
Servin et al. Vol. 21, No. 3 /March 2004/J. Opt. Soc. Am. A 411
Regularized quadrature and phase tracking from a
single closed-fringe interferogram
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A new sequential phase demodulator based on a regularized quadrature and phase tracker system (RQPT) is
applied to demodulate two-dimensional fringe patterns. This RQPT system tracks the fringe pattern’s
quadrature and phase in a sequential way by following the path of the fringes. To make the RQPT system
more robust to noise, the modulating phase around a small neighborhood is modeled as a plane and the
quadrature of the signal is estimated simultaneously with the fringe’s modulating phase. By sequentially
calculating the quadrature of the fringe pattern, one obtains a more robust sequential demodulator than was
previously possible. This system may be applied to the demodulation of a single interferogram having closed
fringes. © 2004 Optical Society of America
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1. INTRODUCTION
Most experimental data obtained by using full-field opti-
cal metrology are encoded as a wave front (phase) that
modulates the fringes of an interferometric image.1 The
aim of fringe analysis is to estimate the modulating two-
dimensional (2D) phase of these fringe patterns. When a
linear spatial phase with a large slope (a carrier) is added
to the wave front under analysis, one obtains a spatial-
carrier-frequency interferogram. When the phase of in-
terest is smooth and a linear carrier is added, the fringe
pattern can be easily demodulated by using well-
understood and widely used spatial carrier interferom-
etry techniques.2

On the other hand, if the experiment at hand permits
one to obtain several interferograms over a period of time,
one may introduce a temporal carrier into the modulating
phase.3 In this case one varies the modulating phase by
using a linear temporal carrier, so every interferogram
will have a predefined piston phase difference. Then, us-
ing several phase-stepped interferograms, one may easily
obtain the modulating phase.

Sometimes, however, the very nature of the experimen-
tal setup may not allow one to take one or several inter-
ferometric images having a spatial and/or temporal
carrier.4 These cases frequently arise in the analysis of
fast transient phenomena, where it is difficult or impos-
sible to introduce a spatial or temporal carrier. In these
cases we have no choice but to deal with a single or a se-
ries of interferograms without a carrier, possibly contain-
ing closed fringes, where the phase variation is not a
monotonic function of space or time. In this situation it
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is impossible to separate the information of interest with
a linear filter. However, there are still some possible
ways to deal with these nonmonotonic modulating phase
interferograms. One recent method was proposed by
Larkin et al.,5 and, more recently, another, closely related
to that one, was proposed by Servin et al.6 In these two
cases the phase estimation problem is factored into two
operators. One is an isotropic 2D Hilbert transform, and
the other is the orientation 2p of the fringes. The orien-
tation of the fringes is the more difficult step and must be
done in a sequential way.7 The regularized quadrature
and phase tracker (RQPT) system presented here uses,
instead, a single system that is capable of demodulating
in a robust way a single interferogram containing closed
fringes.

The RQPT presented in this work may be considered a
significant improvement on a previously published phase
demodulation system called the regularized phase tracker
(RPT).8 The improvement resides in the sequential
quadrature estimation of the interferogram’s fringes by
the RQPT. Although the main objective of any fringe
pattern demodulation technique is to find the modulating
phase, it is of interest to note (as we will see) that the se-
quential calculation of the interferogram’s quadrature
highly improves the robustness of the RPT system pre-
sented in past publications. So this new RQPT sequen-
tially calculates the quadrature of the fringe pattern as a
by-product to obtain a phase-tracking scheme that is
more robust than the previous RPT demodulation algo-
rithm.

The presentation plan for the paper is the following:
2004 Optical Society of America
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In Subsection 2.A we review the phase-locked loop
(PLL),9–11 which is the first one-dimensional (1D) sequen-
tial phase demodulator used to analyze 2D interfero-
grams, because an important idea that is used in the
RQPT is drawn directly from the PLL system. The mo-
tivation for a nonregularized quadrature and phase
tracker (QPT) demodulation system in one dimension is
presented in Subsection 2.B. In Section 3 this 1D non-
regularized (QPT) system is generalized to two dimen-
sions. In Section 4 we regularize the QPT to obtain the
sought-after 2D regularized QPT (RQPT). We continue
to Section 5, where we demodulate an experimentally ob-
tained electronic speckle interferogram and then a com-
plicated, noisy, computer-generated fringe pattern. In
Section 6 some conclusions of the main results of the pa-
per are given.

