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Abstract. Three variants of Minimax theorem and corresponding variants
for Mountain Pass and Saddle Point theorems are presented in order to
highlight an improved version of Minimax theorem provided by the author.
A variant of a Mountain Pass Point result is also given. One of the main
conditions of the Minimax theorem due to Ghoussoub-Preiss is replaced
by a weaker condition. Appropriate applications illustrate the developed
extensions.
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1 Introduction

In problems of variational type which appear in mechanics, physics, chemistry, opti-
mization etc., the condition of C1-Fréchet class for the objective function ϕ is seldom
fulfilled. So in the frame of variational calculus it is legitimate and important to
search for the weakness of this condition in theorems of Mountain pass and Saddle
point type, here proved via minimax theorem.

This is the case of the Ghoussoub-Preiss minimax theorem ([1, Th. 6, p. 140]), for
which we provide an improved version, by replacing the property lim

n→∞
(1+‖xn‖)ϕ′w(xn)

= 0 with the clearly weaker property

lim
n→∞

(1 + ‖xn‖)−1ϕ′w(xn) = 0.

In this paper we present three variants of the Minimax theorem in order to evi-
dentiate the second version of them proved here by the author. The first Minimax
theorem was obtained by Shi Shuzhong, J. Mawhin and M. Willem under the hypo-
thesis ϕ of C1-Fréchet class. The similar result using the Gâteaux derivative was de-
veloped by the author in [7]. The second version of the Minimax theorem represents
the main result of this paper and it will be further discussed. The third Minimax
theorem which was given by H. Brezis, is actually a variant of the first version of the
Minimax theorem presented here.
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2 Minimax theorems

Consider the Ekeland principle ([2], [3]):
Let (X, d) be a complete metric space and ϕ : X → (−∞, +∞] a bounded from

below mapping, which is lower semicontinuous and proper. For any ε > 0 and u of
X with

ϕ(u) ≤ inf ϕ(X) + ε

and for any λ > 0, there exists vε in X such that

(2.1) ϕ(vε) < ϕ(w) +
ε

λ
d(vε, w), ∀ w ∈ X \ {vε}

and

(2.2) ϕ(vε) ≤ ϕ(u),

(2.3) d(vε, u) ≤ λ.

is used to prove one variational theorem of minimax type. We deduce from this result
some variants of the Mountain Pass and Saddle Point theorems. Another two variants
of minimax type theorems are given in order to make comparisons and links.

All the Banach spaces will be real.

2.1 First variant of Minimax theorem

Theorem 2.1. Minimax theorem I. Let X be a Banach space, K a compact metric
space, K0 a nonempty compact subset of K, θ from C(K0; X) and let

T = {g ∈ C(K; X) : g | K0 = θ}

be the metric space considered with the usual distance.
Let ϕ : X → R be a continuous mapping which is Gâteaux differentiable with

ϕ′w(·)(v) upper semi-continuous for all v of X, and let be c = inf
g∈T

sup
K

(ϕ ◦ g), c0 =

sup
K0

(ϕ ◦ θ). If c > c0, then, for every ε > 0 and f from T with sup
K

(ϕ ◦ f) < c + ε,

there exists vε in X, such that

c− ε ≤ ϕ(vε) ≤ sup
K

(ϕ ◦ f) and ||ϕ′w(vε)|| ≤
√

ε.

Remark 2.1. Minimax theorem I (theorem 2.1) was obtained by Shi Shuzhong, J.
Mawhin and M. Willem in the hypothesis: ϕ of C1-Fréchet class. The variant which
uses the Gâteaux of derivative was done by the author ([7]).
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It is obviously that in the statement 2.1 Gâteaux derivative can be replaced by
any β-derivative1, β-bornology2 on X.

Corollary 2.2. In the conditions of 2.1, for every sequence (gn)n≥1, gn ∈ T , if

lim
n→∞

sup
K

(ϕ ◦ gn) = c,

a sequence (vn)n≥1 exists in X such that

lim
n→∞

ϕ(vn) = c

and

lim
n→∞

||ϕ′w(vn)|| = 0.

It is useful to isolate in a statement

Proposition 2.3. Let K, K0, T, ϕ, c, c0 be as in the theorem 2.1. If there is a subset
E of X with the property

g(K) ∩ E 6= f¡ ∀ g ∈ T

and in addition c0 < inf
E

ϕ, then
c > c0.

We also add

Theorem 2.4. In the conditions of 2.1, if ϕ satisfies the weak (PS)c condition3, then
c is a critical value for ϕ.

Pas to the variants corresponding to 2.1 announced at the beginning.

Theorem 2.5. Mountain Pass theorem I. Let X be a Banach space, ϕ : X → R
a continuous and Gâteaux differentiable mapping with ϕ′w(·)(v) upper semicontinuous
∀ v ∈ X. Suppose that for u0, u1 from X and Ω an open neighborhood of u0 such that
u1 ∈ X \ Ω we have

inf
FrΩ

ϕ > max(ϕ(u0), ϕ(u1)).

