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Abstract 
 

   The recent convergence results of faster group iterative schemes from the 
Accelerated OverRelaxation (AOR) family has initiated considerable interest in 
exploring the � ehavior of these methods in the solution of partial differential 
equations (pdes). Martins et al. (2002) formulated the Explicit Group (EG) (AOR) 
which was shown to have greater rate of convergence than the standard five-point 
AOR method in solving the elliptic equation.  In 2007, the Explicit Decoupled 
Accelerated OverRelaxation (EDG(AOR)) method was developed in solving the 
same partial differential equations, where lesser execution timings and fewer 
iteration counts were required when compared with the original EG(AOR) method 
[4]. In a recent work, another explicit group method was proposed, namely the 
Modified Explicit Decoupled Group (MEDG) method [2, 3] as an addition to this 
family of four-point explicit group methods in solving the Poisson equation.  The 
method was formulated using a combination of the rotated five-point finite 
difference approximation on the 

2h
Ω grid together with the five-point centred 

difference approximation on the hΩ  and 2hΩ grids and was shown to have a 
better rate of convergence than the original EDG method. In this paper, we 
formulate the Modified EDG group scheme in juxtaposition with the AOR 
method to investigate its performance compared with the earlier group iterative  
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schemes. Numerical experimentations of this new modified AOR group method 
will show significant improvement in computational complexity and execution 
timings compared to the group AOR formulation presented in Ali and Lee (2007).  
 
Keywords: AOR, Explicit Group Methods, Rotated Five-point Formula, Elliptic 
Partial Differential Equation 
 
 
1 Introduction 
 
   The formulation of group iterative schemes for approximating the solution of 
the two dimensional elliptic pdes has been the subject of intensive study [1, 2, 3, 4, 
7, 8, 10]. The Explicit Decoupled Group (EDG) scheme was developed by 
Abdullah (1991) as a more efficient elliptic pde solver on rotated (skewed) grids 
by using small fixed size group strategy which was shown to be more economical 
computationally than the Explicit Group (EG) scheme due to Yousif and Evans 
[10].  Othman and Abdullah [8] subsequently modified the formulation of the 
EG method by altering the ordering of grid points taken in the iterative process to 
come up with the modified four-point EG where this method (MEG) was shown 
to be more superior in timings than both the original methods. In a recent paper, 
another explicit group method was proposed, namely the Modified Explicit 
Decoupled Group (MEDG) method [2] as an addition to this family of four-point 
explicit group methods in solving Poisson equation.  The results obtained 
indicate that the execution times of MEDG is only about 10% and 15% of those of 
EG and EDG methods respectively, while MEG is about 14% and 22% of EG and 
EDG execution times. The MEDG method outperforms MEG in terms of 
computing time and also exhibits better accuracy in all of the cases observed.  
 
   Over the years, the establishment of fast iterative schemes from the 
Accelerated Over Relaxation (AOR) family has initiated interest in investigating 
the application of this method to these group explicit iterative schemes. The AOR 
method presents a two-parameter generalization of the Successive 
OverrRelaxation (SOR) method where these two arbitrary parameters can be fully 
exploited to produce iterative methods that have faster rates of convergence, more 
flexible and applicable than any other similar methods.  Martins et al. (2002) 
formulated the Explicit Group (EG) (AOR) where the latter was found to have a 
greater rate of convergence than the standard five-point AOR method.  Ali and 
Lee (2007) formulated the four-point Explicit Decoupled Group (EDG) (AOR) 
method to the solution of elliptic pdes where they performed numerical 
experiments and compared the performance of the method with several existing 
point and group AOR methods.  The gains in timings of EDG (AOR) method 
over the EG (AOR) method was shown to range from approximately 51% to 59% 
due to the lower operations complexity of the former method.   
 