2. SEQUENTIAL PHASE DEMODULATING
SYSTEMS
In this section we present the motivation for a 1D non-
regularized QPT demodulation system. We begin by de-
scribing the standard model for a 2D fringe pattern as ob-
tained by an optical interferometer:

I~r! 5 a~r! 1 b~r!cos@ f~r!#, (1)

where r 5 (x, y) represents a point in 2D space. The
smooth function a(r) is a low-frequency signal and repre-
sents the background illumination. The function b(r) is
also a low-frequency signal, which represents the 2D con-
trast variation of the fringe pattern. The signal f(r) is
the information to be recovered, which is related to the
physical magnitude under measurement. Throughout
this work we will assume that the modulating phase f(r)
is continuous and smooth.

Let us start by analyzing the PLL, which was the first
phase-tracking system that was applied to fringe pattern
demodulation.9 A brief review of the PLL is convenient
because the QPT presented here uses a fundamental idea
that is drawn directly from the PLL system.

A. Phase-Locked Loop System
As we will see, both the PLL and RQPT systems are ca-
pable of demodulating only open-fringe patterns if no at-
tention is paid to the 2D sequential scanning strategy.
Let us start with an analysis of a 1D carrier frequency
signal and how the PLL and RQPT systems presented in
this work demodulate it. The standard mathematical
model for a 1D fringe pattern with a linear carrier is the
following:

I1~x ! 5 a~x ! 1 b~x !cos@v0x 1 f~x !#, (2)

where the carrier frequency v0 must be greater than the
maximum frequency content of the modulating phase
f(x), or v0 . u]f(x)/]xu for all x. The PLL (as well as
the RQPT) works best when the background signal is re-
moved or is highly attenuated. Then, using a high-pass
filter, one is able to rewrite Eq. (2) as

I~x ! 5 b~x !cos@v0x 1 f~x !#. (3)

The continuous first-order PLL system is usually de-
scribed by the following nonlinear dynamic system:
df̂~x !

dx
5 tI~x !sin@v0x 1 f̂~x !#, (4)

where f̂(x) denotes the estimated modulating phase and
t is a constant related to the bandpass of the PLL. To un-
derstand the basic functioning of this system, we rewrite
the last equation in integral form as

f̂~x ! 5 tE
2`

x

cos@v0j 1 f~j!#sin@v0j 1 f̂~j!#dj, (5)

where we have assumed that we have b(x) ' 1.0. This
equation may be rewritten as

f̂~x ! 5
t

2
E

2`

x

$sin@ f~j! 2 f̂~j!# 1 sin@2v0j 1 f̂~j!

1 f~j!#%dj. (6)

As we can see from this equation, there are two terms:
The first varies slowly because the modulating phase
f(x) is a continuous smooth function, while the second
varies twice as fast as the original fringes. Because the
integral is a first-order low-pass filter, the fast-varying
term is highly reduced and may be neglected. Therefore
one may rewrite, for analysis purposes, a simplified ver-
sion of the PLL dynamic system as

df̂~x !

dx
5 t sin@ f~x ! 2 f̂~x !#. (7)

When the PLL is operating in lock, the estimated phase
f̂(x) follows the modulating phase f(x) very closely, so
the difference f(x) 2 f̂(x) is small and the sine function
may be approximated by its argument. Doing this, we fi-
nally arrive at

df̂~x !

dx
5 t@ f~x ! 2 f̂~x !#. (8)

This last approximation permits one to understand why
the demodulated phase f̂(x) obtained with a first-order
PLL follows closely the modulating phase of the fringes,
f(x).

Finally, let us write the spatially discretized (or digital)
version of the PLL system that is obtained by discretizing
the spatial coordinate x. Using first-order differences to
approximate the continuous phase derivative, one obtains
a digital first-order PLL as

f̂~x 1 1 ! 5 f̂~x ! 1 tI~x !sin@v0x 1 f̂~x !#. (9)

With this equation one sees that the currently evaluated
phase f̂(x 1 1) at the site x 1 1 uses the previously es-
timated phase f̂(x) as a predictor with an update given
by tI(x)sin@vx 1 f̂(x)#, which corrects the preceding esti-
mate by a small amount. Finally, let us mention that the
phase estimated by the PLL is already unwrapped, so
that no additional unwrapping system is required to ob-
tain the desired smooth modulating phase.

We have seen that the PLL system is capable of de-
modulating a carrier frequency signal whenever we have
an estimate of the carrier frequency v0 and the two terms
in Eq. (6) are well separated in frequency space. If the
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spectral distance between these two terms is not large
enough, they overlap and the higher-frequency carrier
will appear as an artifact in the estimated phase. This
situation arises if a low-frequency carrier is modulated by
a wideband phase, and in this case it is not possible to use
the PLL system to demodulate these fringes. We will see
in Subsection 2.B the new phase-tracking demodulator
(QPT) that overcomes these difficulties.