Let be
Γ = {g ∈ C([0, 1];X) : g(0) = u0, g(1) = u1}

1Let β be a bornology on X and f : X → R locally finite in the point a (there is a neighborhood
of a on which f is finite). By definition f is β-differentiable in a, if there exists ϕ in the dual X∗

such that for every S in β we have lim u
t → 0
h∈S

f(a + th)− f(a)

t
= ϕ(h) (uniform limit on S for t → 0). ϕ

is the β-derivative of f in a, and it is denoted ∇βf(a).
2Let X be a real normed space. A nonempty set β of bounded parts of X, with the properties:

1◦
⋃

A∈β

A = X, 2◦ A ∈ β ⇒ −A ∈ β and λA ∈ β (λ > 0), 3◦ for every A, B in β there exists C in β

such that A ⊂ C and B ⊂ C, is named bornology on X.
3Let c be in R. ϕ verifies the Palais-Smale condition (respectively the weak Palais-Smale con-

dition) on the level c, (PS)c, with respect to β, if ∀ (un)n≥1 a sequence of points in X such that
lim

n→∞ϕ(un) = c and lim
n→∞ ||∇βϕ(un)|| = 0, this sequence has a convergent subsequence (respectively

c is a critical value for ϕ, that is c = ϕ(u0) and ∇βϕ(u0) = 0).
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and
c = inf

g∈Γ
sup
[0,1]

(ϕ ◦ g).

If ϕ verifies the weak (PS)c condition, then c is a critical value of ϕ and

c > max(ϕ(u0), ϕ(u1)).

Corollary 2.6. Let X be a Banach space and let ϕ : X → R be a lower unbounded,
continuous and Gâteaux differentiable mapping with ϕ′w(·)(v) u.s.c. for every v from
X. If ϕ has a point of locally strict minimum u0 and verifies the PS4 condition, then
ϕ has also a critical point distinct from u0.

Remark 2.2. If in Corollary 2.7 ϕ is lower bounded and we add the condition
inf ϕ(X) < ϕ(u0), the conclusion still holds.

Corollary 2.7. Let X be a Banach space and ϕ : X → R continuous Gâteaux
differentiable mapping with ϕ′w(·)(v) u.s.c. ∀ v ∈ X. If ϕ verifies PS condition and

inf{ϕ(u) : ||u|| = r} ≥ max(ϕ(0), ϕ(u0)), 0 < r < ||u0||,

then ϕ has a critical point different from 0.

Corollary 2.8. Let X be a Banach space and ϕ : X → R a continuous Gâteaux
differentiable mapping with ϕ′w(·)(v) u.s.c. ∀ v ∈ X and verifying PS condition. If ϕ
has two local minimum points, then it still has a critical point.

Theorem 2.9. Saddle Point theorem I. Let X be a Banach space and ϕ : X → R
a continuous and Gâteaux differentiable mapping with ϕ′w(·)(v) upper semicontinuous
∀ v ∈ X. Suppose X = V ⊕W , direct sum, with V,W closed subspaces and

dimV < +∞, sup
σR

ϕ < inf
W

ϕ, σR = {v ∈ V : ||v|| = R}.

Let be

SR = {v ∈ V : ||v|| ≤ R}, T = {g ∈ C(SR; X) : g(t) = t on σR},

c = inf
g∈T

sup
SR

(ϕ ◦ g).

If ϕ verifies the weak (PS)c condition, then c is a critical value for ϕ.

Remark 2.3. Theorems 2.6 and 2.11 were obtained by Ambrosetti-Rabinowitz and
Rabinowitz in the assumption ”ϕ of C1-Fréchet class”. The passage to ”ϕ continuous
with ϕ′w(·)(v) u.s.c. ∀ v ∈ X” was done by the author ([7]). The same remark can be
made for the above Corollaries 2.7, 2.9 and 2.10.

The Gâteaux derivative in the statements 2.6, 2.11 and in the above corollaries
can be replaced by any β-derivative, β-bornology on X ([5]).

4ϕ verifies the Palais-Smale condition, (PS), with respect to β when, ∀ (un)n≥1 a sequence
of points in X for which (ϕ(un))n≥1 is bounded and lim

n→∞ ||∇βϕ(un)|| = 0, this sequence has a

convergent subsequence.



70 Irina Meghea

In the following, we present a generalization (in [12], Theorem 3.1) of the minimax
theorem I (2.1). This will be deduced, with Zhong Cheng - Kui theorem5 ([5], 1.11).

