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characterization of vague equivalence and vague congruence relations in terms of their level set and prove that the 

class of  vague congruence relations forms a distributive lattice.  Further, we define the quotient of a vague lattice 
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1. Introduction 
In 1965, Zadeh introduced the concept of  fuzzy set [44].  So far, this idea has been applied to other algebraic 

structures such as groups, semigroups, rings, modules, vector spaces and topologies and widely used in many fields.  

Meanwhile, the deficiency of fuzzy sets is also attracting the researcher‟s attention.  For example, a fuzzy set is a 

single function, and it cannot express the evidence of supporting and opposing.  For this reason, the concept of 

vague set [13] was introduced in 1993 by Gau and Burhrer.  In a vague set A, there are two membership function: a 

truth membership function 𝑡𝐴 and a false membership function 𝑓𝐴 , where 𝑡𝐴(x) is a lower bound of the grade of 

membership of x derived from the “evidence for x”  and 𝑓𝐴(x)  is a lower bound on the negation of x derived from 

the “evidence against x” and 𝑡𝐴(x)+ 𝑓𝐴(x)1.  Thus the grade of membership in a vague set A is a subinterval [𝑡𝐴(x), 

1-𝑓𝐴(x)] of [0,1].  The idea of  vague sets is an extension of fuzzy sets so that the membership of every element  can 

be divided into two aspects including supporting and opposing.  In fact, the idea of vague set is the same with the 

idea of  intuitionistic fuzzy set [1]; so, the vague set is equivalent to intuitionistic fuzzy set.  With the development 

of vague set theory, some structures of algebras corresponding to vague set have been studied.  Biswas [6] initiated 

the study of vague algebras by studying vague groups.  Eswarlal [12] studied the vague ideals and normal vague 

ideals in semirings.  Kham et. al. [26] studied the vague relation and its properties, and moreover intuitionistic fuzzy 

filters and intuitionistic fuzzy congruences in a residuated lattice were researched [33, 40, 11, 14, 15, 28].  In this 

paper we introduce the concept of  (T, S) vague equivalence relation.  We discuss some characterization of  vague 

equivalence and vague congruence relations in terms of their level set and prove that the class of  vague congruence 

relations forms a distributive lattice.  Further, we define the quotient of a vague lattice with respect to a congruence 

relation. 

 

2. Preliminaries 
            Throughout this paper, we will denote the unit interval [0, 1] as I.  And  Let  L = (L, , ) denotes the 

Lattice , Where   and  denotes the sup and the inf , respectively. 

 

Definition 2.1:[2] 

   An element xL  is said to be relatively complemented if x is complemented in every [a, b] with a  x  b, i.e., 

x+y = b for some y[a, b] such that xy = a.   The Lattice L is said to be relatively complemented if each xL is 

relatively complemented. 

 

Definition 2.2:[2] 

      A relatively complemented distributive lattice with 0 is a generalized Boolean algebra. 
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Definition 2.3:[2] 

    Let L be a generalized Boolean algebra and let x,yL, Then we define the difference, x-y and the symmetric 

difference, x y, of x and y, respectively as follows: 

     x-y is the relative complement of xy in the interval [0, x] and x  y =  (x-y)+ (y-x).  It is easily seen that : i) x – y 

 x. 

ii) y + (x-y) = x + y. 

iii) y(x-y) = 0. 

 

Remark  2.4:[42] 

    Let L be a generalized Boolean algebra.  Then x + y = x  y  xy  for any x ,y L. 

 

Definition 2.5:[22] 

      A ring with 1 in which every element is idempotent is called a Boolean ring. 

 

Definition 2.6 : [42] 

   A zero element „0‟ of L is an element that satisfies  0  x, xL and a unit element „1‟ is an element of L that 

satisfies x  1,  xL.  

 

Definition 2.7: [22] 

   Let J be an ideal in a distributive lattice L, Define a relation C(J) by  

         C(J) = {(x, y)  LL / xz = yz for some zJ }.  Then C(J) is a congruence relation on L. 

 

Definition 2.8: [22] 

 Let R be a congruence relation on a lattice L with zero element „0‟.  Define a set I(R) by,  

        I(R) = {xL/ (x, 0) R}.  Then I(R) is a ideal in L. 

 

3. (T, S) Vague Equivalences and Congruences in a Lattice 

Definition 3.1 : 

                    Let L be a Lattice A be a Vague set over L.  Then A is said to be Vague Sublattice over L if for each 

x,yL                                                                                                                                                            i) 𝑉𝐴(𝑥𝑦) 

≥ min {𝑉𝐴(𝑥), 𝑉𝐴(𝑦)} 

ii) 𝑉𝐴(𝑥𝑦) ≥ min {𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}   ∀ x,y L    where 𝑉𝐴  = [𝑡𝐴,1- 𝑓𝐴]. 

The set of all Vague Sublattice of L is denoted as VL(L). 

 

Definition 3.2 : 

       A Vague set A of  L is called Vague Ideal of L , if the following conditions hold:                   i) 𝑉𝐴(𝑥𝑦) ≥ min 

{𝑉𝐴(𝑥), 𝑉𝐴(𝑦)} 

ii) 𝑉𝐴(𝑥𝑦) ≥ max {𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}   ∀ x,y L    where 𝑉𝐴  = [𝑡𝐴,1- 𝑓𝐴]. 

The set of all Vague Ideals of L is denoted as VI(L) 

 

Definition 3.3: 

      A Vague relation R on L is called (T, S) reflexive if 𝑡𝑅(x, x) = T and 1- 𝑓𝑅(x, x) = S , xL. 

 

 Definition 3.4: 

      (T, S) Vague reflexive relation  is called (T, S) equivalence relation if R is symmetric          i.e.  𝑅−1 = R and and 

R is transitive i.e. RR  R. 

 

Definition 3.5: 

    A (T, S) equivalence relation R on a Lattice L is called (T, S) congruence if ,  a,b,c,d  L  

i) 𝑉𝑅(ac, bd)  min {𝑉𝑅(a, b), 𝑉𝑅(c, d)} 

ii) 𝑉𝑅(ac, bd)  min {𝑉𝑅(a, b), 𝑉𝑅(c, d)} 

 

 

 



ISSN 2348 – 0319                 International Journal of Innovative and Applied Research (2015), Volume 3, Issue (12): 72- 82 
 

74 

 

Lemma 3.6: 

    Let P,Q  VR(L) with 𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇1 and  𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇2 and 1- 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑆1 and 1- 𝑓𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 

𝑆2.  Then P  PQ  𝑇1  𝑇2 and 𝑆1  𝑆2. 