B. Quadrature and Phase Tracker Estimator System
Let us start by intuitively motivating how one can arrive
at another phase-tracking scheme that overcomes the
PLL system limitations. In this case, instead of starting
with a dynamic system and then explaining why it works,
as in the case of the PLL, we will proceed by postulating a
cost functional operating over the estimated phase space
f̂(x), hoping that the solution f̂(x) that renders this
functional a minimum is the expected demodulated
phase.

For this let us naı̈vely postulate a simple quadratic cost
functional that we know the searched-for solution will
render a minimum. This cost functional is

U 5 $I~x ! 2 cos@f̂~x !#%2, (10)

where we have simplified our 1D fringe pattern model by
assuming that a(x) ' 0 and b(x) ' 1. The optimum
function is obtained by the signal

f̂~x ! 5 arccos@I~x !#; (11)

such a phase is illustrated in Fig. 1(a), and it is clear that
this is not what we were looking for. Then, let us con-
tinue working over the same idea by introducing another
term to our cost functional that imposes an additional
constraint on f̂(x) by requiring that one also approximate
the quadrature of the fringes. The quadrature of I(x)
5 cos@ f(x)# is sin@ f(x)# 5 2Ix(x)/fx(x) 5 2Ix(x)/v(x),
where v(x) is the local frequency. With this addition our
new cost functional now reads

U 5 $I~x ! 2 cos@f̂~x !#%2 1 $Ix~x ! 1 v̂~x !sin@f̂~x !#%2,
(12)

where the new unknown function v̂(x) is the derivative of
f̂(x) with respect to x and Ix(x) is approximated by first-
order differences as I(x) 2 I(x 2 1) in our discrete 1D
space. Now the optimum for v̂(x) and f̂(x) is obtained,
and the solution looks like Fig. 1(b). This solution was
found iteratively by tacking small steps along the direc-
tion of steepest descent of U, i.e., along the direction of
minus the gradient of U with respect to the optimizing
variables. That is,

f̂~x !k11 5 f̂~x !k 2 m
]U

]f̂~x !
, (13)

v̂~x !k11 5 v̂~x !k 2 m
]U

]v̂~x !
, (14)

where m is a fixed step size. If one uses ‘‘natural’’ [given
that we do not know anything about f(x) or v̂(x)] zero
initial conditions

f̂~x !0 5 0, v̂~x !0 5 0, (15)
one obtains the estimated phase and local frequency
shown in Fig. 1(b). It is apparent that we have made no
progress toward the desired solution: We just found
what we already knew from our first attempt. The rea-
son is that although we have added another datum, which
is Ix(x), we also have added a new unknown, which is
v̂(x), so we have returned to our starting point.

If, however, we could have a rough estimate for the
newly created unknown v̂(x), introducing this value into
our last cost functional, we would be closer to knowing the
quadrature of the fringes at site x. One way to obtain
this rough estimate is by using the same PLL trick,
namely, to use the previously found estimate [in this case,
for v̂(x)] at the already visited site x 2 1 as our initial
guess. Using as initial estimate v̂(x)0 5 v̂(x 2 1)` in
Eq. (14), one gets a better estimate for the desired f̂(x)
than was previously possible. Once a better f̂(x) is
found, we then use it to improve our estimate for the ac-
tual v̂(x), which in turn is used to improve our f̂(x). We
may continue this iterative process until we find both un-
knowns within a certain predefined error. By doing this,
one obtains the desired (wrapped) demodulated phase.
Of course, the very first site being demodulated within
the fringe pattern will not have a previously found esti-

Fig. 1. Phase demodulation of a sinusoidal signal. (a) Esti-
mated phase given by f̂ 5 cos21(f ), which is the minimum of U
in Eq. (10); (b) minimizing function of Eq. (12) along with zero
initial conditions [Eqs. (15)]; (c) function that minimizes Eq. (12)
but now using as initial conditions the previously found esti-
mates [Eqs. (16)].
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mation; for that unique seed site, the initial conditions for
f̂(x) and v̂(x) may be set to zero.

