
EVALUATING THE NETWORKING PERFORMANCE OF LINUX-BASED HOME ROUTER
PLATFORMS FOR MULTIMEDIA SERVICES

Ingo Kofler, Robert Kuschnig, Hermann Hellwagner

Institute of Information Technology (ITEC)
Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria
Email: firstname.lastname@itec.uni-klu.ac.at

ABSTRACT

Wireless router platforms based on the Linux operating sys-
tem are becoming popular in consumers’ home networks.
The transmission of multimedia data or their use as media-
aware network elements imposes high traffic and computa-
tional loads on these devices. Thus, it is interesting to evalu-
ate the networking and processing capabilities of such home
router platforms in order to assess their usefulness for im-
proved multimedia services such as in-network H.264/SVC
video stream adaptation. This paper presents a performance
evaluation of three home router platforms representative for
low-end, mid-range, and high-end devices. The scope of the
evaluation is the performance of the Linux networking stack
on these routers; results for both application-layer (TCP and
UDP) transmission and kernel-level (UDP) traffic routing are
given. The results show that both TCP and UDP throughputs
are significantly below (less than half of) the outgoing (wired)
links’ nominal capacities and depend very much on the sizes
of the transmitted data blocks. This clearly indicates that the
networking performance is limited by the platforms’ process-
ing capabilities and the lack of mechanisms that offload net-
working tasks from the CPUs. This behaviour cannot be ob-
served on today’s PC systems and has to be considered when
deploying multimedia services on these network devices. Fur-
thermore, a detailed analysis of the Linux networking stack
reveals that the performance is heavily impacted by the netfil-
ter code, even when no packet filtering or network address
translation is being performed. Considerable performance
gains can be achieved when this netfilter code is bypassed.

1. INTRODUCTION

Wireless router platforms based on Linux are becoming more
and more popular in the consumers’ home networks [1]. Al-
though Linux is not a real-time operating system, it allows to
develop cheap network devices with sufficient performance
for most home network scenarios. Additionally, using a Linux
platform allows manufacturers to offer a rich set of function-
ality and services that are developed and maintained by the

community. Consequently, the platforms can also be used for
multimedia services which include the possibility of using
such platforms as media-aware network elements (MANE)
[2] for in-network adaptation or acting as network attached
storage (NAS) to share multimedia content via SMB or UPnP.
In our previous work [3] we already investigated the us-
age of a low-end home router platform for adapting multiple
standard-definition H.264/SVC video streams in parallel and
demonstrated the feasibility of in-network adaptation on an
off-the-shelf router platform. Further evaluations with more
recent platforms showed that their performance is sufficient
to adapt even multiple high-definition streams.

Most of these services have in common that they are typ-
ically implemented on the application layer and run as pro-
cesses in the user space. This imposes higher requirements
on the wireless router platforms which were initially devel-
oped and designed for typical networking tasks like routing
and bridging. In this work, the processing and networking
capabilities of three different residential router platforms are
evaluated. The scope of the evaluation is the performance
of the networking stack with a strong focus on the applica-
tion layer performance. The evaluation is not related to the
wireless networking performance itself since this depends on
many external factors as well as the actual wireless chipset.
Instead, we are interested in measuring the performance of
the networking stack using the wired network interface. The
purpose of this evaluation is to get an in-depth understand-
ing of performance limitations of existing platforms and to
identify possible bottlenecks that have to be considered when
using them for multimedia services.

2. HARDWARE PLATFORMS

All evaluated router platforms are intended for residential and
small office–home office (SOHO) markets and can be consid-
ered as representative for millions of legacy devices that are
nowadays deployed in home networks. The platforms were
selected in a way that both their nominal CPU speed as well
as their network connectivity cover a broad range of available

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357261659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vendor/Model Linksys TP-Link Ubiquity
WRT54GL WR1043ND Routerstation
(WRT54) (TLWR) Pro (RSPRO)

SoC Broadcom Atheros Atheros
BCM5352EL AR9132 AR7161

CPU MIPS32 4Kc MIPS 24Kc MIPS 24Kc
CPU clock 200 MHz 400 MHz 720 MHz
SDRAM size 16 MB 32 MB 128 MB
SDRAM clock 100 MHz 400 MHz 360 MHz
Flash capacity 4 MB 8 MB 16 MB
System bus SSB AHB AHB
Bus speed 100 MHz 200 MHz 180 MHz
Wired 802.3u 802.3z 802.3z
Wireless 802.11b/g 802.11b/g/n 802.11a/b/g/n

Table 1. Overview - Hardware platforms

devices. All have in common that they ship with firmware
that is not a dedicated router or real-time operating system
but based on a Linux kernel.