In this paper, we shall formulate the newly developed modified explicit group  
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iterative scheme from the AOR family for the solution of elliptic partial 
differential equations by exploiting the idea of extrapolation using a 
two-parameter SOR-type iterative in developing the AOR scheme to the new 
group iterative method, namely the MEDG method. We perform numerical 
experiments to compare the performance of the method with several existing point 
and group AOR methods.  We present the formulation of the point and group 
AOR iterative methods under study in Section 2 and 3 respectively.  Analysis on 
computational complexity is given in Section 5.  In Section 6, we solve the 
Poisson problem and compare our numerical results with those obtained by 
Martins et al. [7] and the concluding remarks are given in Section 7.  
 
 
2 The AOR Method 
 
   Consider a typical elliptic boundary value problem as follows: 

  
2 2

2
2 2 ( , )∂ ∂

∇ = + =
∂ ∂

u uu f x y
x y

     (x,y) ∈ Ω                  (2.1)                 

with Dirichlet boundary conditions  
 
    u(x,y) = g(x,y),          (x, y) ∈ ∂Ω, 
 
where Ω is a bounded region in 2ℜ .  Equation (2.1) is known as the Poisson 
equation which is used to model fluid dynamics phenomena and heat conduction 
problems. The simplest finite difference formula to approximate Equation (2.1) is 
the five-point difference approximation formula: 

ji,
2

ji, j1,-i j1,+i 1-ji, 1+ji, 4 fhuuuuu =−+++ .          (2.2)                 
 
Here, we assume that a rectangular grid in the (x,y) plane with grid spacing h in 
both directions with    ,  x ih y jhi j= =  is used and ( )jiji yxuu ,, =  with  

, 0,1,2,...,i j n= . The SOR iterative scheme for the standard five-point difference 
formula can be written as 

          ( )( 1) ( 1) ( ) ( 1) ( ) 2 ( )
, 1, 1, , 1 , 1 , ,(1 )

4
k k k k k k

i j i j i j i j i j i j i ju u u u u h f uω ω+ + +
− + − += + + + − + − .        (2.3) 

where ω  is the optimum relaxation parameter.   To obtain the AOR iterative 
scheme for this approximation as defined by Hadjidimos [6], we replace ( 1)

1,
k

i ju +
−  

and ( 1)
, 1
k

i ju +
−  with ( )

1,
k

i ju −  and ( )
, 1
k

i ju −  respectively, and adding the terms 
( 1) ( )

1, 1,( ) 4k k
i j i jr u u+
− −−  and ( 1) ( )

, 1 , 1( ) 4k k
i j i jr u u+

− −− .  Thus, the AOR iterative scheme for the 
standard five-point formula can be written as 
  ( ) ( )( 1) ( 1) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) 2 ( )

, 1, 1, , 1 , 1 1, 1, , 1 , 1 , ,(1 )
4 4

k k k k k k k k k k
i j i j i j i j i j i j i j i j i j i j i j

ru u u u u u u u u h f uω ω+ + +
− − − − − + − += − + − + + + + − + −                     

  (2.4) 
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   Another type of approximation that can represent the Poisson equation is 
based on the cross orientation operator which can be obtained by rotating the 
i-plane axis and the j-plane axis clockwise by 45o[5, 10]. This operator may be 
expressed in coordinates rotated 450 with respect to the original mesh and the 
spacing between points becomes h 2 .  This will result in the rotated (skewed) 
five-point approximation formula: 
            ji,

2
ji,1+j1,-i1-j1,+i1-j1,-i1+j1,+i 24 fhuuuuu =−+++ .          (2.5)                 

 
For simplicity, we denote this grid as the 

2h
Ω  grid while the original grid with 

meshsize h as used in the approximation in Equation (2.2) as the hΩ grid.  The 
SOR point iterative scheme based on the rotated difference equations (2.5) can be 
constructed for the solution of the given problem and is given as 

  ( )( 1) ( 1) ( 1) ( ) ( ) 2 ( )
, 1, 1 1, 1 1, 1 1, 1 , ,2 (1 )

4
k k k k k k

i j i j i j i j i j i j i ju u u u u h f uω ω+ + +
− − + − − + + += + + + − + −             (2.6) 