An alternative explanation that supports the use of the
stable estimated v̂(x 2 1)` as initial condition for v̂(x)0

may be found by observing the unwanted behavior that
the local frequency v̂(x) has when zero initial conditions
are chosen for Eq. (14) [Fig. 1(b)]. The desired estimated
frequency v̂(x) should be a constant and not a square
function. The discontinuities of v̂(x) are due to the fact
that the driving term ]U/]v̂(x) [in Eq. (14)] has a very
low value in the neighborhood of the extrema of the fringe
pattern. In these places, only the driving term for f̂(x),
which is ]U/]f̂(x), has a significant value and pulls down
the estimated phase in the absence of a driving force for
the instantaneous frequency v̂(x). So v̂(x) does not
have any choice but to follow the changes commanded by
the estimated phase f̂(x), which finally switches v̂(x) to
a constant negative value. To get out of this situation,
one should use as initial condition for v̂(x)0 [in Eq. (14)]
the stable value for v̂(x 2 1)` found at the previously vis-
ited site x 2 1. In this way, instead of having a negli-
gible value for v̂(x), one will have as initial estimate the
value v̂(x 2 1)`, which is a significant positive value. In
that case the natural solution for the estimated phase at x
is to continue its monotonically increasing behavior [see
Fig. 1(c)]. Once this critical point has been passed, the
driving term ]U/]v̂(x) will have again a high and well-
determined value, forcing the frequency v̂(x) to remain
positive until the next critical point of the fringe pattern
appears.

We may also use the previous estimation at f̂(x 2 1)
as initial guess for f̂(x), as is done in the PLL. This pro-
cess of using the two previously found estimates for f̂(x)
and v̂(x) permits us not only to find the sought-after
phase and frequency at x but also to unwrap the phase be-
ing demodulated, as in the PLL case. In summary, the
sequential QPT system is still given by Eqs. (13) and (14),
but now the initial conditions to be used are

f̂~x !0 5 f̂~x 2 1 !`, v̂~x !0 5 v̂~x 2 1 !` (16)

where v̂(x 2 1)` and f̂(x 2 1)` denote the stable point
(f̂, v̂) of the previously demodulated site at x 2 1. Us-
ing these initial conditions, one now obtains the expected
continuous phase. Summarizing, the QPT system has
two important advantages over the PLL: First, no car-
rier frequency estimate is needed, and second, one does
not need to worry about the risk of having overlapping
spectra, unlike the case for the PLL system.

3. DEMODULATION OF
TWO-DIMENSIONAL CLOSED-FRINGE
PATTERNS USING THE SEQUENTIAL
QUADRATURE AND PHASE TRACKER
ESTIMATOR
Before further discussion let us generalize our 1D-QPT to
two dimensions. This generalization is straightforward
and is obtained by minimization of the following cost
functional:
U 5 @I 2 cos~f̂ !#2 1 @Ix 1 v̂x sin~f̂ !#2 1 @Iy

1 v̂y sin~f̂ !#2, (17)

where the spatial position dependence r 5 (x, y) of Ix ,
Iy , f̂, v̂x , and v̂y was omitted for clarity purposes. Now
we need to optimize for three functions, namely, f̂, v̂x ,
and v̂y . The optimizing system at the site ri has a simi-
lar form to that of the 1D-QPT system; in this case we
have

f̂~ri!
k11 5 f̂~ri!

k 2 m
]U

]f̂~ri!
, (18)

v̂x~ri!
k11 5 v̂x~ri!

k 2 m
]U

]v̂x~ri!
, (19)

v̂y~ri!
k11 5 v̂y~ri!

k 2 m
]U

]v̂y~ri!
, (20)

with initial conditions given by

f̂~ri!
0 5 f̂~ri21!`, v̂x~ri!

0 5 v̂x~ri21!`,

v̂y~ri!
0 5 v̂y~ri21!`, (21)

where ri is the current i site under optimization and ri21
is the previous one. In the 2D-QPT case the 2D fringe
signal can be demodulated whenever

iv̂~r!i 5 @v̂x
2~r! 1 v̂y

2~r!#1/2 . 0; (22)

according to the last expression, the 2D-PT system will
successfully demodulate open low-frequency fringes re-
gardless of their 2D orientation.