Theorem 2.10. Generalization of 2.1. Let K be a compact metric space, K0 a
closed subset of K, X a Banach space, θ from C(K0; X) and T the metric space, with
the usual distance,

T = {g ∈ C(K;X) : g | K0 = θ}.
Let ϕ : X → R be a continuous and Gâteaux differentiable mapping with ϕ′w(·)(v)
upper semicontinuous ∀ v ∈ X. If

c = inf
g∈T

sup
K

(ϕ ◦ g) > c0 = sup
K0

(ϕ ◦ θ),

then for every ε > 0 and f from T with sup
K

(ϕ◦f) < c+ε and for every h : [0, +∞) →

[0,+∞) increasing with

+∞∫

0

dr

1 + h(r)
= +∞, there is vε in X such that

c− ε ≤ ϕ(vε) ≤ sup
K

(ϕ ◦ f)

and

||ϕ′w(vε)|| ≤
√

ε

1 + h(||vε||) .

Remark 2.4. The generalization of 2.1 was obtained in the assumption ”ϕ of
C1-Fréchet class” ([12]). The passage to Gâteaux derivative was carried out by the
author ([7]). Certainly these derivatives can be replaced by any β-derivative, β-
bornology on X ([5], 3.10).

2.2 Second variant of Minimax theorem

Let X be a real normed space and F a closed nonempty subset of it. By definition F
separates the distinct points y0, y1 from X when these points are in distinct connected
components of X \F . Since X is locally connected and X \F is open, the connected
components of X \ F are all open, let Ω0 be the component which contains y0, and
Ω1 the union of all other components. Obviously, y1 ∈ Ω1 and {Ω0, Ω1} is an open
partition of X \ F .

Theorem 2.11. Minimax theorem II. Let X be a Banach space and ϕ : X → R
a continuous Gâteaux differentiable mapping with ϕ′w : X → X∗ continuous from the

5Theorem. Let X be a complete metric space and ϕ : X → (−∞, +∞] a bounded from
below, lower semicontinuous and proper mapping. For any ε > 0 and u from X with ϕ(u) <
inf ϕ(X) + ε and whatever be λ > 0, u0 from X and h : [0, +∞) → [0, +∞) increasing with
+∞∫

0

dr

1 + h(r)
= +∞,

r0+r1∫

r0

dr

1 + h(r)
≥ λ, r0 = d(u, u0), r0 + r1 > 0, there is vε in X so that

ϕ(vε) ≤ ϕ(w) +
ε

λ[1 + h(d(vε, u0))]
d(vε, w) ∀ w ∈ X and ϕ(vε) ≤ ϕ(u), d(vε, u0) ≤ r0 + r1.
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norm topology to the ∗-weak topology. One takes the distinct points y0, y1 from X and
let be

Γ = {γ ∈ C([0, 1]; X) : γ(0) = y0, γ(1) = y1}
and

c = inf
γ∈Γ

sup
[0,1]

(ϕ ◦ γ).

Suppose there is a closed subset F having the property F∩Aϕ,c nonempty and separates
y0, y1, Aϕ,c = {x ∈ X : ϕ(x) ≥ c}.

Then there is a sequence (xn)n≥1 in X such that

(2.4) lim
n→∞

d(xn, F ) = 0,

(2.5) lim
n→∞

ϕ(xn) = c,

(2.6) lim
n→∞

(1 + ||xn||)−1||ϕ′w(xn)|| = 0.

Proof. Set Fc = F ∩Aϕ,c, a closed set, and let {Ω0, Ω1} be an open partition of X \Fc,
yi ∈ Ωi, i = 0, 1. Take ε such that

(2.7) 0 < ε <
1
2

min(1, d(y0, Fc), d(y1, Fc))

and let γ be from Γ with

(2.8) sup
[0,1]

(ϕ ◦ γ) < c +
ε2

4
.

Define, via γ, the numbers t0, t1, 0 ≤ t0 < t1 < 1 (nonempty sets appear, see (2.7)),

(2.9) t0 = sup{t ∈ [0, 1] : γ(t) ∈ Ω0, d(γ(t), Fc) ≥ ε},

(2.10) t1 = inf{t ∈ [t0, 1] : γ(t) ∈ Ω1, d(γ(t), Fc) ≥ ε}.
Remark ((2.9)) t0 < t1 < 1 (Ω0, Ω1 are disjoint open sets). Obviously

(2.11) d(γ(t), Fc) ≤ ε ∀ t ∈ [t0, t1].

Consider the nonempty set (see γ | [t0, t1])
(2.12) Γ(t0, t1) = {f ∈ C([t0, t1];X) : f(t0) = γ(t0), f(t1) = γ(t1)},
endow it with the usual distance (the same notation)

(2.13) d(f1, f2) = sup
t∈[0,1]

‖f1(t)− f2(t)‖

and one obtains a complete metric space. Consider the functions

(2.14) ψε : X → R, ψε(x) = max(0, ε2 − εd(x, Fc)),
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(2.15) Φ : Γ(t0, t1) → R, Φ(f) = sup
[t0,t1]

(ϕ ◦ f + ψε ◦ f).

