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Abstract

We have constructed five dimensional FRW cosmological models
for k= -1, 1, 0 in Lyra manifold with time dependent displacement
field. The matter field is considered in the form of a perfect fluid
with isotropic matter pressure. It is found that the model for k=-1
is inflationary. For k=1, the model is inflationary for set of values
of arbitrary constant n and decelerates in the standard way for
another set of values of n. Moreover the concept of Lyra manifold
does not exist at infinite time.
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1 Introduction

In view of the Kaluza-Klein theories [1, 2, 3, 4] the study of higher di-
mensional cosmological models has acquired much significance. Various
authors [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] constructed higher dimen-
sional cosmological models in general theory of relativity.

The geometrization of gravitation by Einstein in his general theory
of relativity inspired several authors to geometrize other physical fields.
Weyl [17] proposed a unified theory to geometrize gravitation and elec-
tromagnetism. This theory inspired Gehard Lyra [18] to develop Lyra’s
geometry. Subsequently Sen [19] and Sen and Dunn [20] suggested a new
scalar tensor theory of gravitation. They modified the Einstein’s field
equations based on Lyra’s manifold in normal gauge as

Rik − 1

2
gikR +

3

2
φiφk − 3

4
gikφmφm = −χTik (1)

where φi is the displacement vector and other symbols have their usual
meanings in the Riemannian geometry. Jeavons et al.[21] pointed out that
the field equations proposed by Sen and Dunn are heuristically useful even
though they are not derived from the usual variational principle. A brief
note on Lyra’s geometry is given by Singh and Singh [22].

Halford [23] showed that the energy conservation law does not hold in
the cosmological theory based on Lyra’s geometry. Halford [24] showed
that the scalar tensor theory of gravitation in Lyra manifold gives same
effects, within observational limits, as in the Einstein theory. Soleng [25]
pointed out that the constant gauge vector φ in Lyra’s geometry together
with a creation field becomes Hoyle’s [26] creation field cosmology or con-
tains a special vacuum field, which together with the gauge vector may
be considered as a cosmological term. Further Soleng [27] showed that
for matter with zero spin the field equations of his scalar tensor theory
reduce to those of Brans-Dicke theory. Beesham [28] constructed four
dimensional FRW cosmological model in Lyra geometry. Assuming the
energy density of the universe equal to its critical value he showed that
the models have k = −1 geometry. Singh and Desikan [29] obtained the
exact solutions for four dimensional FRW cosmological model in Lyra
geometry with constant deceleration parameter. They examined the be-
havior of the displacement field β and the energy density ρ for perfect



Kaluza-Klein FRW cosmological models in Lyra manifold 159

fluid distribution. However they found that the expressions for β2 and ρ
are not valid for empty universe and the stiff matter distribution. Mo-
hanty et al. [30, 31] showed the non existence of five dimensional perfect
fluid cosmological model in Lyra manifold. Further they obtained the
exact solutions of the field equations for empty universe. Mohanty et
al.[32] showed that in a five dimensional space-time the general perfect
fluid distribution does not survive but degenerates stiff fluid distribution
in Lyra manifold. Various higher dimensional cosmological models [33,
34, 35, 36, 37] are constructed in Lyra manifold.

In this paper we constructed various five dimensional FRW cosmolog-
ical models in Lyra manifold when the source of gravitation is a perfect
fluid. The isotropy of pressure is assumed in all dimensions including the
extra ones [38, 39, 40, 41, 30, 31, 32]. In section 2 we obtained the field
equations for the 5D FRW line element. In section 3 the solutions of the
field equations are obtained and some physical and kinematical properties
of the models are discussed. In section 4 concluding remarks are given.

2 Field equations

Here we consider the five dimensional FRW metric in the form

ds2 = −dt2 + R2(t)

[
dr2

1− k r2
+ r2dθ2 + r2 sin2 θ dφ2

]
+ A2(t) dµ2 (2)

where R and A are functions of cosmic time “t” only and k characterizes
the spatial curvature. The fifth co-ordinate µ is assumed to be space like.