We have seen that the QPT system can demodulate car-
rier frequency fringe patterns without the need for an ex-
plicit linear carrier. As we have also seen, this has the
advantage of demodulating very-low-frequency fringes
without the worry about higher-frequency cross-tacking
signals that occurs in the PLL case. But how can this
2D-QPT system be used to demodulate closed-fringe in-
terferograms where the spatial phase variation is non-
monotonic, since the 2D-QPT demodulates only monotoni-
cally increasing phase? The answer is by following the
path of the fringes, that is, not by using a row-by-row
scanning strategy (as in a television set) but by following
the path traced by the fringes themselves. One way of
achieving this is to use an algorithm published in Ref. 12
that employs the concept of signal ‘‘quality.’’ This scan-
ning strategy was originally used to sequentially unwrap
noisy phase maps. This algorithm first classifies regions
of the image according to how good the signal-to-noise ra-
tio is around a given neighborhood. In that case12 one
starts the sequential unwrapping algorithm by unwrap-
ping first the best data (less noisy) and afterward the
noisier image regions.

In our 2D-QPT case we are not classifying our data as a
function of its signal-to-noise ratio. We simply decide in
an arbitrary way that our data will have two qualities,
which are

if I~x ! . 0, good data, (23)

if I~x ! < 0, bad data. (24)
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This is shown, for example, in Figs. 3(a) and 3(b) below.
Using this arbitrary classification (actually the negative
of the above statement could also have been used) coupled
with the quality-following scanning strategy,12 one is able
preferably to follow a scanning path defined by the
fringes.8 The main and essential advantage of following
the fringes is to avoid crossing straight through the criti-
cal points of the modulating phase. The reason is that
the 2D-QPT system does not estimate the local curvature
of the modulating phase (only its value and gradient), so
the 2D-QPT does not know how to handle the variety of
critical points (minima, maxima, or saddles). In con-
trast, if the 2D-QPT system continually follows the fringe
path, it always sees open fringes all over the 2D interfero-
gram. In other words, a scan of the interferogram along
the fringe paths behaves roughly like a coordinate trans-
formation where closed fringes are transformed into open
fringes. Therefore whenever the 2D-QPT system en-
circles these critical points, the 2D-QPT system will never
know that it was actually demodulating a closed-fringe
interferogram. Eventually, after demodulating the
neighborhood (at a small distance) of these critical points,
the 2D-QPT will finally have to deal with them. In those
critical regions the local gradient iv̂(r)i is almost zero, so
the only remaining term in the functional is the first one.
However delicate, in this final step of the demodulation
process the problem is much less severe given that we
have already demodulated the phase surrounding these
critical points, and the solution will grow toward the re-
maining undemodulated region in a robust way.

This fringe-following 2D-QPT algorithm makes use of
the local geometry of the phase being recovered by mod-
eling the local phase f̂(r) by a small one-pixel plane de-
termined by the triad f̂, v̂x , v̂y . Additionally, the
fringe-following 2D-QPT also has global information
about the phase at its disposal and uses it by scanning the
interferogram following its fringes.

Figure 2 shows some snapshots of the QPT demodulat-
ing process. We can see how the 2D fringe pattern is be-
ing phase demodulated following the fringe scanning
strategy. As can also be seen, the critical points are not
processed until its surrounding phase is already demodu-
lated. In this case we have obtained the path-following
data [Fig. 2(b)] by splitting the fringe’s gray-level range
into four regions instead of just two as in expressions (23)
and (24).

4. REGULARIZING THE QUADRATURE
AND PHASE TRACKER ESTIMATOR
In Section 3 we have shown how the sequential QPT may
be used to demodulate closed-fringe interferograms
modulated by a smooth continuous function. However,
the QPT system just presented is not at all robust with
respect to noise. To improve the QPT robustness, we
need to regularize the cost functional. In classical regu-
larization one normally introduces a smoothing term into
the cost functional. The smoothing term is normally
built by using integrals of derivative operators applied to
the field that one wants to recover.13 This is the stan-
dard way of regularizing an inverse linear problem when
the transforming linear operator is not invertible or is ill
conditioned. Another characteristic of classical regular-
ization algorithms is that the functional used to find the
inverse field is optimized globally at each iteration. That
is, one updates all the sites within the region V where one
wants to recover the inverse field at each global iteration.
In contrast, in the QPT case, one finds the modulating
phase and the fringe’s quadrature sequentially. So one
cannot use differential operators to regularize the QPT
functional. Fortunately, one can find a way to regularize
this functional by assuming that within a neighborhood
(Nx,y) around the point (x, y), one may model the modu-
lating phase as a plane. So one takes as a parametric
model for the local phase in the neighborhood of (x, y) the
plane given by

p~e, h! 5 f̂~x, y ! 1 v̂x~x, y !~x 2 e!