Φ is lower semicontinuous. Let f be arbitrary in Γ(t0, t1). Since f(t0) ∈ Ω0, f(t1) ∈ Ω1

and f([t0, t1]) is connected, ∃ tf in (t0, t1) such that f(tf ) ∈ Fr Ω0, but Fr Ω0 ⊂ Fc,
we get

(2.16) Φ(f) ≥ Φ(f(tf )) + ψε(f(tf ))
(2.14)

≥ c + ε2

as d(f(tf ), Fc) = 0.
Moreover, let be γε := γ | [t0, t1]. Then

Φ(γε) ≤ sup
t∈[0,1]

[ϕ(γ(t)) + ψε(γ(t))],

hence (see (2.8) and (2.14))

(2.17) Φ(γε) <

(
c +

ε2

4

)
+ ε2

(2.16)

≤ inf
Γ(t0,t1)

Φ +
ε2

4
.

Apply Ekeland principle to Φ with
ε2

4
, λ =

ε

2
and u = γε (see above), ∃ fε in Γ(t0, t1)

such that

(2.18) Φ(fε) ≤ Φ(f) +
ε

2
d(f, fε) ∀ f ∈ Γ(t0, t1),

(2.19) Φ(fε) ≤ Φ(γε), d(fε, γε) ≤ ε

2
.

Consider the set

(2.20) M = {t ∈ [t0, t1] : ϕ(fε(t)) + ψε(fε(t)) = Φ(fε)}.

M is nonempty (Weierstrass theorem, (ϕ + ψε) ◦ fε is continuous) and compact be-

ing closed. Moreover, t0, t1 /∈ M . Indeed, since d(γ(ti), Fc)
(2.9),(2.10)

≥ ε, we have
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ψε(γ(ti))
(2.14)
= 0 and then ϕ(fε(ti))+ψε(fε(ti))

(2.12)
= ϕ(γε(ti))

(2.8)
< c+

ε2

4
< c+ε2

(2.16)

≤
Φ(fε).

Prove now (a more difficult part of the proof)

(2.21) ∃t in M such that ‖ϕ′w(fε(t))‖(1 + ‖fε(t)‖)−1 ≤ 3ε

2
.

Suppose par absurdum

(2.22) t ∈ M ⇒ ‖ϕ′w(fε(t))‖(1 + ‖fε(t)‖)−1 >
3ε

2
.

Fix t arbitrary in M . By (2.22) we get

‖ϕ′w(fε(t))‖ >
3ε

2
(1 + ‖fε(t)‖),

hence ∃ u ∈ X, ‖u‖ = 1 such that |ϕ′w(fε(t))(u)| > 3ε

2
(1+‖fε(t)‖), which is equivalent

with
ϕ′w(fε(t))(u) < −3ε

2
(1 + ‖fε(t)‖)

or

ϕ′w(fε(t))(u) >
3ε

2
(1 + ‖fε(t)‖).

If eventually the second possibility holds true, replacing u by −u the norm of this
does not change and hence we find u in X, ‖u‖ = 1 such that

ϕ′w(fε(t))(u) < −3ε

2
(1 + ‖fε(t)‖).

By division we get

(2.23) ∃ ut ∈ X, ‖ut‖ = (1 + ‖fε(t)‖)−1 such that ϕ′w(fε(t))(ut) < −3ε

2
.

ϕ′w being continuous as in the statement, ∃ Jt an open neighborhood of t in [t0, t1]
such that

(2.24) s ∈ Jt ⇒ ϕ′w(fε(s))(ut) < −3ε

2
.

And now, since M is compact, there exists {Jt1 , . . . , JtN } a finite covering of M .
Associate to this π1, . . . , πN : M → [0, 1], a continuous partition of the unit on M
with

(2.25) supp πi ⊂ Jti , i = 1, N

and consider the continuous function v1 : M → X,

v1(t) =
N∑

i=1

πi(t)uti .
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We have

(2.26) ϕ′w(fε(t))(v1(t)) < −3ε

2
∀ t ∈ M,

(2.27) ‖v1(t)‖ ≤ (1 + ‖fε(t)‖)−1 ∀ t ∈ M.

Indeed, by (2.23) we get (2.27) and as for (2.26) proceed in the following way: let
I be the set, obviously nonempty, of the indices i for which πi(t) > 0, (πi(t) ≥ 0,
N∑

i=1

πi(t) = 1), ϕ′w(fε(t))(v1(t)) =
N∑

i=1

πi(t)ϕ′w(fε(t))(uti
) =

∑

i∈I

πi(t)ϕ′w(fε(t))(uti
)

(2.24)
< −3ε

2

∑

i∈I

πi(t) = −3ε

2
.

Let be t′ = inf M , t′′ = sup M . Obviously t′, t′′ ∈ M and since t0, t1 /∈ M we have
the situation t0 < t′ ≤ t′′ < t1.