Proof: 

        Suppose 𝑇1 ≰ 𝑇2 or 𝑆1 ≰ 𝑆2.  Then 𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  or  1- 𝑓𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)         1- 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) .  If  

𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (𝑥0, 𝑦0) for some 𝑥0 , 𝑦0  L.  Therefore 𝑡𝑃 𝑄(𝑥0, 𝑦0) = 

{𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑡𝑃(𝑥0, z), 𝑡𝑄(z, 𝑦0) }}   𝑡𝑄(z, 𝑦0)𝑧  ∈𝐿
𝑆𝑢𝑝

                 𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (z, y)  𝑡𝑃(𝑥0, 𝑦0).  That is 𝑡𝑃 𝑄(𝑥0, 𝑦0)  𝑡𝑃(𝑥0, 

𝑦0).  This is a contradiction to               P  P  Q.  Similarly 1- 𝑓𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)  1- 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y)   1- 𝑓𝑄(𝑥1, 𝑦1)  

1- 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) for some 𝑥1, 𝑦1  L.  Therefore 1 - 𝑓𝑃 𝑄(𝑥1, 𝑦1) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{1 -  𝑓𝑃(𝑥1, z), 1- 𝑓𝑄(z, 𝑦1) }}   

1 −  𝑓𝑄(z, 𝑦1)𝑧  ∈𝐿
𝑆𝑢𝑝

  1 −  𝑓𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (z, y)  1- 𝑓𝑃(𝑥1, 𝑦1).  That is 1- 𝑓𝑃 𝑄(𝑥1, 𝑦1)  1- 𝑓𝑃(𝑥1, 𝑦1).  This is a 

contradiction to P  P  Q. Hence  𝑇1  𝑇2 and 𝑆1  𝑆2   

 

Lemma 3.7: 

   Let P,Q  VR(L) with 𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇1 and  𝑡𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇2 and 1- 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑆1 and 1- 𝑓𝑄𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 

𝑆2.  Then P, Q  PQ  𝑇1 = 𝑇2 and 𝑆1 =  𝑆2. 

Proof: 

    Follows from Lemma 3.6. 

Note 3.8: 

The set of all (T, S) Vague equivalence relations on L  by 
(𝑇,𝑆)

(L).  Then we have the following. 

 

Lemma 3.9: 

      Let P  
(𝑇1 ,   𝑆1)

(L) and Q  
(𝑇2 ,   𝑆2)

(L) .  Then  

i) P  PQ  if 𝑇1  𝑇2 and 𝑆1   𝑆2 

ii) Q  PQ  if  𝑇2  𝑇1 and 𝑆2   𝑆1 

iii) P, Q  PQ  iff  𝑇1 =  𝑇2 and 𝑆1 = 𝑆2. 

Proof: 

 Let x, y  L.  Then  𝑡𝑃 𝑄(x, y) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑡𝑃(x, z), 𝑡𝑄(z, y) }}  min{ 𝑡𝑃(x, y), 𝑡𝑄(y, y) }   

min{𝑡𝑃(x, y), 𝑡𝑃(y, y)} = 𝑡𝑃(x, y)  Also 1-  𝑓𝑃 𝑄(x, y) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 1 −  𝑓𝑃(x, z), 1- 𝑓𝑄(z, y) }}  min{ 1 −  𝑓𝑃(x, y), 

1 − 𝑓𝑄(y, y) }  min{1- 𝑓𝑃(x, y), 1- 𝑓𝑃(y, y)} = 1-  𝑓𝑃(x, y).  Hence P  PQ.  Similarly (ii) follows.  Also Lemma 

3.4, (i) and (ii) together imply (iii). 

 

Proposition  3.10: 

               Let P 
(𝑇1 ,   𝑆1)

(L) and Q  
(𝑇2 ,   𝑆2)

(L) .  Then PQ  
(𝑇,   𝑆)

(L) if PQ = QP where T = min{  𝑇1 , 𝑇2 } 

and S = min {𝑆1 ,  𝑆2 }. 

Proof: 

  For xL, we have 𝑡𝑃 𝑄(x, x) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑡𝑃(x, z), 𝑡𝑄(z, x) }}  min{ 𝑡𝑃(x, x), 𝑡𝑄(x, x) }  min{𝑇1, 𝑇2} = T.  Also , 

since P 
(𝑇1 ,   𝑆1)

(L) and Q  
(𝑇2 ,   𝑆2)

(L) ,                                                x, y, z L min{ 𝑡𝑃(x, z), 𝑡𝑄(z, x) }  min{ 

𝑡𝑃(x, x), 𝑡𝑄(x, x) } = T.  This implies               𝑡𝑃 𝑄(x, x) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑡𝑃(x, z), 𝑡𝑄(z, x) }}  T.  Hence 𝑡𝑃 𝑄(x, x)  = 

T, x  L.   Also               1-  𝑓𝑃 𝑄(x, x) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 1 − 𝑓𝑃(x, z), 1- 𝑓𝑄(z, x) }}  min{ 1- 𝑓𝑃(x, x), 1- 𝑓𝑄(x, x) }  =  

min{𝑆1, 𝑆2} =  S and min { 1 − 𝑓𝑃(x, z), 1- 𝑓𝑄(z, x) }  min {1-  𝑓𝑃(x, x), 1 − 𝑓𝑄(x, x) } = S,            x, y, z  L.  

Therefore  1-  𝑓𝑃𝑄(x, x) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 1 − 𝑓𝑃(x, z), 1- 𝑓𝑄(z, x) }}  S.  Thus          1-  𝑓𝑃 𝑄(x, x) = S,  x  L.  Hence 

PQ is (T, S) reflexive.  Next, we have x, y  L          𝑉𝑃𝑄(x, y) = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑉𝑃(x, z), 𝑉𝑄(z, y) }} = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 

𝑉𝑃(z, x), 𝑉𝑄(y, z) }} , since P, Q symmetric. = {𝑧  ∈𝐿
𝑆𝑢𝑝

 min{ 𝑉𝑄(y, z), 𝑉𝑃(z, x) }} = 𝑉𝑄𝑃(y, x) = 𝑉𝑃𝑄(y, x), since QP = 

PQ.  Hence PQ is symmetric.  Since VR satisfy associative property,  (PQ)  (PQ) = P(QP)Q = 

P(PQ)Q = (PP)(QQ)  PQ.  Hence PQ is transitive.  Thus PQ  
(𝑇,   𝑆)

(L).  
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Proposition 3.11: 

   Let PVR(L) with 𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇0 and 1 −  𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) =  𝑆0.  Then P ∈ 
(𝑇0 ,𝑆0)

(L) if and only if each level 

subset 𝑃[𝛼 ,𝛽 ], 𝛼[0, 𝑇0], 𝛽 [𝑆0 , 1] [strong level subset 𝑃(𝛼 ,𝛽) 𝛼[[0, 𝑇0),      𝛽 (𝑆0 , 1]] with 𝛼+𝛽 ≤1 is an 

equivalence relation on L. 