1 v̂y~x, y !~ y 2 h!. (25)

With this plane model, the local functional looks like

U 5 (
~e,h!PNx,y

$@I 2 cos~ p !#2 1 @Ix 1 v̂x sin~ p !#2

1 @Iy 1 v̂y sin~ p !#2%, (26)

Fig. 2. Demodulation of a 2D fringe pattern using the nonregu-
larized quadrature and phase tracker (QPT) estimator. (a)
Given noiseless computer-generated fringe pattern. (b) Path fol-
lowed by the sequential demodulating system. Whiter paths are
preferably followed as being the sites with ‘‘higher quality.’’ (c)–
(e) Path demodulation progress of the QPT system. (f) Demodu-
lated phase. Although the QPT demodulator finds the phase
unwrapped, the phase was rewrapped to compare it with (a).
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where we have omitted the (x, y, e, h) dependence for
clarity purposes. Now the optimization proceeds by tak-
ing into account not only the current site (x, y) but a 2D
neighborhood Nx,y around it. The size of the neighbor-
hood normally used varies from a 3 3 3 up to an 11
3 11 pixel window or more depending on the signal-to-
noise ratio of the interferogram. The larger the size of
the fitting plane p(e, h), the better the noise rejection ob-
tained. Of course, the size of the fitting plane is limited
by how reasonable it is to consider the interferogram’s
phase within the neighborhood (e, h) P Nx,y as a plane.
Finally, one may still increase a little bit more the RQPT
noise robustness by adding another term that measures
the distance between the regularizing plane p(x, y) and
previously estimated values of demodulated phase
f̂(e, h) within Nx,y . With this last addition the nonlin-
ear cost functional is

U 5 (
~e,h!PNx,y

$@I 2 cos~ p !#2 1 @Ix 1 v̂x sin~ p !#2

1 @Iy 1 v̂y sin~ p !#2 1 l~f̂ 2 p !2m%, (27)

where the function m(e, h) is an indicator function that
has a value of 1 when the site at (e, h) has already been
estimated and of 0 otherwise. The parameter l is a regu-
larization parameter that controls, along with the size of
the regularizing plane, the highest-frequency content of
the demodulated signal f̂(x, y). The value of the l pa-
rameter is not very critical; for example, all numerical ex-
periments that we have made use l 5 5 with good re-
sults.

5. EXPERIMENTAL AND SIMULATION
RESULTS
We show in Fig. 3 the application of the RQPT system for
demodulating an experimentally obtained speckle fringe
pattern. Again, we show in this figure some snapshots in
the demodulating process to see how the sequential strat-
egy along the fringes is performed. Although the noise in
this fringe pattern is moderately high, the fringe pattern
is not too complicated, that is, it does not contain many
fringes or many critical points. So in this case a large
13 3 13-pixel neighborhood may be used. This large fit-
ting plane filters out efficiently the noise of the estimated
phase.

No fringe analysis system is noise immune; sooner or
later a noise energy is reached such that the fringe de-
modulation system breaks down and gives a useless esti-
mated phase. Of course, the RQPT system is not an ex-
ception. So, in the next example (Fig. 4), we have
simulated a more complicated noisy fringe pattern with
nonconstant modulation b(x, y) and zero background
a(x, y) 5 0. The aim of this simulation is to stretch the
RQPT robustness to the limit in terms of noise and fringe
complication. As occurs with any other fringe pattern
demodulation system, the RQPT may demodulate very
noisy fringe patterns whenever the fringes are not so com-
plicated, i.e., it may have high noise but few fringes and
few critical points. On the contrary, a fringe pattern can-
not be too noisy when a more complicated fringe pattern
containing many fringes and many critical points
(minima, maxima, or saddles) is analyzed, such as the one
shown in Fig. 4(a). Also in Fig. 4 we show some other
signals involved in the phase estimation process. Figure
4(b) shows the path along the fringes that the RQPT will
follow preferentially. Figure 4(c) shows the quadrature
signal obtained by this sequential system. If the noise
and/or the fringe pattern is more complicated than that
shown in Fig. 4, it is advisable to use as a first step in the
demodulation process a robust 2D filtering and normaliz-
ing algorithm before making use of the RQPT.