Dugundji theorem allows us to extend v1 to v2 : [t′, t′′] → X continuous. Since
every v2(t) is a convex combination of elements from v1(M), (2.27) allows to write

(2.28) ‖v2(t)‖ ≤ (1 + ‖fε(t)‖)−1 ∀ t ∈ [t′, t′′].

Take two small disjoint intervals [t0, τ ], [t′1, t
′] and the continuous function w : [t0, τ ]∪

[t′1, t
′] → X, t ∈ [t0, τ ] ⇒ w(t) = 0, t ∈ [t′1, t

′] ⇒ w(t) =
t

t′
v2(t′). Extend w

according to Dugundji theorem to a continuous function v3 : [t0, t′] → X, emphasize
that v3(t0) = 0, for this we have again (pay attention to w(t) on the two intervals)

(2.29) ‖v3(t)‖ ≤ (1 + ‖fε(t)‖)−1 ∀t ∈ [t0, t′].

Let now be v4 : [t0, t′′] → X, v4(t) = v3(t), t ∈ [t0, t′], v4(t) = v2(t), t ∈ [t′, t′′]. v4

is continuous, since lim
t→t′+

v4(t) = v2(t′) = lim
t→t′−

v3(t) = v3(t′) = v4(t′), lim
t→t′−

v4(t) =

lim
t→t′−

v3(t) = v3(t′) = v4(t′). Emphasize that v4(t0) = 0. Moreover, taking into

account (2.28) and (2.29),

‖v4(t)‖ ≤ (1 + ‖fε(t)‖)−1 ∀t ∈ [t0, t′′].

Continuing in the same manner on the interval [t′′, t1], we finally find a continuous
function v : [t0, t1] → X with the properties (see also (2.26))

(2.30) ϕ′w(fε(t))(v(t)) < −3ε

2
∀ t ∈ M,

(2.31) v(t0) = v(t1) = 0,
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(2.32) ‖v(t)‖ ≤ (1 + ‖fε(t)‖)−1 ∀ t ∈ [t0, t1].

Let λ > 0 be arbitrary. fε + λv
(2.31)∈ Γ(t0, t1), replace it in (2.18), we get

(2.33) Φ(fε + λv) ≥ Φ(fε)− ε

2
d(fε + λv, fε).

Let tλ be from [t0, t1] such that

(2.34) Φ(fε + λv)
(2.15)
= (ϕ + ψε)(fε(tλ) + λv(tλ)).

(2.33) and (2.34) yield

(ϕ + ψε)(fε(tλ) + λv(tλ)) ≥ (ϕ + ψε)(fε(tλ))− ε

2
d(fε + λv, fε),

i.e.

(2.35)
ϕ(fε(tλ) + λv(tλ))− ϕ(fε(tλ)) ≥ −[ψε(fε(tλ) + λv(tλ))−

−ψε(fε(tλ))]− ε

2
d(fε + λv, fε) ∀ λ > 0.

But ψε is Lipschitz with the constant ε, it is sufficient to verify ψε(x) − ψε(y) ≤
ε‖x− y‖. The case d(x, Fc), d(y, Fc) ≤ ε: the first member = ε(d(y, Fc)− d(x, Fc)) ≤
ε‖x − y‖. The case d(x, Fc) ≤ ε, d(y, Fc) > ε: the first member = ε2 − εd(x, Fc) =
ε[ε−d(x, Fc)] ≤ ε[d(y, Fc)−d(x, Fc)] ≤ ε‖x− y‖. The case d(x, Fc) > ε, d(y, Fc) ≤ ε:
the first member = −ε2 + εd(y, Fc) ≤ 0 ≤ ε‖x− y‖. The case d(x, Fc), d(y, Fc) > 0:
the first member = 0 ≤ ε‖x− y‖.

So being, the bracket of the second member of (2.35) is majorised by ε‖fε(tλ) +
λv(tλ)−fε(tλ)‖, which is majorised in its turn by εd(fε+λv, fε), consequently, taking
into account (2.35),

(2.36) ϕ(fε(tλ) + λv(tλ))− ϕ(fε(tλ)) ≥ −3ε

2
d(fε + λv, fε) ∀ λ > 0.

Apply to (2.36) the finite increment formula6 and divide by λ, ∀ λ > 0 ∃θλ ∈ (0, 1)
such that

(2.37) ϕ′w(fε(tλ) + θλλv(tλ))(v(tλ)) ≥ −3ε

2
1
λ

d(fε + λv, fε).

For the second member of (2.37) we have

lim
λ→0+

1
λ

d(fε + λv, fε) = lim
λ→0+

1
λ

sup
t∈[t0,t1]

‖λv(t)‖ = sup
t∈[t0,t1]

‖v(t)‖.