The energy momentum tensor for perfect fluid distribution is taken as

Tij = (p + ρ)uiuj + pgij (3)

together with the co-moving co-ordinates

gijuiuj = −1, (4)

where p and ρ are isotropic pressure and energy density of the cosmic
fluid distribution respectively and ui is the five velocity vector of the
fluid which has components (1, 0, 0, 0, 0).

The displacement vector φh is defined as

φh = (β(t), 0, 0, 0, 0) . (5)
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The field equations (1) together with the equations (3), (4) and (5)
for the metric (2) yield the following equations

2
R′′

R
+

(
R′

R

)2

+ 2
R′A′

RA
+

A′′

A
+

3

4
β2 +

k

R2
= −χp (6)

−3

(
R′

R

)2

− 3
R′A′

RA
+

3

4
β2 − 3

k

R2
= −χρ (7)

and

3
R′′

R
+ 3

(
R′

R

)2

+
3

4
β2 + 3

k

R2
= −χp (8)

where prime denotes differentiation with respect to time ‘t’.

3 Solution of the field equations

In equations (6)-(8) there are five unknowns viz. R, A, β, P and ρ
involved in three independent field equations. In order to obtain explicit
exact solutions, we consider

A = Rn, n(6= 0) is a parameter (9)

and the equation of state i.e.

p = mρ, 0 ≤ m ≤ 1 (10)

Now the set of equations (6)-(10) admit an exact solution given by

R = at + b, a(6= 0), b are constants (11)

A = (at + b)n (12)

χρ(=
χp

m
) =

6 a2 + 3na2 + 6k

(1−m)(at + b)2
(13)

3

4
β2 =

a2(1 + n + n2 + 5m + 2mn−mn2) + k(1 + 5m)

(m− 1)(at + b)2
(14)

where

a2 =
2k

(n + 2)(n− 1)
and m 6= 1 (15)

In the following subsections we intend to construct different cosmo-
logical models for different values of k i.e. k = 0,−1, +1
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3.1 Case I. Flat Model (k = 0)

In this case we obtained a five dimensional flat vacuum model with zero
curvature in general theory of relativity.

3.2 Case II. Open Model (k = −1)

In this case the metric (2) takes the form

ds2 = −dt2 + (at + b)2

(
dr2

1 + r2
+ r2dθ2 + r2 sin2 θdφ2

)
+ (at + b)2ndµ2

(16)
The pressure (p), energy density (ρ)and gauge function (β) become

χρ(=
χp

m
) =

6 a2 + 3na2 − 6

(1−m)(at + b)2
(17)

3

4
β2 =

a2(1 + n + n2 + 5m + 2mn−mn2)− 5m− 1

(m− 1)(at + b)2
(18)

where

a2 =
−2

(n + 2)(n− 1)
and m 6= 1 (19)

Here χρ > 0 for n ∈ (0, 1) and a2 > 0 for n ∈ (−2, 1). Thus equ.(16)
together with (17)-(19) represent the FRW perfect fluid open cosmological
model in Lyra geometry for n ∈ (0, 1).

At t = 0 the model (16) becomes flat and the pressure, energy density
and gauge function β have finite values. As time increases the scale
factors R and A increase indefinitely. So in the above open model there
is no compactification of extra dimension. Further the energy density
(ρ) of the universe is positive throughout the evolution and ρ → ∞ as
t → −b

a
. Hence the model is free from initial singularity but possesses line

singularity at t = −b
a

. The energy density of the universe decreases with
increase of cosmic time t. The gauge function β → ∞ as t → −b

a
and as

t → ∞. Hence the concept of Lyra manifold does not remain for a very
large time.

The scalar expansion (θ), shear scalar (σ2), spatial volume (V ) and
deceleration parameter (q) for the model (16) are obtained as

θ = ui
;i =

a(n + 3)

at + b
(20)
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σ2 =
1

2
σijσ

ij =
1

2

[
4

9
+ 3

(
a

at + b
+

1

3

)2

+

(
an

at + b
+

1

3

)2
]

(21)

V =
√−g = (at + b)n+3 (22)

and

q = −V V̈

V̇ 2
= −n + 2

n + 3
(23) (23)

Here we observe that the deceleration parameter (q) is negative when
n ∈ (0, 1), which confirms that the open model (16) is inflationary.