The most relevant technical specifications of the evaluated
router platforms are given in Table 1. The Linksys WRT54GL
wireless router represents the lower end of the performance
spectrum. The technical platform is rather old (first released
in 2002) and the router is still very popular due to its flex-
ibility and the possibility of replacing the original firmware
by a Linux-based third-party firmware. The TP-Link TL-
WR1043ND wireless router platform was released in 2008
and also targets the residential and home network market. It
is based on an Atheros AR9132 SoC and offers both a fast
wired and wireless network interface. Additionally, this plat-
form is equipped with a USB 2.0 host controller that allows
to attach different USB devices like mass storage devices for
network sharing. The Ubiquity Networks Routerstation Pro
marks the top end of wireless router platforms under inves-
tigation. It is based on the Atheros AR7161 SoC, which is
designed as a high performance wireless network processor
that enables efficient designs for triple-play services. All of
the platforms are based on MIPS CPUs which are running at
clock rates ranging from 200 to 720 MHz. This range of the
clock rates can be considered as representative for the wire-
less router platforms available at the time of writing. As an
aside, the same series of SoCs (AR9132 and AR7161) are
also used in wireless routers of other well-known vendors
like D-Link, Netgear, Mikrotik, or Buffalo. In order to have
a common software basis for evaluation, the original vendor
firmware was replaced by OpenWrt1. OpenWrt is a Linux-
based firmware which is open-source and can be used on a
broad range of embedded platforms. For the evaluations, the
OpenWrt release 10.03 (codename Backfire) with Linux ker-
nel 2.6.33 was used as a common basis.

1http://www.openwrt.org

Platform WRT54 TLWR RSPRO Core i7
CoreMark 332 701 1263 9457
CPU clock rate [MHz] 200 400 720 2670
CoreMark/MHz 1.66 1.75 1.75 3.54
STREAM copy [MB/s] 59 231 381 6830

Table 2. Benchmark results

3. BASIC PLATFORM PERFORMANCE

In a first step, the processor and memory performance of the
three router platforms were evaluated. The platforms were
assessed by means of two different benchmarks to get some
insight into the computational performance that one can ex-
pect from these platforms and to compare their performance
with a modern desktop system. The CoreMark benchmark
(version 1.0)2 was used to assess the performance of the CPU
core of the router platforms. For comparisons, it is recom-
mended to normalize the benchmark score by dividing it by
the CPU clock rate. In addition to the CPU performance, also
the performance of the memory system was evaluated. For
that purpose, the STREAM benchmark was used to determine
the throughput of memory copy operations.

The results of both benchmarks are summarized in Ta-
ble 2. For a comparison of the computing performance, the
benchmark was also executed on a modern PC system. It
should be noted that the benchmark was executed single-
threaded, so only the performance of a single core was as-
sessed. As one can see from the CoreMark results, the perfor-
mance of the router platforms highly correlates with the clock
rate of the platforms which gets even more obvious when
comparing the normalized CoreMark values. The TLWR and
RSPRO score identically at 1.75 CoreMark/MHz since both
are based on the same MIPS32 24Kc CPU. When comparing
the absolute CoreMark values of the embedded router plat-
forms with the Intel Core i7 M620 processor, one can con-
clude that just one of the latter processor’s cores is between
7.5 times (RSPRO) and 28 times (WRT54) faster. The re-
sults of the STREAM copy benchmark indicate that the mem-
ory performance of the WRT54 platform is rather modest
and considerably lower than that of the TLWR and RSPRO
platforms. Some of the reasons are the low SDRAM clock
rate (100 MHz) of the WRT54 and its smaller cache lines
that cause a higher miss rate for the same sequential mem-
ory access pattern. Not surprisingly, the score obtained for
the STREAM copy benchmark3 on the PC system is much
higher. The memory throughput of the embedded platforms
is only between 1/18 (RSPRO) and 1/114 (WRT54) of that
of the Core i7 system. As discussed later, this memory bottle-
neck also negatively influences the networking performance
of the platforms.