Proof: 

  Suppose that P ∈ 
(𝑇0 ,𝑆0)

(L).  Then we have 𝑡𝑃(x, x) = 𝑡𝑃𝑦 ,𝑧∈𝐿
𝑆𝑢𝑝

 (y, z) = 𝑇0 and 1 − 𝑓𝑃(x, x) = 1 − 𝑓𝑃𝑦 ,𝑧∈𝐿
𝑆𝑢𝑝

 (y, z) = 𝑆0, 

xL.  So that (x, x) 𝑃[𝑇0 , 𝑆0] and hence (x, x) ∈ 𝑃[𝛼 ,𝛽 ], xL, as 𝑇0 ≥ 𝛼 and 1-𝑆0  ≥ 𝛽.  Thus 𝑃[𝛼 ,𝛽 ] is reflexive.  

Also let (x, y) 𝑃[𝛼 ,𝛽 ] .  Then by symmetry of P, we have 𝑡𝑃(y, x) = 𝑡𝑃(x, y)  𝛼 and 1-𝑓𝑃(y, x) = 1-𝑓𝑃(x, y)  𝛽.  So 

that (y, x) ∈ 𝑃[𝛼 ,𝛽 ].  Hence 𝑃[𝛼 ,𝛽 ] is symmetric.  Again for any x, y, z  L, let (x, z) 𝑃[𝛼 ,𝛽] and (z, y) 𝑃[𝛼 ,𝛽].  Then 

min {𝑡𝑃(x, z), 𝑡𝑃(z, y)}  𝛼 and min {1 − 𝑓𝑃(x, z), 1- 𝑓𝑃(z, y)}  𝛽.                                                     So that  𝑡𝑃(x, y) 

 { min{𝑡𝑃𝑧∈𝐿
𝑆𝑢𝑝

 (x, z), 𝑡𝑃(z, y)}}  𝛼 and 1 − 𝑓𝑃(x, y)  { min{1 − 𝑓𝑃𝑧∈𝐿
𝑆𝑢𝑝

 (x, z), 1- 𝑓𝑃(z, y)}}  𝛽, by the transitivity 

of P.  Therefore (x, y) 𝑃[𝛼 ,𝛽 ] .  Thus 𝑃[𝛼 ,𝛽] is transitive.  Hence 𝑃[𝛼 ,𝛽 ] is an equivalence relation on  L.  Conversely, 

suppose that 𝑃[𝛼 ,𝛽 ] is an equivalence relation on L for all 𝛼[0, 𝑇0], 𝛽 [𝑆0 , 1].  If possible assume that P is not 

[𝑇0 ,  𝑆0] reflexive.  Then  either 𝑡𝑃(x, x) ≠ 𝑇0 or 1- 𝑓𝑃(x, x) ≠ 𝑆0 for some xL.  Then (x, x) 𝑃[𝑇0 , 𝑆0].  This 

contradicts the reflexivity of the equivalence relation 𝑃[𝑇0 , 𝑆0] .  Secondly, if P is not symmetric, then there exist x, y  

L such that 𝑉𝑃(x, y)   𝑉𝑃(y, x).  Set  𝑡𝑃(x, y) = R and 1-𝑓𝑃(x, y) = S.  Then (x, y) 𝑃[𝑅 ,𝑆] but (y, x) 𝑃[𝑅,𝑆], 

contradicting the symmetry if 𝑃[𝑅,𝑆].  Lastly If P is not transitive, then there exist x,yL such that 𝑡𝑃(x, y)  

{ min{𝑡𝑃𝑧∈𝐿
𝑆𝑢𝑝

 (x, z), 𝑡𝑃(z, y)}}  

or 1 − 𝑓𝑃(x, y)  { min{1 − 𝑓𝑃𝑧∈𝐿
𝑆𝑢𝑝

 (x, z), 1- 𝑓𝑃(z, y)}}.  Hence for some zL,                          𝑉𝑃(x, y)  min{𝑉𝑃(x, 

z) 𝑉𝑃(z, y)}.  Setting min{𝑡𝑃(x, z), 𝑡𝑃(z, y)} = R and                                min{1 − 𝑓𝑃(x, z), 1 − 𝑓𝑃(z, y)} =  S, then we 

have (x,z), (z,y) 𝑃[𝑅,𝑆], but (x,y) 𝑃[𝑅,   𝑆]  contradicting the transitivity of 𝑃[𝑅,𝑆].  Thus P ∈ 
(𝑇0 ,𝑆0)

(L).  This 

completes the proof. 

 

Proposition 3.12: 

   Let PVR(L) with 𝑡𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑇0 and  1 − 𝑓𝑃𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) = 𝑆0 .  Then P ∈ 
(𝑇0 ,𝑆0)

(L) if and only if each non-

empty upper and lower level subsets U(𝑡𝑅 , 𝛼) and L(1 − 𝑓𝑅 , ),     𝛼[0, 𝑇0], 𝛽 [𝑆0 , 1]  is an equivalence relation 

on L. 

Proof:  Follows from Proposition 3.11. 

Note 3.13: 

The set of all (T, S) congruence relations on L is denoted by 
(𝑇0 ,𝑆0)

(L).  Then we have the following. 

 

Proposition 3.14: 

     Let P ∈ 
(𝑇0 ,𝑆0)

(L).  Then P ∈ 
(𝑇0 ,𝑆0)

(L) if and only if each level subset  𝑃[𝛼 ,𝛽 ] 𝛼[0, 𝑇0],    𝛽 [𝑆0 , 1] [strong 

level subset 𝑃[𝛼 ,𝛽]  𝛼[0, 𝑇0), 𝛽 (𝑆0, 1]] with 𝛼+   1 is a congruence relation on L. 