6. COMPARISON BETWEEN THE
REGULARIZED PHASE TRACKER AND THE
REGULARIZED QUADRATURE AND
PHASE TRACKER ESTIMATORS
We have analyzed the RQPT system, and we have seen
how it can be used to demodulate closed-fringe interfero-
grams. In this section the RQPT system is compared
with the RPT system,8 and the advantages of the RQPT
are pointed out. In the case of demodulating a computer-
generated noise-free fringe pattern, both systems give the

Fig. 3. Phase demodulation of an experimentally obtained
speckle interferometric pattern. (a) Speckle pattern. (b)
Traced path that the regularized QPT (RQPT) demodulating sys-
tem follows. Whiter zones are preferably first demodulated.
(c), (d) Two ‘‘moments’’ on the path followed by the RQPT de-
modulating system. (e) Quadrature of the original fringe pat-
tern. (f) Demodulated phase shown rewrapped.
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expected continuous and smooth modulating phase, even
for a small regularizing neighborhood Nx,y . The advan-
tage of the RQPT system becomes clearer when a noisy
interferogram is analyzed. In this section we show ex-
perimentally how the RQPT system is more robust to
noise and to fluctuations in the fringe contrast b(x, y)
than the RPT system. The reason is that the RQPT sys-
tem has the additional constraint term related to the
quadrature of the data signal.

Let us begin by displaying the local cost functionals for
both sequential demodulating systems. For the RPT the
local cost functional is

URPT 5 (
~e,h!PNx,y

$@I 2 cos~ p !#2 1 l~f̂ 2 p !2m%,

(28)

and the one corresponding to the RQPT system is

URQPT 5 (
~e,h!PNx,y

$@I 2 cos~ p !#2 1 @Ix 1 v̂x sin~ p !#2

1 @Iy 1 v̂y sin~ p !#2 1 l~f̂ 2 p !2m%, (29)

where in both cases the regularizing plane is given by

p~e, h! 5 f̂~x ! 1 v̂x~x, y !~x 2 e! 1 v̂x~x, y !~ y 2 h!.
(30)

One can see that the difference between these cost func-
tionals is the quadrature-related term, which is UQ
5 @Ix 1 v̂x sin( p)#2 1 @Iy 1 v̂y sin( p)#2. Although it may
look like a minor addition, this term has nevertheless im-
portant consequences in terms of robustness to noise and
rejection of undesired solutions.

As mentioned above, the problem of estimating the
modulating phase of a single interferogram containing
closed fringes is ill posed, because this problem has infi-

Fig. 4. Phase demodulation of a noisy computer-generated
fringe pattern. (a) Noisy fringe pattern. (b) Traced path that
the sequential RQPT demodulating system will follow. Whiter
zones are preferably first demodulated. (c) Quadrature of the
original fringe pattern. (d) Demodulated phase shown re-
wrapped.
nitely many solutions compatible with the observations.
However, the fact that in the minimizing algorithms (RPT
or RQPT) one uses the final state of a neighborhood pixel
as the initial condition of the pixel being demodulated
shrinks the solution space to the set of continuous func-
tions. As a consequence the two main competing con-
tinuous solutions that render both local functionals to low
values are

f̂1~x ! ' f~x, y !, (31)

f̂2~x ! ' cos21@I~x, y !#, (32)

where cos21( • ) is the inverse of cos(•) and takes values in
the closed interval [0, p]. These two solutions are con-
tinuous functions compatible with the observed data. Of
course, the solution given by f̂1(x) [Fig. 1(c)] is smoother
than that given by f̂2(x) [Fig. 1(a)], so the regularizing
plane biases the RPT/RQPT systems toward f̂1(x).
However, in noisy situations, the noisy estimate of f̂1

may fall too close to f̂2 , and the RPT system may fail to
recover the desired solution f̂1(x). On the other hand,
the RQPT system has two additional constraint terms
that add robustness to the system and give the expected
minimum f̂1 in many cases where the RPT fails.

One example of the higher robustness of the RQPT over
the RPT system may be seen in a contrast mismatch situ-
ation between the fringe model and the fringe data. In
Fig. 5(a) we show the following simple noise-free
computer-generated fringe pattern:

I~x, y ! 5 0.8 cos~v0x !. (33)

In this case the RPT system finds the competing solution
f̂2 because the RPT fails to reach close to the phase val-
ues of 0 or p, which would allow it to jump between adja-
cent Riemann surfaces corresponding to cos21( • ) in order
to obtain v0x instead of obtaining f̂ 5 cos21@I(x, y)# [Fig.
5(b)] as a solution. So in this case the RPT remains on a
single branch of the Riemann surface regardless of the
size of the neighborhood Nx,y . On the other hand, the
RQPT finds the desired solution v0x [Fig. 5(c)] because
this system implicitly calculates the quadrature of the
fringes. In this numerical experiment (Fig. 5), we have
used a neighborhood Nx,y 5 5 and the parameter l 5 5
for both the RPT and RQPT systems. Note that if the
amplitude’s fringe model and the actual fringe amplitude
diverge even further in this direction, i.e., I(x, y)
5 0.5 cos(v0x), maintaining a normalized fringe model,
both systems fail to recover the desired function v0x.