2http://www.coremark.org
3http://www.cs.virginia.edu/stream/



4. EVALUATION SETUP

In a next step, we evaluated the wired networking perfor-
mance in terms of achievable throughput on the three plat-
forms. The testbed consists of two PCs that are connected to
the router. One computer (PC A) is connected with the WAN
port of the router, while the second one (PC B) is connected
to one of the LAN ports. Both PCs are equipped with Gigabit
NICs and are connected to the router using appropriate cables.
Each of the two PCs runs the Ubuntu 9.10 operating system
with Linux kernel version 2.6.31.

The throughput measurement was performed by using
the command line tools iperf4 and netperf5. The iperf tool
can be used to measure the throughput of both UDP and TCP
traffic between two systems. The tool allows amongst others
to specify certain parameters like the length of the read/write
block size for the socket API calls as well as different socket
buffer sizes. In case of UDP traffic, it is also possible to
specify the transmission rate according to which the UDP
traffic is generated. In the course of the experiments, it
turned out that it was not possible to force iperf to send UDP
packets at maximum rate. Even setting very high values for
the transmission rate led to inferior bandwidth utilization.
Therefore, the netperf tool was used in cases where it was
required to generate a UDP stream at maximum rate. All the
experiments were performed with a duration of 20 seconds
each and were repeated five times; arithmetic means were
then calculated.

The following three traffic scenarios were used for the
evaluation:

Outgoing TCP. In this first setting the achievable TCP
throughput from the router to PC B was measured using iperf.
The term “outgoing” is considered as relative to the router,
which means that the router is the traffic source while PC B
acts as the sink. It should be noted that the purpose of this
scenario is to evaluate the throughput that a user space pro-
cess, e.g., a UPnP server or a proxy, can expect on such a
platform. Different values for the read/write block size were
selected for evaluation.

Outgoing UDP. In addition to TCP, also the use of the
simpler UDP protocol was investigated by using netperf.
Again, “outgoing” is related to the router which means that
the UDP traffic was generated at the router and sent to PC B.
In contrast to the first scenario, the achievable UDP through-
put is relevant in the context of UDP-based services, e.g., for
an RTP-based adaptation proxy as described in [3]. As with
the outgoing TCP traffic the read/write block size was varied
to investigate its impact on the throughput. As the block size
influences the packet size, the range was chosen by consider-
ing the MTU size of the Ethernet link as the maximum block
size, in order to avoid fragmentation on the IP layer.

4http://iperf.sourceforge.net
5http://www.netperf.org

0 50000 100000 150000 200000 250000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Block size [Byte]

G
o
o
d
p
u
t 
[M

b
p
s
]

WRT54

TLWR

RSPRO

Fig. 1. Throughput – Outgoing TCP traffic

Routing UDP. The last traffic scenario that was used for
evaluation is the routing of UDP traffic. In contrast to the
traffic scenarios described before, the router neither acts as
a traffic source nor as a traffic sink. In fact, the UDP traf-
fic at different transmission rates is generated by PC A and
routed through the router to PC B. The important difference
to all other scenarios is that routing solely takes place in ker-
nel space. The networking performance at this layer can be
considered as relevant for layered multicast approaches as in-
dicated in [2]. The achieved routing throughput for different
transmission rates at PC A is measured at PC B by using iperf.
As the routing is done on the IP layer, the handling is the
same for any other transport protocol like TCP or DCCP. We
decided to evaluate the routing performance using UDP since
its lack of a flow control mechanism allows us to gradually
increase the transmit rate at PC A.

In the course of our experiments we also investigated sce-
narios with both incoming TCP and UDP traffic. However,
due to space restrictions the results cannot be discussed in
this paper.

5. EVALUATION RESULTS

For the first evaluation, the outgoing TCP bandwidth at the
router was measured by using the iperf tool. It soon turned
out that setting the socket buffer size to different values had
no impact on the achieved throughput. Therefore, a manual
setting of this value was no longer used for the rest of the
evaluation. Omitting a manual setting forces the kernel to
perform an automatic tuning of the buffer.