Proof: 

   Suppose P ∈ 
(𝑇0,𝑆0)

(L).  Then clearly 𝑃[𝛼 ,𝛽 ] is an equivalence relation on L by Proposition 3.8.  Now let (𝑎1, 𝑏1), 

(𝑎2, 𝑏2) 𝑃[𝛼 ,𝛽 ].  Then 𝑡𝑃(𝑎1 𝑎2 , 𝑏1 𝑏2)  min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)}    ,   𝑡𝑃(𝑎1𝑎2 , 𝑏1 𝑏2)  min{𝑡𝑃(𝑎1, 

𝑏1), 𝑡𝑃(𝑎2, 𝑏2)}   ,  1 − 𝑓𝑃(𝑎1 𝑎2 , 𝑏1 𝑏2)             min{1 − 𝑓𝑃(𝑎1, 𝑏1), 1 − 𝑓𝑃(𝑎2, 𝑏2)}    and 1- 𝑓𝑃(𝑎1 𝑎2 , 

𝑏1 𝑏2)                                 min{1 − 𝑓𝑃(𝑎1, 𝑏1),1 −  𝑓𝑃(𝑎2, 𝑏2)}   , since  P is a congruence relation.                                  

Hence (𝑎1 𝑎2 , 𝑏1 𝑏2) and (𝑎1 𝑎2 , 𝑏1 𝑏2) 𝑃[𝛼 ,𝛽] .  Thus 𝑃[𝛼 ,𝛽] is a congruence relation on L.  Conversely, 

suppose 𝑃[𝛼 ,𝛽 ] is a congruence relation on L for 𝛼[0, 𝑇0], 𝛽 [𝑆0 , 1].  If possible, assume that P  
(𝑇0,𝑆0)

(L).  

Then there exist 𝑎1, 𝑎2 , 𝑏1, 𝑏2 L such that 𝑡𝑃(𝑎1 𝑎2 , 𝑏1 𝑏2)  min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)} or 𝑡𝑃(𝑎1 𝑎2 , 𝑏1𝑏2) 

 min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)}  or                  1 − 𝑓𝑃(𝑎1 𝑎2 , 𝑏1 𝑏2)  min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)} or 1-𝑓𝑃(𝑎1 𝑎2 , 

𝑏1𝑏2)           min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)}.  Setting min{𝑡𝑃(𝑎1, 𝑏1), 𝑡𝑃(𝑎2, 𝑏2)} = R  and                         min{1 −

𝑓𝑃(𝑎1, 𝑏1),1 −  𝑓𝑃(𝑎2, 𝑏2)} = S.  We have (𝑎1, 𝑏1), (𝑎2, 𝑏2) 𝑃[𝑅,𝑆]                              but, (𝑎1 𝑎2 , 𝑏1 𝑏2)  𝑃[𝑅,𝑆] 

or  (𝑎1 𝑎2 , 𝑏1 𝑏2) 𝑃[𝑅,𝑆].  This contradicts the fact that 𝑃[𝑅,𝑆] is a congruence relation on L.  Hence P ∈ 


(𝑇0 ,𝑆0)

(L). 

Proposition 3.15 : 

Let P 
(𝑇0 ,𝑆0)

(L).  Then P ∈ 
(𝑇0 ,𝑆0)

(L) if and only if each upper and lower level subsets  U(𝑡𝑅 , 𝛼) and L(1 − 𝑓𝑅, ), 

𝛼[0, 𝑇0], 𝛽 [𝑆0 , 1]  are congruence relations on L. 
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Proof: 

  Follows from Propositions 3.13 and 3.14. 

Remark 3.16: 

    We denote the Vague congruence relation generated by a Vague relation R by <R>.  Then we have the following. 

 

Theorem 3.17: 

   Let RVR(L) and 𝑡𝑅𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

(x, y) = 𝑇0 and 1 − 𝑓𝑅𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

(x, y) = 𝑆0.  Define a Vague relation 𝑅𝑉  on L by, 𝑡𝑅𝑉 (x, y) = 

{𝛼<𝑇0

𝑆𝑢𝑝
/(x, y)< 𝑅(𝛼 ,𝛽) >} and 1 − 𝑓𝑅𝑉 (x, y) = { < 𝑆0

𝑆𝑢𝑝
/(x,y)< 𝑅(𝛼 ,𝛽) >}.  Then 𝑅𝑉 = < 𝑅 >. 

Proof: 

  Firslty we show that 𝑅𝑉  is a Vague congruence relation in L.  For this we show that           𝑅𝑉(𝑇,𝑆) = <𝑅(𝑇,𝑆)>.  For 

T[𝑇0 , 1) and S(0, 𝑆0], 𝑅𝑉(𝑇 ,𝑆) and <𝑅(𝑇,𝑆)> are empty.  Now for  T[0, 𝑇0) and S(𝑆0 , 1], let (x, y) 𝑅𝑉(𝑇,𝑆) . 

Then 𝑡𝑅𝑉 (x, y) = {𝛼<𝑇0

𝑆𝑢𝑝
/(x, y)< 𝑅(𝛼 ,𝛽) >} T and 1 − 𝑓𝑅𝑉 (x, y) = {< 𝑆0

𝑆𝑢𝑝
/(x, y)< 𝑅(𝛼 ,𝛽) >} > S.  This implies there 

exist p[0, 𝑇0)  and q(𝑆0 , 1] such that p >T and q > S and (x, y)< 𝑅(𝑝 ,𝑞)> .  But < 𝑅(𝑝 ,𝑞)>  < 𝑅(𝑇,𝑆)>. Therefore  

(x, y) < 𝑅(𝑇,𝑆)>.  Thus 𝑅𝑉(𝑇,𝑆)  < 𝑅(𝑇,𝑆)>  -------(1).  Now assume  that  (x, y) < 𝑅(𝑇,𝑆)> .  Then (x, y) = P((𝑥1, 

𝑦1), (𝑥2, 𝑦2),…(𝑥𝑛 , 𝑦𝑛 )) where (𝑥𝑖 , 𝑦𝑖 )   i = 1,2,3…n.   Then 𝑡𝑅(𝑥𝑖 , 𝑦𝑖)  T and 1 − 𝑓𝑅(𝑥𝑖 , 𝑦𝑖)  S  i = 1,2,3,…n.  