In the next example we consider the noisy interfero-
gram

I~x, y ! 5 cos@v0x 1 n~x, y !#. (34)

Here we have a perfect match between the data and the
fringe model’s contrast. However, in this case, we have
added some phase noise n(x, y). This noise is uniformly
distributed in the range [21, 1] rad. Figure 6(a) shows
the fringe pattern, and Figs. 6(b) and 6(c) show the de-
modulated phase obtained by the RPT and RQPT sys-
tems, respectively. As one can see, the RQPT obtains a
good approximation of the desired phase v0x, while the
RPT again obtains the wrong solution cos21@cos(v0x)#. In
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this numerical experiment we have used a neighborhood
Nx,y 5 9 and the parameter l 5 5 for both the RPT and
RQPT systems.

It should be noted that in Ref. 8 it was proposed that an
additional term to the RPT cost functional be introduced,
in order to increase the robustness with respect to noise;
the resulting cost functional is

URPT 5 (
~e,h!PNx,y

$@I 2 cos~ p !#2 1 @I 2 cos~ p 1 a!#2

1 l~f̂ 2 p !2m%, (35)

where a is a piston phase shift (usually a 5 p/4) intro-
duced into the fringe model. This is a rather awkward
constraint that also forces the phase-shifted model to re-
semble the original fringe data. Although this trick may
permit one to obtain a solution in the correct branch of
the Riemann surface in noisy interferograms, it neverthe-
less distorts the resulting phase estimation. This is be-
cause the two terms cannot be made equal to zero simul-
taneously. So a compromise between them is taken, and
this compromise is the expected demodulated signal
slightly distorted. In the RPT paper8 it is advised that
after the distorted phase is obtained, this distortion may
be removed by minimizing the unshifted functional (28),
taking as initial condition the optimum f̂(x) obtained

Fig. 5. Phase demodulation of a fringe pattern with less than
expected fringe contrast of 1.0. (a) Fringe pattern I(x)
5 0.8 cos(v0x). (b) Wrong demodulated phase found by the RPT
[Eq. (28)], which is close to f̂(x) 5 cos21@I(x)#. (c) Correctly de-
modulated phase using the RQPT system.
from the phase-shifted functional (35). This heuristic
trick is not necessary in the RQPT system presented in
this work.

7. CONCLUSIONS
We have shown that the estimation of the local phase of
the fringe pattern may be made more robust and stable if
the quadrature of the fringe pattern—which depends on
its gradient and local frequency—is estimated at the
same time. This estimation process is effective only if
the phase variation is locally monotonic, i.e., if the fringes
are (locally) open. It is possible, however, to use this
scheme to estimate the phase of patterns with closed
fringes as well, provided that one scans the image in such
a way that the demodulator always sees an open-fringe
pattern and has a good initial estimate of its phase and
local frequency. This will not be the case, of course, for
critical points (maxima, minima, or saddles) of the phase
surface, but if these difficult spots are demodulated after
the phase has been estimated at all their surrounding
pixels, the QPT operator will obtain a correct value there
as well. We have also shown that the QPT estimator
may be made robust to noise by estimating the param-
eters of a linear (planar) approximation to the phase sur-
face in a neighborhood, instead of the phase and fre-
quency values at the point, obtaining in this case the

Fig. 6. Phase demodulation of a noisy fringe pattern with the
right (expected) contrast equal to 1.0. (a) Noisy fringe pattern
I(x) 5 cos@ f(x) 1 noise(x)#. (b) Wrong demodulated phase us-
ing the RPT system given by Eq. (28), which is close to f̂(x)
5 cos21@I(x)#. (c) Correctly demodulated phase obtained by the
RQPT system.
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RQPT. The robustness with respect to noise improves if
the size of this neighborhood is increased, but its maxi-
mum size is limited by the smoothness of the underlying
phase surface, i.e., the size of the larger window where a
linear approximation to the phase remains valid.

The RQPT system may have difficulties in demodulat-
ing even noise-free fringe patterns having some of their
critical points near or at the boundary of the fringe pat-
tern. This is because at these places there are no closed
paths around the critical points and the main strategy of
surrounding the critical points by following the fringes
may fail.

Finally, we have made a detailed comparison of the
RQPT system presented here with the previously pub-
lished RPT demodulator.8 We have stressed their simi-
larities and differences and made it clear that the RQPT
is the next logical step for the improvement of the RPT.
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