

until all change points are detected.

Critical parameters for the detection outcome of the BC-

SUM algorithm is the number of bootstraps B and the detec-

tion sensitivity ǫ. For statistical relevance, the bootstrapping

and the calculation of C∗
b has to be performed many times,

B = 105 is recommended.

A choice of ǫ ≈ 1 means that just the most dominant

changes in mean are detected. For very fast events, which

often just span two or three measurement data samples, the

detection sensitivity is a crucial parameter. To extract small

and very fast changes ǫ ≈ 0.6 is recommended.

Moreover, the position of the change point in the measure-

ment data is directly accessible via the CSUM chart obtained

from the initial data series.

Last, but not least it has to be noted that the algorithm can

be apply to uniform and non-uniformly sampled data as well.

This property is very importand in the context of the TDDS.

To cover several decades in time a compromise between the

sampling rate and the accumulated recovery time has to found

in order to achieve a feasable amount of measurement data.

III. RESULTS

The benefit of the new BCSUM algorithm is the possibil-

ity to consider trapping events (negative steps) occurring in

the case of defects producing RTN. For the measurements

recorded on a pMOSFET with a 2.2 nm thick oxide stressed

at Vs = −1.3 V and T = 175◦C, as depicted in Figure 6,

the spectral maps are contaminated with RTN. To remove

the RTN from the spectral maps, the detection of positive

and negative mean shifts is necessary. When a simple step

detection algorithm is applied to the signal from Figure 7, the

first event is detected at τe,1 = 1.43 ms with d1 = 3.73 mV

followed by an event at τe,2 = 3.19 ms with d2 = 3.26 mV.

Obviously, the event at (τe,1, d1) is due to RTN and so

should not contribute to the statistics for the defects #1 or #3.

Data analysis algorithms for TDDS of NBTI Waltl et al.
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Fig. 6: Example for the improved quality of the spectral maps for 100
traces. After detection of the trapping and detrapping events with the BCSUM
algorithm the full map (left) is obtained with blurred defects #1 and #3.
After the noise stemming from the new RTN defect is removed, the denoised
spectral map with separated defects #1 and #3 is obtained (right).

Moreover, the step at (τe,2, d2) is a detrapping event attributed

to #1, but is extracted with a spuriously reduced step height

d2 because negative mean shifts have not been considered so

far. With the advanced BCSUM algorithm all trapping and

detrapping events are detected. As such, the events according

to #1 or #3 and the events stemming from the RTN can easily

be separated and the correct step heights are obtained. The

influence of RTN events in the measurement data is shown

in Figure 7. Especially for the defect #1, lower step heights

have been extracted so far. The fitted capture time τ̄c does not

show a significant difference, cf. Figure 8, because the first

detrapping event attributed to RTN occurred at time instances

in the range of the ones for defect #1. However, there is a

large difference in the number of extracted events, the simple

approach considered two steps instead of one, and there is also

a significant variation in the steps size of both methods.

The utility of detecting and considering RTN events be-

comes visible when the full spectral maps, cf. Figure 6 (top),

and the denoised spectral maps, cf. Figure 6 (bottom), are

compared. As RTN can be described as a series of steps

with alternating sign and only very small variations in the

step amplitudes, RTN results in two symmetric extended

clusters in the spectral maps. Furthermore, the full spectral

map containing all events shows the clusters of the defects #1

and #3 blurred and joined due to the new RTN defect. After

denoising the spectral maps, the clusters for the defect #1 and

#3 become clearly visible again, cf. Figure 6 (bottom), and

nicely agree with the previously extracted data.

IV. CONCLUSIONS

An advanced data extraction method for the time-dependent

defect spectroscopy has been developed which allows for

denoising of the spectral maps. The method is validated
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Fig. 7: Over the last three years the defects of a single device have been
studied. An example for a previously recorded trace (top) show the detrapping
event, in this case for defect #1, which is clearly visible and not contaminated
with RTN. However, recent measurements are strongly influenced by a new
defect producing RTN (middle). The so far used simple algorithm just detects
three positive changes because only positive steps are considered (middle,
Simple). The BCSUM method additionally detects negative steps stemming
from RTN (middle, New Full). In the spectral map (below), here depicted
for 100 traces, the steps detected with the simple method (green) show step
heights below the step level for the defect #1 which equals the step heights
produced by an RTN defect. Furthermore, the large step is extracted with a
wrong amplitude and so it does not contribute to the defect #1 in the spectral
map. The BCSUM algorithm extracts the amplitudes corresponding to the
defect #1 correctly.

using our ‘Golden Device’ which has been under study for

more than three years but became unusable due to the recent

appearance of a new RTN defect. With the advanced method,

the contaminated data can be fully analyzed.

The application of the BCSUM algorithm to the measure-

ment data evaluation in context with the TDDS is a benchmark

for the algorithm. The application field of the advanced data

analysis algorithm can be expanded to any case where an

extraction of transitions between discrete levels in heavily

noisy measurement data is necessary.
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