Let  𝑇1 =  {1≤𝑖≤𝑛
𝑚𝑖𝑛 𝑡𝑅(𝑥𝑖 , 𝑦𝑖) }and 𝑆1 =  {1 −1≤𝑖≤𝑛

𝑚𝑖𝑛 𝑓𝑅(𝑥𝑖 , 𝑦𝑖) }.  Then 𝑇1  T and 𝑆1   S.  Choose 𝑇 , and 𝑆 ′  such that 

𝑇1  𝑇 ,  T and 𝑆1  𝑆 ,  S.  Then (𝑥𝑖 , 𝑦𝑖 ) 𝑅(𝑇 ,,𝑆 , )  i= 1,2,3,…n.  That implies (x, y) 𝑅(𝑇 ,,𝑆 , ) .  So {𝛼<𝑇0

𝑆𝑢𝑝
/(x, 

y)< 𝑅(𝛼 ,𝛽) >}  𝑇 ,  T and  {< 𝑆0

𝑆𝑢𝑝
/(x, y)< 𝑅(𝛼 ,𝛽) >}𝑆 ,S.  Therefore 𝑡𝑅𝑉 (x, y)  T and 1-𝑓𝑅𝑉 (x, y)  S.  So (x, 

y) < 𝑅𝑉(𝑇,𝑆)>.  Hence <𝑅(𝑇,𝑆)>   𝑅𝑉(𝑇,𝑆) …(2).  From (1) and (2) <𝑅(𝑇,𝑆)> =  𝑅𝑉(𝑇,𝑆)  T[0, 𝑇0) and S(𝑆0 , 1].  

That is the strong level subset of 𝑅𝑉  is a congruence relation generated by the relation <𝑅(𝑇,𝑆)>.  Hence by 

Proposition 3.10,  𝑅𝑉  is a Vague congruence on L.  Clearly R𝑅𝑉 .  Now to prove 𝑅𝑉  is the least Vague congruence 

relation containing R.  Suppose if possible Q(x, y)  𝑅𝑉  (x, y) for some x, y L.  Then there exist s,u  [0, 1] such 

that 𝑡𝑄 𝑥, 𝑦 < s  𝑡𝑅𝑉 (x, y) and  1-𝑓𝑄 𝑥, 𝑦 <u  1-𝑓𝑅𝑉 (x, y).  Thlis implies (x, y) 𝑄(𝑠,𝑢).  Also there exist T, S 

[0, 1] such that 𝑡𝑅𝑉 (x, y) > T > s and 1 − 𝑓𝑅𝑉 (x, y) > S > u.  Therefore (x, y)   𝑅𝑉(𝑇,𝑆) = <𝑅(𝑇,𝑆)>.  Hence (x, y) 

<𝑅(𝑇,𝑆)> .  Since R  Q, <𝑅(𝑠,𝑢)>  <𝑄(𝑠,𝑢)>.  Hence (x, y)  <𝑄(𝑠,𝑢)>, which is a contradiction.  Thus 𝑅𝑉(x, y) 

Q(x, y), x, yL.  Hence 𝑅𝑉  is the least vague congruence relation containing R. 

Lemma 3.18: 

     Let RVR(L).  Then for ,   [0, 1] < 𝑅 >(𝛼 ,𝛽) = < 𝑅(𝛼 ,𝛽)>. 

Proof: 

    Follows from the Theorem 3.17. 

   The class {𝑅𝑖} , i of all Vague congruence relations, VC(L) forms a lattice under the ordering of   where 

meet  and join  are defined by  𝑅𝑖𝑖∈  and  𝑅𝑖𝑖∈  = < 𝑅𝑖∈ >, respectively. 

Theorem 3.17: 

    The lattice VC(L) is distributive. 

Proof: 

    Let P, Q, R  VC(L).  Then by distributive inequality, we have P(QR)  (PQ)(PR).  So it is enough to 

Prove P(QR)  (PQ)(PR).   

Suppose, if possible [P(QR)](x, y) > [(PQ)(PR)] (x, y), for some x, y L.                   Setting T 

= ((PQ)(PR)
𝑡 x, y) and  S = 1- ((PQ)(PR)

𝑓
x, y), we get(x, y ) [(PQ)(PR)](𝑇,𝑆).  Also we have min{𝑡𝑃(x, y), 

𝑡QR(x, y)}T and  min{1 − 𝑓𝑃(x, y), 1- 𝑓QR(x, y)}   S.              But Q  R = <Q  R>.  In view of Theorem 3.13, 
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and since < 𝑄 ∪ 𝑅 >(𝑇,𝑆)  = <𝑄(𝑇,𝑆)𝑅(𝑇,𝑆)> the above inequality implies (x, y)  𝑄(𝑇,𝑆)𝑅(𝑇,𝑆)> and (x, y)  

𝑃(𝑇,𝑆).Hence (x,y) 𝑃(𝑇,𝑆) ∩ <𝑄(𝑇,𝑆) 𝑅(𝑇,𝑆)>.  So that 𝑃(𝑇,𝑆) and <𝑄(𝑇,𝑆)𝑅(𝑇,𝑆)> are non-empty.  If both  𝑄(𝑇,𝑆) 

and  𝑅(𝑇,𝑆) are non-empty, then 𝑃(𝑇,𝑆) , 𝑄(𝑇,𝑆),  𝑅(𝑇,𝑆) are ordinary congruence‟s on L, and since lattice of congruence 

is distributive we have 𝑃(𝑇,𝑆)  (𝑄(𝑇,𝑆) 𝑅(𝑇,𝑆)) = [𝑃(𝑇,𝑆)𝑄(𝑇,𝑆)][ 𝑃(𝑇,𝑆) 𝑅(𝑇,𝑆)].  Therefore by Lemma 3.14, 𝑃(𝑇,𝑆) 

∩ < 𝑄 ∪ 𝑅 >(𝑇,𝑆) =<  𝑃 ∩ 𝑄 ∪ (𝑃 ∩ 𝑅) >(𝑇,𝑆).  If either 𝑄(𝑇,𝑆) or  𝑅(𝑇,𝑆) is empty then also 𝑃(𝑇,𝑆) ∩< 𝑄 ∪
𝑅 >(𝑇,𝑆)= <  𝑃 ∩ 𝑄 ∪ (𝑃 ∩ 𝑅) >(𝑇,𝑆).      That is (x, y)  <  𝑃 ∩ 𝑄 ∪ (𝑃 ∩ 𝑅) >(𝑇,𝑆).                                                                              

This contradicts (x, y) <  𝑃 ∩ 𝑄 ∪ (𝑃 ∩ 𝑅) >(𝑇,𝑆). Thus P(QR)  (PQ)(PR).  Hence VC(L) is distributive. 

4.  Vague Ideals and Congruence 

 Theorem 4.1: 

      Let L be a distributive lattice and AVI(L).  We can define a VR, C(A) on L such that (𝑥, 𝑦)𝐶(𝐴)
𝑉  = 

𝑉𝐴𝑎𝑥=𝑎𝑦
𝑆𝑢𝑝

(a).  Then C(A) VC(L). 