The results of the outgoing TCP bandwidth measurements
are shown in Figure 1. The curves show that the TCP through-
put from the router to another device is far below the capacity
of the link which is nominally 1 Gbps for the RSPRO and
TLWR platforms and 100 Mbps for the WRT54. Another in-
teresting observation is that on these platforms the block size



400 600 800 1000 1200 1400

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Block size [Byte]

G
o
o
d
p
u
t 
[M

b
p
s
]

WRT54

TLWR

RSPRO

Fig. 2. Throughput – Outgoing UDP traffic

has a significant influence on the achieved throughput. For
the RSPRO platform the achieved TCP throughput converges
to the maximum of about 363 Mbps only when using block
sizes of at least 128 KiB. When using the default block size
that is used by iperf (8 KiB), the throughput is only 230 Mbps
which is less than 2/3 of the maximum. The similar dras-
tic behaviour can be observed for the TLWR platform which
reaches a maximum outgoing TCP throughput of 217 Mbps
for block sizes of 128 KiB and larger. When using smaller
block sizes of 8 and 1 KiB the achieved throughput drops to
142 Mbps (65 percent) and 76 Mbps (35 percent), respec-
tively. The WRT54 platform shows a similar behaviour as the
RSPRO and TLWR platforms. The maximum throughput of
39 Mbps is only achieved when using large block sizes; se-
lecting a block size of 8 KiB leads to a throughput of only
61 percent of the maximum. One conclusion from this obser-
vation is to avoid using small block sizes for transmitting via
TCP connections. The overhead of the socket API call and the
system call appears to be high on such embedded platforms
and only amortizes by using large block sizes. This behav-
ior cannot be observed when measuring the TCP throughput
on modern PC-based platforms. For the sake of reference,
both PCs were connected directly by an Ethernet cable and the
same measurement procedure was applied. Since the network
interface of the PC also supports different offload capabili-
ties, the measurements were performed with and without any
offloading mechanism. The results showed that the achieved
throughput was about 930 Mbps and independent of the cho-
sen block size and offloading. The only observable difference
was the different levels of CPU utilization on the PC which
reached up to 30 percent when disabling offloading. From
these observations one can conclude that on the embedded
platforms the achieved TCP throughput is clearly limited by
the platform’s processing power in combination with the lack
of offloading mechanisms.

The results of the outgoing UDP throughput measure-

ments are presented in Figure 2. As one can learn from
the plot, there is an almost linear relationship between the
block size (i.e., the UDP payload size) and the achieved
UDP throughput. Since the achieved throughput is less than
half of the link’s nominal capacity even in the case of the
best-performing platform, it is obvious that the throughput is
limited by the processing capabilities of the router. When
using a block size of 1450 Bytes, the achieved outgoing
UDP throughput is 418 Mbps for the RSPRO platform and
226 Mbps for the TLWR platform. The WRT54 platform
achieves up to 29 Mbps of outgoing UDP traffic. The previous
workloads have in common that they measure the throughput
at the application layer. The last scenario simply measures
the routing performance of UDP traffic without any interac-
tion with the user space. In this set-up, PC A generates UDP
traffic at different transmission rates. The UDP packets are
routed by the router platform to PC B, which acts as traffic
sink and as location for the throughput measurement. The
transmission rate at PC A was steadily increased in steps of
5 Mbps and the achieved throughput at PC B for each trans-
mission rate was determined. For this evaluation all firewall
rules that might block incoming traffic from the WAN port
or perform network address translation (NAT) were removed.
The direction of the UDP traffic from the WAN to the LAN
was selected as this reflects the main direction of traffic in
video streaming scenarios. Nevertheless, the tests were also
performed in the opposite direction and it turned out that the
direction does not have an impact on the routing performance.
The results of the routing UDP throughput evaluation are vi-
sualized in Figure 3. The curves show a similar behavior for
all of the three platforms. Up to a certain transmission rate,
the router is capable of routing the traffic. At a certain point,
the achieved throughput decreases due to excessive load on
the router. The best performance can be achieved by the
RSPRO platform which can route up to 430 Mbps of UDP
traffic without causing packet loss. On the TLWR platform
the maximum UDP throughput can be achieved at a trans-
mission rate of 270 Mbps. The WRT54 platform achieves
70 Mbps for routing the UDP traffic.