6The finite increment formula. Let f : X → R be Gâteaux differentiable on the segment [a, b].
Then there exists θ in (0, 1) so that

f(b)− f(a) = f ′w(a + θ(b− a))(b− a).
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Pass to the first member of (2.37). Look at (2.34). For λ =
1
n

we have
(

tn :=
t1
n

)

(2.38) Φ(fε +
1
n

v) = (ϕ + ψε)(fε(tn) +
1
n

v(tn)).

(tn)n≥1 has a convergent subsequence (tkn
)n≥1, tkn

→ τ ∈ [t0, t1]. Then as fε(tkn
) +

1
kn

v(tkn
) → fε(τ), one finds, taking in (2.38) the lower limit for n → ∞, Φ(fε) ≤

(ϕ + ψε)(fε(τ)), and this imposes (see (2.15)) Φ(fε) = (ϕ + ψε)(fε(τ)), i.e.

(2.39) τ ∈ M ((2.20)).

Come back to (2.37), where we replace tλ by tkn
, pass to the limit and one obtains

(2.40) ϕ′w(fε(τ))(v(τ)) ≥ −3ε

2
sup

t∈[t0,t1]

‖v(t)‖
(2.32)

≥ −3ε

2
.

Comparing (2.40) and (2.39) with (2.30) we find a contradiction and this imposes
(2.21).

This is the end of the proof. Work in the following with the same t of (2.21).

Since d(fε, γε)
(2.19)

≤ ε

2
, we have d(fε(t), Fc) ≤ ε

2
+ d(γε(t), Fc)

(2.11)

≤ ε

2
+ ε,

(2.41) d(fε(t), Fc) ≤ 3ε

2
.

But Φ(fε)
(2.19)

≤ Φ(γε), we get

(2.42) c + ε2
(2.16),(2.20)

≤ ϕ(fε(t)) + ψε(fε(t))
(2.17)

≤ c +
5
4
ε2.

Take ε =
1
n

, n ∈ N, set f 1
n
(t) = xn and taking into account (2.41), (2.42) and (2.21)

one finds the relations (2.4), (2.5) and (2.6) from the statement. 2

Remark 2.5. In the statement of [1, 5, p. 140, theorem 6], instead of the property
(2.6) of 2.15 is the following condition:

lim
n→∞

(1 + ||xn||)||ϕ′w(xn)|| = 0.

The proof of theorem 6 ([1]) does not work under this condition. The author could
recover the statement by replacing the quoted relation above by

lim
n→∞

(1 + ||xn||)−1||ϕ′w(xn)|| = 0,

obviously a weaker one.
Pass to the corresponding variant for Mountain Pass theorem. Firstly, give the

following
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Definition 2.6. Let X be a real normed space. The Gâteaux differentiable mapping
ϕ : X → R verifies the condition (C) at the level c, c ∈ R, with respect to a nonempty
closed subset F of X, if every sequence (xn)n≥1 in X with the properties

lim
n→∞

d(xn, F ) = 0,

(∗) lim
n→∞

ϕ(xn) = c,

lim
n→∞

(1 + ||xn||)−1||ϕ′w(xn)|| = 0.

has a convergent subsequence.

Let (xkn
)n≥1 be such a convergent subsequence. Remark that x0 := lim

n→∞
xkn

∈
F : d(x0, F ) ≤ d(x0, xkn) + d(xkn , F ), pass to the limit for n →∞. Remark also: the
condition (C) at the level c for F is implied by (PS)c,F condition7, since if ||ϕ′w(xn)|| →
0 then (1 + ||xn||)−1||ϕ′w(xn)|| → 0.

Definition 2.7. x0 is a critical point at the level c, c ∈ R, for ϕ : X → R, X a real
normed space, if

ϕ(x0) = c, ϕ′w(x0) = 0.

Come back to the first definition and suppose in addition ϕ′w : X → X∗ continuous
from the norm topology on X to the ∗-weak topology on X∗. Then, if x0 = lim

n→∞
xkn ,

(#) x0 is a critical point at the level c for ϕ.

Proof. Obviously ϕ(xkn) → ϕ(x0), hence, taking into account (∗), ϕ(x0) = c. Pass
to the second condition. Since xkn → x0, (1 + ||xkn ||)−1 → (1 + ||x0||)−1, whence
lim

n→∞
||ϕ′w(xkn)|| = 0. Let u be arbitrary in X. |ϕ′w(xkn)(u)| ≤ ||ϕ′w(xkn)||||u|| and

the last limit implies lim
n→∞

ϕ′w(xkn)(u) = 0, consequently ϕ′w(xkn) ∗−weak−−−−−→ 0. On the

other hand, since xkn → x0 we get ϕ′w(xkn) ∗−weak−−−−−→ ϕ′w(x0). Indeed, let u be arbitrary
fixed in X. We must show (∗∗) ϕ′w(xk0)(u) → ϕ′w(x0)(u) ([4, vol. III, p. 738, 3.31]).
Let ε > 0 be arbitrary. Since ϕ′w is continuous at x0, for the neighborhood V =
V (ϕ′w(x0); ε;u) of ϕ′w(x0) in the ∗-weak topology ([4, vol. III, p. 738, 3.29]) there is a
neighborhood U of x0 in the strong topology with the corresponding property. From
a rank N on, we have xkn ∈ U , hence ϕ′w(xkn) ∈ V , i.e. |ϕ′w(xkn)(u)−ϕ′w(x0)(u)| ≤ ε
and consequently (∗∗). As the ∗-weak topology is separated, the above relations give
ϕ′w(x0) = 0 and consequently the ennounced statement is proved. 2

The following statement is an immediate consequence of 2.15.