Proof: 

                           To Prove C(A) is a Vague congruence relation.  It is enough to show that U(𝑡𝐶(𝐴), 𝛼) and L(1 −

𝑓𝐶(𝐴), )  are congruence relations on L, [0, 𝑇0] , [𝑆0, 1],  Where  𝑇0 = 𝑡𝐶(𝐴)𝑥 ,𝑦∈𝐿
𝑆𝑢𝑝

 (x, y) and 𝑆0  = 

1 − 𝑓𝐶(𝐴)𝑥 ,𝑦∈𝐿 
𝑆𝑢𝑝

 (x, y).   For this let (x, y) U(𝑡𝐶(𝐴), 𝛼)            𝑡𝐶(𝐴) (x, y)   𝑡𝐴𝑎𝑥=𝑎𝑦 (a) there exist 

𝑧0L  such that 𝑡𝐴 (𝑧0) and  𝑧0x  = 𝑧0y  𝑧0 U(𝑡𝐶(𝐴), 𝛼) and 𝑧0x  = 𝑧0y  (x, y)C(U(𝑡𝐶(𝐴), 𝛼)).  Hence 

U(𝑡𝐶(𝐴), 𝛼) = C(U(𝑡𝐴 , 𝛼)).  Similarly L(1 − 𝑓𝐶(𝐴), ) = C(L(1-𝑓𝐴 , )).  Therefore C(U(𝑡𝐴 , 𝛼)) and C(L(1-𝑓𝐴 , )) are 

ordinary congruence on L induced by the ideals U(𝑡𝐶(𝐴), 𝛼) and L(1 − 𝑓𝐶(𝐴), ) are congruence relations on L.  

Hence C(A) VC(L). 

Theorem 4.2: 

    Let L be a lattice with zero element „0‟ and R VC(L). Define a VS, I(R) of L by            I(R)(x) = R(x, 0) 

i.e.𝑉𝐼(𝑅)(x) = 𝑉𝑅(x, 0), xL.  Then I(R)VI(L). 

Proof: 

   To prove I(R)VI(L).  It is enough to show that each non-empty upper and lower level sets U(𝑡𝐼(𝑅), 𝛼) and 

L(1 − 𝑓𝐼(𝑅),) are ideals of L.  For this let x U(𝑡𝐼(𝑅), 𝛼)  𝑡𝐼(𝑅) (x)      𝑡𝑅(x, 0)     (x, 0) U(𝑡𝑅 , 𝛼)  x 

 I(U(𝑡𝑅 , 𝛼)).  Hence U(𝑡𝐼(𝑅), 𝛼) = I(U(𝑡𝑅 , 𝛼)).  Similarly L(1 − 𝑓𝐼(𝑅),  ) = I(L(1 − 𝑓𝑅 , )) .  We have U(𝑡𝑅 , 𝛼) and 

L(1-𝑓𝑅 , ) are congruence relations on L.  Consequently, I(U(𝑡𝑅 , 𝛼)) = U(𝑡𝐼(𝑅), ) and I(L(1-𝑓𝑅 , )) = L(1 − 𝑓𝐼(𝑅), ) 

are ideals of L induced by these congruence relations.  Hence I(R)  VI(L). 

Theorem 4.3: 

     Let L be a distributive lattice with zero element „0‟ and AVI(L).  Then I(C(A)) = A. 

Proof: 

   Since A  VI(L), U(𝑡𝐴, ) and L(1-𝑓𝐴, ) are ideals of L.  Also U(𝑡𝐼(𝐶 𝐴 ), ) = I(U(𝑡𝐶(𝐴), 𝛼)) = I(C(U(𝑡𝐴 , 𝛼))) = 

U(𝑡𝐴 , 𝛼).  Similarly, we can show that L(1 − 𝑓𝐼(𝐶 𝐴 ),  ) = L(1- 𝑓𝐴, ).  Hence I(C(A)) = A. 

Theorem 4.4: 

     Let L be a generalized Boolean algebra and RVC(L). Then C(I(R)) = R. 



ISSN 2348 – 0319                 International Journal of Innovative and Applied Research (2015), Volume 3, Issue (12): 72- 82 
 

78 

 

Proof: 

   Since RVC(L), we have U(𝑡𝑅 , 𝛼) and L(1-𝑓𝑅 , ) are ordinary congruence relations on L.  Also U(𝑡𝐶(𝐼 𝑅 ), 𝛼) = 

C(U(𝑡𝐼(𝑅), )) = C(I(U(𝑡𝐴, ))) = U(𝑡𝑅 , 𝛼) .  Similarly, we can prove that L(1 − 𝑓𝐶(𝐼 𝑅 ), ) = L(1-𝑓𝑅 , ).  Hence 

C(I(R)) = R.  

Theorem 4.5: 

    Let L be a distributive lattice with zero element „o‟ and  𝐴1, 𝐴2VI(L).  Then  𝐴1𝐴2  if and only if C( 𝐴1)  

C(𝐴2). 

Proof: 

     Suppose  𝐴1𝐴2.  Then by definition of C( 𝐴1) and C(𝐴2) we have  𝐶(𝐴1)𝐶(𝐴2).  Conversely, suppose 

 𝐶(𝐴1)𝐶(𝐴2) .  We have  𝐶(𝐴1) and 𝐶(𝐴2) are belong to VC(L).  Also by definition of I(R), I( 𝐶(𝐴1))  I(𝐶(𝐴2)).  

Hence  𝐴1𝐴2 . 

Theorem 4.6: 

   Let L be a generalized Boolean algebra and  𝑅1, 𝑅2 VC(L).  Then  𝑅1𝑅2 if and only if  c. 

Proof:  Follows. 

Theorem 4.7: 

    Let L be a generalized Boolean algebra.  Then the lattices VC(L) and VI(L) are isomorphic. 

Proof: 

    Define a mapping f: VC(L) VI(L) by f(R) = I(R).  Let AVi(L).  Then C(A)VC(L), I(C(A)) = A.  Thus f is 

onto.  Next let  𝑅1, 𝑅2 VC(L) such that f( 𝑅1) = f(𝑅2).  Then by definition of the mapping „f ‟  I( 𝑅1) = I(𝑅2).  Also 

C(I( 𝑅1)) = C(I(𝑅2)).  Hence  𝑅1 = 𝑅2.  So f is one-to – one.  Now let  𝑅1, 𝑅2VC(L).  Then  𝑅1𝑅2   

I( 𝑅1)I(𝑅2) f( 𝑅1)  f(𝑅2)  .  Thus f is an order isomorphism and hence is a lattice isomorphism. 