6. ANALYZING THE LINUX NETWORKING STACK

As the results in the previous section show, the networking
performance highly depends on the block size, especially for
the UDP transmission. Since UDP is often used for video
streaming applications, an in-depth analysis of the UDP im-
plementation in the networking stack was conducted. Be-
sides, the the protocol implementation is less complex com-
pared to TCP, which makes it easier to trace and identify the
performance bottleneck of the platforms. For analyzing the
execution of the networking code, the ftrace framework [4]
of the Linux kernel was used. The purpose of this first analy-
sis was to identify which parts of the kernel source code were
executed as a result of a system call. The analysis showed



0 100 200 300 400 500

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Transmit rate [Mbps]

G
o
o
d
p
u
t 
[M

b
p
s
]

WRT54

TLWR

RSPRO

Fig. 3. Throughput – Routing UDP traffic

that during a system call for sending a single UDP datagram,
about 200 function calls in the kernel take place. Surprisingly,
nearly half of the executed functions are related to the net-
filter code. The netfilter framework in the networking stack
of the Linux kernel is used for packet filtering, network ad-
dress translation and other packet manipulation purposes. As
indicated by the analysis, a significant amount of function
calls is related to that kernel component, even when no fire-
wall or NAT rules are used on the system. In order to quan-
tify the impact of the netfilter component on the networking
performance, the same measurements as in Section 5 were
performed without the netfilter framework. For that purpose,
firmware images for the three hardware platforms were com-
piled with a kernel configuration with disabled netfilter sup-
port. As both the hardware platform and the rest of the soft-
ware stack remained the same, the influence of the netfilter
framework can be exactly investigated. As one can learn from
Figure 4, the achieved outgoing UDP throughput significantly
increases when using a firmware image without built-in net-
filter code. This observation is most obvious for small packet
sizes of 400 Bytes where the per-packet overhead of the net-
filter code has the highest impact. For such small packet
sizes, the performance increase is between 53 percent on the
WRT54 platform and up to 80 percent on the RSPRO plat-
form. Obviously, the relative performance increase gets lower
when using larger packet sizes but remains at a high level.
When choosing packet sizes near the MTU of the Ethernet
link, the performance gain is still between 39 (WRT54) and
50 percent (RSPRO). Similar to the outgoing UDP traffic per-
formance, the other traffic scenarios benefit from removing
the netfilter code. Due to space restrictions, the plots cannot
be shown in this paper but the results can be summarized as
follows. The results for the outgoing TCP throughput show
that the throughput obtained with the firmware images with-
out the netfilter code are significantly higher. The amount
of improvement depends on the block size which is obvious

400 600 800 1000 1200 1400

0
2
0
0

4
0
0

6
0
0

8
0
0

Block size [Byte]

G
o
o
d
p
u
t 
[M

b
p
s
]

l

l

l

l

l l

l

l

l

WRT54

WRT54 w/o netfilter

TLWR

TLWR w/o netfilter

RSPRO

RSPRO w/o netfilter

Fig. 4. Outgoing UDP traffic without netfilter

since most of the function calls to the netfilter code are done
once per system call. Obviously, the relative increase of TCP
throughput is higher for small block sizes (about 1 to 4 KiB)
than for larger ones (≥ 16 KiB). On the RSPRO platform, in-
creases of 90 percent can be observed for small block sizes.
Although the relative improvement deteriorates with increas-
ing block sizes, the improvement is still 28 percent for a block
size of 16 KiB. A similar behavior can be observed for both
the TLWR and WRT54 platforms. On the TLWR platform,
the improvements range from 89 percent for small block sizes
to 9 percent for larger ones. The maximum improvement on
the WRT54 platform is about 38 percent which reduces to
15 percent when increasing the block size. The UDP rout-
ing performance benefits from removing the netfilter code as
follows. On the RSPRO platform, the routing throughput is
increased by 170 Mbps to 600 Mbps (40 percent). Compa-
rable performance improvements are also evident in the case
of the other two platforms. Without the netfilter code, the
TLWR platform achieves a throughput of 355 Mbps which is
a plus of 85 Mbps or 31 percent. On the WRT54 platform,
the routing throughput increases to 95 Mbps (plus 25 Mbps
or 36 percent).