3.3 Case III. Closed Model (k = +1)

In this case the values of R and A are same as obtained earlier in equations
(11) and (12) respectively and the metric (2) takes the form

ds2 = −dt2 + (at + b)2

(
dr2

1− r2
+ r2dθ2 + r2 sin2 θdφ2

)
+ (at + b)2ndµ2

(24)
The values of energy density (ρ)and the gauge function (β) reduce to

χρ(=
χp

m
) =

6 a2 + 3na2 + 6

(1−m)(at + b)2
(25)

3

4
β2 =

a2(1 + n + n2 + 5m + 2mn−mn2) + 5m + 1

(m− 1)(at + b)2
(26)

where

a2 =
2

(n + 2)(n− 1)
and m 6= 1 (27)

Here χρ > 0 for n ∈ (−∞, 0)∪ (1,∞) and a2 > 0 for n ∈ (−∞,−2)∪
(1,∞). Thus in this case equ.(24) together with (25) and (26) represent
the FRW perfect fluid closed cosmological model in Lyra geometry for
n ∈ (−∞,−2) ∪ (1,∞).

In this model the compactification of the extra dimension takes place
when n ∈ (−∞, −2) where as the scale factor A of the three spatial
directions increases with the increase of cosmic time t. In this case it is
observed that



Kaluza-Klein FRW cosmological models in Lyra manifold 163

(i) the behavior of energy density and the gauge function are similar to
that of open model discussed earlier in section 3.2.

(ii) The spatial volume V given in equ.(22) decreases with increase of
cosmic time t when n ∈ (−∞, −3) and as t →∞, V → 0.

(iii) The behavior of spatial volume V is similar to that of the open
model discussed earlier in section 3.2 when n ∈ (−3, −2) ∪ (1, ∞).

(iv) The deceleration parameter (q) given in equation (23) is positive
when n ∈ (−3, −2) and negative when n ∈ (−∞, −3) ∪ (1, ∞)

4 Conclusion

In the preceding section we have constructed five dimensional FRW cos-
mological models when the source of gravitation is generated by a perfect
fluid.

In case of flat model with zero curvature i.e.k = 0, we found that the
model reduces to five dimensional flat vacuum model of the universe in
Einstein’s general theory of relativity and the volume is finite whereas
the volume is infinite in four dimensionalcase.

In case of open model of the universe with negative curvature i.e.
k = −1, we observed that the model is inflationary and compactification
of the extra dimension does not occur. The energy density of the universe
remains positive throughout the evolution. The model admits singularity
at t = −b

a
. The energy density and pressure of the universe decrease

with increase of cosmic time. The volume of the space is infinite which is
similar to that of four dimensional case.

In case of closed model of the universe with positive curvature i.e. for
k = 1, we examined that the model is inflationary for n ∈ (−∞, −3) ∪
(1, ∞) and the model decelerates in the standard way for n ∈ (−3, −2).
Moreover the compactification of the extra dimension occurs in this model
for n ∈ (−∞, −2). The spatial volume of the universe of this model
decreases as cosmic time t increases and becomes zero as t tends to infinity
when n ∈ (−∞, −3). This behavior is similar to that of four dimensional
case.
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Kaluza-Klein FRW kosmološki modeli u Lyra
mmogostrukosti

Konstruisani su petodimenzioni FRW kosmološki modeli za k = −1, 1, 0 u
Lyra mnogostrukosti sa vremenski promenljivim poljem pomeranja. Polje
materije se razmatra u obliku idealnog fluida sa izotropnim materijalnim
pritiskom. Nadjeno je da je model pri k = −1 inflatoran. Za k = 1 model
je inflatoran za skup vrednosti proizvoljne konstante n i usporava se na
standardan način za neki drugi skup vrednosti n. Štavǐse koncept Lyra
mnogostrukosti ne postoji pri beskonačnom vremenu.
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