5. Quotient of Congruence relations. 

Definition 5.1: 

       Let T, S [0, 1] with T+S  1.  Then the sub collection 𝑃(𝑇,𝑆) of  VS(L) is called a (T, S)-partition of L if the 

following are satisfied. 

i) For each A𝑃(𝑇,𝑆) , 𝑡𝐴(x) = T,  1- 𝑓𝐴(x) = S  for atleast one xL. 

ii) For each xL, there exist only one A𝑃(𝑇,𝑆) satisfying  𝑡𝐴(x) = T,  1- 𝑓𝐴(x) = S. 

iii) If A, B  𝑃(𝑇,𝑆) such that 𝑡𝐴(x) = 𝑡𝐵(y) = T, 1- 𝑓𝐴(x) = 1- 𝑓𝐵(y) = S for x, y L, then 

𝑡𝐴(y)=  𝑡𝐵(x) = {𝑧∈𝐿
𝑆𝑢𝑝

min{𝑡𝐴(z) , 𝑡𝐵(z) }} , 1- 𝑓𝐴(y) = 1- 𝑓𝐵(x) = {𝑧∈𝐿
𝑆𝑢𝑝

min{1-𝑓𝐴(z) , 1 − 𝑓𝐵(z) }} 

Let 𝑃(𝑇,𝑆) be a (T, S)-partition of L and xL.  Then the unique member of 𝑃(𝑇,𝑆) which takes the value (T, S) at x is 

denoted by [𝑥]𝑃 . 
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Proposition 5.2: 

    For a given (T, S) –partition , we define a VR 𝑅𝑃 on L by, 𝑅𝑃 (x, y) = [𝑥]𝑃  (y).  That is     𝑉𝑅𝑃
(x, y) = 𝑉[𝑥]𝑃  (y), 

∀x, y L.  Then 𝑅𝑃 is a (T, S) equivalence relation on L. 

 

Proof:        

                  Let xL.  Then 𝑅𝑃(x,x) = [𝑥]𝑃(x).  That is 𝑡𝑅𝑃
(x, x) = 𝑡[𝑥]𝑃  (x) = T and 1-𝑓𝑅𝑃

(x, x) = 1-𝑓[𝑥]𝑃  (x) = S .  For 

x, y L,  𝑅𝑃(x, y) = [𝑥]𝑃   (y) = [𝑦]𝑃 (x) = 𝑅𝑃(y, x).  Further, we have for     x, yL, 𝑡[𝑥]𝑃
(x) = 𝑡[𝑦]𝑃

(y) = T, 1-𝑓[𝑥]𝑃
(x) 

= 1-𝑓[𝑦 ]𝑃 (y)  = S.  Therefore  𝑡[𝑥]𝑃 (y) = 𝑡[𝑦 ]𝑃 (x) = {𝑧∈𝐿
𝑆𝑢𝑝

min{𝑡[𝑥]𝑃  (𝑧), 𝑡 𝑦 𝑃 (𝑧) }} and 1 − 𝑓[𝑥]𝑃 (y) = 1 − 𝑓[𝑦]𝑃 (x)= {𝑧∈𝐿
𝑆𝑢𝑝

 

min{1 − 𝑓[𝑥]𝑃 (𝑧),                 1 − 𝑓[𝑦 ]𝑃  (𝑧)}}. That is 𝑡𝑅𝑃
 (x, y) = {𝑧∈𝐿

𝑆𝑢𝑝
min{𝑡𝑅𝑃

 (x, z), 𝑡𝑅𝑃
 (z, y)}} and 1 − 𝑓𝑅𝑃

 (𝑥, 𝑦) 

= {𝑧∈𝐿
𝑆𝑢𝑝

min{1 − 𝑓𝑅𝑃
 (𝑥, 𝑧), 1 − 𝑓𝑅𝑃

 (𝑧, 𝑦)}} by symmetry of 𝑅𝑃.  Hence 𝑅𝑃 is a (T, S) equivalence relation. 

Proposition 5.3: 

      Let R
(𝑇,𝑆)

(L).  For xL,  we define a VS [𝑥]𝑅  by [𝑥]𝑅  (y)   = R(x, y) , yL.  That is 𝑡[𝑥]𝑅  (y) = 𝑡𝑅(x, y) and 

1- 𝑓[𝑥 ]𝑅  (y) = 1- 𝑓𝑅(x, y) .  Then the set 𝑃(𝑇,𝑆)   = {[𝑥]𝑅 / xL} is a  

(T, S)-partition of L. 

Proof: 

  For [𝑥]𝑅  𝑃(𝑇,𝑆)  and xL, we have 𝑡[𝑥]𝑅  (x) = 𝑡𝑅  (x, x) = T and 1 − 𝑓[𝑥]𝑅  (x) = 1-𝑓𝑅  (x, x =  S.  Further for each 

xL, there exist [𝑥]𝑅𝑃(𝑇,𝑆) such that 𝑡[𝑥]𝑅  (x) = T and 1-𝑓[𝑥]𝑅 (x) = S.  To show the uniqueness, suppose there exist 

[𝑦]𝑅  𝑃(𝑇,𝑆) such that 𝑡[𝑦]𝑅  (x) = T and 1-𝑓[𝑦 ]𝑅 (x) = S.  Then  𝑡[𝑦 ]𝑅 (z) = 𝑡𝑅(y, z)  {𝑧𝐿
𝑆𝑢𝑝

min{𝑡𝑅((𝑦, 𝑥) ,  𝑡𝑅(𝑥, 𝑧) }}  

min{𝑡𝑅(y, x), 𝑡𝑅((𝑥, 𝑧)} =                 min{T, 𝑡𝑅((𝑥, 𝑧)} = 𝑡𝑅(𝑥, 𝑧) =  𝑡[𝑥]𝑅  (z) and 1 − 𝑓[𝑦]𝑅 (z) = 1- 𝑓𝑅(y, z)                         

{𝑧𝐿
𝑆𝑢𝑝

min{1 − 𝑓𝑅((𝑦, 𝑥) ,1- 𝑓𝑅(𝑥, 𝑧) }}  min{1 − 𝑓𝑅(y, x), 1-𝑓𝑅((𝑥, 𝑧)} =  min{S, 1-𝑓𝑅((𝑥, 𝑧)} = 1-𝑓𝑅(𝑥, 𝑧) =  1- 

𝑓[𝑥]𝑅  (z). Thus  [𝑥]𝑅  [𝑦]𝑅  .  Similarly  [𝑦]𝑅  [𝑥]𝑅 .  Hence [𝑦]𝑅  =  [𝑥]𝑅.  Now suppose 𝑡[𝑥]𝑅  (x)  = 𝑡[𝑦]𝑅  (y) =  T , 

1-𝑓[𝑥]𝑅  (x) = 1-𝑓[𝑦 ]𝑅  (y) = S.  Then 𝑡[𝑥]𝑅  (y) = 𝑡𝑅(x, y) =               𝑡𝑅(y, x) = 𝑡[𝑦 ]𝑅  (x) = {𝑧∈𝐿
𝑆𝑢𝑝

min{ 𝑡𝑅(y, z), 𝑡𝑅(x, z) }} = 

{𝑧∈𝐿
𝑆𝑢𝑝

min{𝑡[𝑦]𝑅  (z), 𝑡[𝑥]𝑅  (z)}}.                                          Thus  𝑃(𝑇,𝑆)  = {[𝑥]𝑅 / xL} is a (T, S)-partition of L. 