Theorem 2.12. Mountain Pass theorem II. Let X be a Banach space, ϕ : X → R
a continuous Gâteaux differentiable mapping and ϕ′w : X → X∗ continuous from the
norm topology to the ∗-weak topology. Take the distinct points y0, y1 in X and let be

Γ = {γ ∈ C([0, 1];X) : γ(0) = y0, γ(1) = y1}
7Let c be in R and F a nonempty subset of X. ϕ verifies the Palais - Smale condition on the

level c around F (or relative to F ), (PS)c,F , with respect to β, when ∀ (un)n≥1 a sequence of points
in X for which lim

n→∞ϕ(un) = c, lim
n→∞ ||∇βϕ(un)|| = 0 and lim

n→∞dist(un, F ) = 0, this sequence has

a convergent subsequence.
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and

c = inf
γ∈Γ

sup
[0,1]

(ϕ ◦ γ).

If ϕ verifies the condition (C) at the level c with respect to X and

c > max(ϕ(y0), ϕ(y1)),

then there is a critical point of ϕ at the level c.

Proof. Apply 2.15 with F = X, Aϕ,c separates the points y0, y1. Indeed y0, y1 /∈ Aϕ,c

(the condition in the statement) and if par absurdum we suppose that y0, y1 belong
to the same connected component U of X \Aϕ,c, then, since X \Aϕ,c is locally path
connected, the component U is path connected, let y1 be a continuous path in U
which joints y0 to y1. We have (the supremum is attained)

ϕ(γ1(t)) < c ∀ t ∈ [0, 1], hence sup
[0,1]

(ϕ ◦ γ1) < c,

in contradiction with the definition of c. Thus, since ϕ verifies the condition (C) at
the level c, (#) finishes the proof. 2

Remark 2.8. The request of the variant 2.17 for the Mountain Pass theorem ([1, p.
145, Corollary 9]):

ϕ′w : X → X∗ continuous from the norm topology to the ∗-weak topology,
a variant proved using Ghoussoub-Preiss theorem, requires more than the demand of
the variant 2.6 for the same Mountain Pass theorem obtained by the author ([7]):

ϕ′w(·)(v) is upper semicontinuous ∀ v ∈ X,
since the first requirement implies x → ϕ′w(x)(v) continuous ∀v at X: let be x0 ∈ X,
ε > 0 and V = V (ϕ′w(x0); ε; v) a neighborhood of ϕ′w(x0) in the ∗-weak topology; for
V there is a neighborhood U of x0 in view of the continuity in x0 of ϕ′w, x ∈ U ⇒
ϕ′w(x) ∈ V , i.e. |ϕ′w(x)(v)− ϕ′w(x0)(v)| < ε.

Otherwise, conversely x → ϕ′w(x)(v) continuous ∀ v at X implies the first require-
ment (every finite intersection of neighborhoods is a neighborhood).

There is still another variant for the Mountain Pass theorem.

Proposition 2.13. Let X, ϕ,Γ, c be as to 2.17 and F a nonempty closed subset of
X included in Aϕ,c that separates y0, y1. If ϕ verifies the condition (C) at the level c
with respect to F , then ϕ has a critical point at the level c belonging to F .

Mountain Pass points
Let X, ϕ,Γ, c, F be as in 2.15. Suppose the mapping ϕ verifies the condition (C)

at the fixed level c with respect to F . Consider the following sets Kc(ϕ) and Mc(ϕ).

Kc(ϕ) = Kc = {x ∈ X : ϕ(x) = c, ϕ′w(x) = 0},

the set of critical points of ϕ at the level c (see also [5, 4.7]). This is closed (the
∗-weak topology being separate, every point is a closed set).

Mc(ϕ) = Mc = {x ∈ Kc : x point of local minimum for ϕ}.
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We have, according to (#), Kc ∩ F 6= f¡ , Kc ∩ F is even compact: let (xn)n≥1

be an arbitrary sequence from Kc ∩ F , it has a convergent subsequence in Kc ∩ F
since the conditions from the definition of the condition (C) are satisfied (d(xn, F ) =
0, ϕ(xn) = c, (1 + ||xn||)−1||ϕ′w(xn)|| = 0), and ϕ verifies the condition (C) at the
level c.