Based on the Linux kernel image with a disabled netfilter
component, the ftrace framework was further used to iden-
tify where the execution time in the networking code is spent.
The evaluation was performed on the RSPRO platform for
packet sizes of 400 and 1450 Bytes. The contribution of each
building block in the networking stack to the total execution
time was determined using the ftrace framework. As shown
in Figure 5, most of the clock cycles are spent for buffer han-
dling. This block includes allocating a socket buffer struc-
ture in the kernel space, copying the data from the user space,
and calculating the checksum. The overhead caused for ex-
ecuting the code responsible for the socket API, the IP layer
(IP header, routing, neighbouring protocol) and UDP layer
is quite independent of the packet size. Also the time spent



400 1450

Socket API

Buffer Handling

UDP

IP

Bridge Tx

Hardware Tx

UDP payload size [Byte]

D
u

ra
ti
o

n
 [

u
s
e

c
s
]

0
5

1
0

1
5

2
0

Fig. 5. Execution time - UDP sendto syscall without netfilter

in the code for realizing the L2 bridging between the LAN
and wireless interface (Bridge Tx) is constant. Finally, the
execution of the driver code (Hardware Tx) depends on the
packet size again. Since the network interface uses DMA, the
driver has to ensure consistency between the CPU cache and
the main memory before starting the DMA operation. The
time for transfering the packet’s data from the cache to the
main memory obviously depends on the size of the packet
again. A consequence of the amount of fixed overhead per
system call is the significant impact of the block size on the
achieved throughput. This is consistent with the results dis-
cussed in Section 5. When considering packet sizes close to
the MTU of the Ethernet link, the memory bandwidth of the
platform and the lack of offloading capabilities for checksum
calculation are the limiting factors.

7. RELATED WORK

To the best of our knowledge this work is the first that in-
vestigates the performance and implications of the Linux net-
working stack on home router platforms. The need for inves-
tigating these aspects is grounded in our work on in-network
adaptation of H.264/SVC content on such devices [3] as it
is performed on the application layer by a user space pro-
cess. As more and more devices in this market segment are
based on Linux the insights obtained can be applied to a va-
riety of different networking devices. Another evaluation of
home router platforms is given in [5], however, the focus of
this work is more related to NAT and its implementation on
the devices. The work presented in this paper, however, fo-
cuses on the throughput that can be achieved by (multimedia)
services running in user space on the router platform. An-
other currently ongoing work is the proposed home network-

ing working group within the IETF which targets the role of
such router platforms in home networks.

8. CONCLUSIONS

This paper provides a performance evaluation of Linux-based
home router platforms which focuses on aspects relevant for
multimedia services. The evaluation of the home routers’
networking performance disclosed that the TCP and UDP
throughputs achievable by user space processes on these de-
vices are far less than the nominal link speeds. The limiting
factors are moderate processing power and the lack of offload-
ing capabilities. Another crucial aspect is the selection of the
block size used during socket API calls since it highly in-
fluences the achieved throughput. This factor does not play a
role on modern server or desktop systems, yet should be taken
into account for good performance of multimedia services de-
livered via home routers. E.g., in the case of TCP traffic it is
recommendable to use block sizes of 32 KiB or even larger
to obtain a reasonable throughput. A detailed execution trace
of the Linux networking stack further shows that the netfilter
framework in the Linux networking stack has significant in-
fluence on the throughput. The removal of this component, if
possible in a given application scenario, leads to a throughput
increase of around 50 percent and should be considered as a
viable option. The netfilter component can be omitted if the
router is used internally only, e.g., serving as wireless access
point and serving multimedia content via UPnP or SMB. As
the platforms investigated in the paper cover the performance
spectrum of typical home router platforms, the performance
figures provided can be considered as representative.

9. REFERENCES

[1] Alexander Sirotkin, “Building a next-generation residen-
tial gateway,” Linux Journal, vol. 2007, no. 160, pp. 5,
2007.

[2] Stephan Wenger, Ye-Kui Wang, and Thomas Schierl,
“Transport and Signaling of SVC in IP Networks,” IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, vol. 17, no. 9, pp. 1164–1173, Sept. 2007.

[3] Ingo Kofler, Martin Prangl, Robert Kuschnig, and Her-
mann Hellwagner, “An H.264/SVC-based adaptation
proxy on a WiFi router,” in Proceedings of the NOSS-
DAV’08, May 2008, pp. 63–68.

[4] Tim Bird, “Measuring function duration with ftrace,” in
Proceedings of the Linux Symposion 2009, July 2009, pp.
47–54.

[5] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen
Strowes, Pasi Sarolahti, and Markku Kojo, “An experi-
mental study of home gateway characteristics,” in Pro-
ceedings of the ICM’10. 2010, pp. 260–266, ACM.