Lemma 5.4: 

           Let R
(𝑇,𝑆)

(L).  Then [𝑥]𝑅  = [𝑦]𝑅 if and only if  R(x, y) = (T, S).  That is 𝑡𝑅(x, y) = T and 1-𝑓𝑅(x, y) = S. 

Proof: 

     Follows from Proposition 5.3.  For a (T, S) equivalence relation R on L, we call the set      𝑃(𝑇,𝑆) = {[𝑥]𝑅 / xL} a 

quotient set with respect to R and denote it by L/R.  The members of L/R are called (T, S) equivalence classes of L.  

Now for R
(𝑇,𝑆)

(L), we define operations  and  on L/R by, [𝑥]𝑅   [𝑦]𝑅  = [𝑥𝑦]𝑅 ,  [𝑥]𝑅   [𝑦]𝑅  = [𝑥𝑦]𝑅  .  We 

can prove that the above operations are well defined.  Let [𝑥1]𝑅 =  [𝑦1]𝑅 , and  [𝑥2]𝑅  =  [𝑦2]𝑅.  Therefore                       

R(𝑥1,𝑦1) = (T,S) = R(𝑥2,𝑦2). That is 𝑡𝑅(𝑥1, 𝑦1) = T = 𝑡𝑅(𝑥2, 𝑦2) and                                             1-𝑓𝑅(𝑥1, 𝑦1) = 1-

𝑓𝑅(𝑥2,  𝑦2=S.  Since R is a (T, S) congruence,  𝑡𝑅(𝑥1𝑥2, 𝑦1𝑦2)           min{𝑡𝑅(𝑥1, 𝑦1),𝑡𝑅(𝑥2, 𝑦2)}=T and 1-

𝑓𝑅((𝑥1𝑥2), 𝑦1𝑦2) ) min{1 − 𝑓𝑅(𝑥1, 𝑦1),1- 𝑓𝑅(𝑥2,𝑦2)}=S.  Hence R(𝑥1 𝑥2 , 𝑦1 𝑦2) = (T, S). Hence [𝑥1 𝑥2]𝑅  = 

[𝑦1 𝑦2]𝑅 . Similarly [𝑥1 𝑥2]𝑅  = [𝑦1 𝑦2]𝑅  .  Thus  and  are well defined in L/R.   It is easy to show that for a  

(T, S) congruence relation R, the set L/R  is a lattice.  We call it as the quotient lattice with respect to R and call the 

members of L/R as (T, S) congruence classes of L. 
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Proposition 5.5: 

    Let R
(𝑇,𝑆)

(L).  Define a mapping  : L  L/R by (x) =  [𝑥1]𝑅  .  Then  is an onto homomorphism. 

Proof: 

     Since   : L  L/R  is an onto homomorphism,  by fundamental theorem of homomorphism L/C  L/R , where C 

is the congruence relation on L defined by (𝑥1, 𝑥2)  C  (𝑥1)  = (𝑥2) .  Further C is the least congruence of the 

chain of level congruence of R, because (𝑥1, 𝑥2) C  (𝑥1)  = (𝑥2)    [𝑥1]𝑅  =  [𝑥2]𝑅   R(𝑥1, 𝑥2)  = (T, S)  

(𝑥1, 𝑥2) 𝑅(𝑇,𝑆). 

Definition 5.6: 

                    Let A be a VL and C a congruence relation on L.  Then we define VS 𝐴𝑐  on L/C as 𝐴𝑐  = {<[y], 𝑡𝐴𝑐
(y), 

1-  𝑓𝐴𝑐
(y)>/[y]L/C} where 𝑡𝐴𝑐

[y] = 𝑡𝐴𝑥∈[𝑦]
𝑆𝑢𝑝

(x) and 1- 𝑓𝐴𝑐
[y] = 1 − 𝑓𝐴𝑥∈[𝑦 ]

𝑆𝑢𝑝
(x).  We call 𝐴𝑐  a Vague quotient of A 

relative to C. 

Theorem 5.7: 

     Vague set  𝐴𝑐  is a VL. 

Proof: 

     For any [x], [y]  L/C, we have 𝑉𝐴𝑐
 ([x][y]) =  𝑉𝐴𝑧 𝑥 [𝑦 ]

𝑆𝑢𝑝
(z) =   𝑢𝑣 𝑥 [𝑦]

𝑆𝑢𝑝
𝑉𝐴(uv)    𝑢𝑣 𝑥 [𝑦 ]

𝑆𝑢𝑝
(min{𝑉𝐴(u), 

𝑉𝐴(v)}) = min { 𝑉𝐴𝑢∈[𝑥]
𝑆𝑢𝑝

(u), 𝑉𝐴𝑣∈[𝑦]
𝑆𝑢𝑝

(v)} = min{𝑉𝐴𝑐
[x], 𝑉𝐴𝑐

[y]}.  Similarly  𝑉𝐴𝑐
 ([x][y])  min{𝑉𝐴𝑐

[x], 𝑉𝐴𝑐
[y]}. Hence  

𝐴𝑐  is a VL. 

Proposition 5.8: 

   Let A be a VL and C congruence on L then the Vague quotient lattice  𝐴𝑐  is the homomorphic image of A under 

the canonical homomorphism from L to L/C. 

Proof: 

   The canonical homomorphism f : L  L/C is given by f(x) = [x].  Let [y]L/C.  Then f(𝑉𝐴)([y]) = 𝑉𝐴𝑥∈𝑓−1([𝑦])

𝑆𝑢𝑝
(x) 

= 𝑉𝐴𝑥∈[𝑦]
𝑆𝑢𝑝

(x) = 𝑉 𝐴𝑐
([y]). Hence  𝐴𝑐  is the homomorphic image of A under the canonical homomorphism from L  

L/C. 
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