Definition 2.9. x0 from Kc is a mountain pass point (m.p. point) for ϕ if, for every
open neighborhood U of x0, the set

ϕc
U = {x ∈ U : ϕ(x) < c}

is nonempty and disconnected. In this case x0 is obviously not a point of local
minimum for ϕ (Hofer).

Consider also the set

Pc(ϕ) = Pc = {x ∈ Kc(ϕ) : x is a m.p. point for ϕ}.
One can state

Theorem 2.14. Suppose that ϕ verifies the condition (C) at the level c relative to
X. Then

either F ∩M c 6= f¡ or F ∩ Pc 6= f¡ .

Remark 2.10. By the theorem 2.20, it results in particular either Mc 6= f¡ or
Pc 6= f¡ , i.e. there is in Kc either or a local minimum point or a m.p. point.

Corollary 2.15. Let X, ϕ,Γ, c be as in 2.17. Suppose that ϕ verifies the condition
(C) at the level c relative to X and

c > max(ϕ(y0), ϕ(y1)).

Then we have
either M c \Mc 6= f¡ or Pc 6= f¡ .

In other words:
”There is, at the level c, either a m.p. point, or a point which is not of local

minimum, but it is the limit of a sequence of local minimum points”.

Remark 2.11. The propositions 7.11 and 7.12 from [5] also give information about
the structure of the set Kc of critical points in the Mountain Pass theorem.

2.3 Third variant of Minimax theorem

Let K be a compact space and E = C(K;R) the Banach space with the norm ||f || =
sup
x∈K

|f(x)| and M(K;R) the Banach space, with the norm ||µ|| = |µ|(K), of the

regular real measures on the σ-algebra of the Borel sets from K ([4, vol. III, pages
547 (6), 571 (4.7), 576 (4.10)]).

The map M(K;R) → E∗, µ → Φµ, Φµ(f) =
∫
K

fdµ is a norm-preserving isomor-

phism between vector spaces (Riesz representation theorem, [4, vol. III, p. 572 and
576, 4.9 and 4.10]). Identify M(K;R) and E∗ by this isometrical isomorphism.
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Let µ be in M(K;R). According to the general definitions, µ is positive, µ ≥ 0,
when f ≥ 0 ⇒ µ(f) ≥ 0 and the support of µ, supp µ, is the coplementary of the
biggest open set U in K having the property: the support supp f of f included
in U ⇒ µ(f) = 0 (the complementary of the biggest open set in K on which µ is
cancelled).

Theorem 2.16. Minimax theorem III. Let X be a Banach space, K a compact
metric space, K0 a compact nonempty subset of K, θ from C(K0;X) and T = {f ∈
C(K;X) : f | K0 = θ} the Banach space with Tschebysheff norm.

Let ϕ : X → R be a mapping of C1-Fréchet class and

c = inf
f∈T

sup
K

(ϕ ◦ f), c0 = sup
K0

(ϕ ◦ θ).

If

sup
K

(ϕ ◦ f) > c0 ∀ f ∈ T,

then for every ε > 0 there exists vε in X such that

c ≤ ϕ(vε) ≤ c + ε and ||ϕ′(vε)|| ≤ ε.

Remark 2.12. Minimax Theorem III (2.24) is, as we have seen, a variant of Minimax
Theorem I (2.1). While the requirement for ϕ is strenghten in III − C1-Fréchet class,
the requirement in I

c > c0

has been relaxed in III to

sup
K

(ϕ ◦ f) > c0 ∀ f ∈ T.

Even by this fact the situation has been suddenly complicated.

We given now a result which uses minimax theorem III,

Theorem 2.17. Generalized Saddle Point theorem III. Let X be a Banach
space and ϕ : X → R a mapping of C1-Fréchet class. Suppose X = V ⊕W , direct
sum, V and W closed subspaces, dimV < +∞. Let be w0 in W , 0 < ρ < R,
M = {v + tw0 : v ∈ V, ||v|| ≤ R, t ∈ [0, R]} and σρ = {w ∈ W : ||w|| = ρ}. Suppose

sup ϕ(FrM) < inf ϕ(σρ)

and let be Γ = {g ∈ C(M ;X) : g(x) = x on FrM},

c = inf
g∈Γ

sup
M

(ϕ ◦ g).

If ϕ verifies the (PS)c weak condition, then c is critical value of ϕ.
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3 Conclusions

Three variants of the Minimax theorem are presented and compared. The first is
obtained by the author in [5]. The second is an improved form of the Ghoussoub-Preiss
minimax theorem given here by the author. Corresponding variants of Mountain Pass
theorem and Saddle Point theorem are also presented as applications. We use also
this version to prove Mountain Pass Point statements.

These results can be further used in order to solve some Autonomous Problems
and Potential Wells. The third version is presented to complete the picture with
specific links and hierarchies of the results.
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[3] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
[4] C. Meghea, I. Meghea, Differential Calculus and Integral Calculus, Vol. I, Ed.
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