 
Similarly, the AOR iterative scheme for the rotated five-point method can be 
written as  

( ) ( )( 1) ( 1) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) 2
, 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 ,

( )
,

2
4 4
(1 )

k k k k k k k k k
i j i j i j i j i j i j i j i j i j i j

k
i j

ru u u u u u u u u h f

u

ω

ω

+ + +
− − − − + − + − − − + − − + + += − + − + + + + −

+ −

 (2.7)

                        
Applying these finite difference approximations to Equation (2.1) will result in 
systems of algebraic equations where the coefficient matrix A may be 
decomposed into 
 

A = D – L – U                                           (2.8)            
                 
D is a block diagonal matrix, L is a lower triangular matrix and U is an upper 
triangular matrix. 
 
The SOR iterative scheme can be written as 
 

( 1) ( 1) ( ) ( )

~ ~ ~ ~
(1 )k k k kD u L u U u b D uω ω ω ω+ += + + + −                (2.9) 

Note that the AOR formula may be obtained from (2.9) by replacing ( 1)

~

kLuω +  

with  ( )

~

kLuω  and adding the term )( )(

~

)1(

~

kk uurL −+ into the SOR iterative 

scheme. 
 
 
3 Explicit Group AOR Algorithms  

   The Explicit Group AOR (EG(AOR)) scheme was developed by Martins et al.  
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(2002) which is shown as follows 

     

( 1) ( )1
, 1 2 4 1 2 ,24

( 1) ( )1
1, 2 1 3 4 1 3 1,24

( 1) ( )1
, 1 3 1 2 3 1 4 , 124

( 1) 1
1, 1 4 2 1 224

[ (7 ) (7 )] (1 )

[ (7 ) (7 )] (1 )

[ (7 ) (7 )] (1 )

[ (7 ) (7

k k
i j i j

k k
i j i j

k k
i j i j

k
i j

u b s b r t t u

u b s b r c t c u

u b s b r c t c u

u b s b r t

ω ω

ω ω

ω ω

ω

+

+
+ +

+
+ +

+
+ +

= + + + + + −

= + + + + + + −

= + + + + + + −

= + + + ( )
1 1, 1)] (1 ) k

i jt uω + ++ + −

                            

 (3.1) 
where 
 

 
                 (3.2) 
 
This method which was derived from the centred difference approximation (2.2)  
was shown to converge faster than the pointwise AOR method in solving the 
elliptic problem.  The group AOR implementation enables more efficient 
manipulation of the algorithms by reducing the multiplicative operations required 
in solving the problem [7].  
 
   Adopting the same idea, Ali and Lee (2007) applied the AOR technique to the 
group iterative scheme derived from the rotated five-point formula (2.5) to 
emerge with the Explicit Decoupled Group (EDG) AOR formula: 

)(
1,1

)1(
1,1

)(
,

)1(
,

)1(4

)1(4
k

ji
k

ji

k
ji

k
ji

uwnmu

uwnmu

++
+

++

+

−++=

−++=
                  (3.3)                  

 
 

where   

'
1 1

2

15 15

15

rF Fm

Fn

ω

ω

= +

=

            

1,1
2)(

2,2
)(
,2

)(
2,2

0
)1(

1,1
)1(

1,1
)1(

1,1
'

1

,
2

01

)(
1,1

)(
1,1

)(
1,10

2

2

++++++

+
+−

+
−+

+
−−

+−−+−−

−++=

−++=

−=

++=

ji
k

ji
k

ji
k
ji

k
ji

k
ji

k
ji

ji

k
ji

k
ji

k
ji

fhuuuF

FuuuF

fhFF

uuuF

 

  (3.4)                 
 
The EDG (AOR) scheme was shown to require lesser execution timings compared 
to the existing EG (AOR) method. The gains in timings of EDG (AOR) method 
over the EG (AOR) method ranges from approximately 51% to 59% since the 
former requires lower arithmetic operations to solve the problem [4]. 
 

432

211

322

411

)(2
)(2

cct
cct

bbs
bbs

+=
+=

+×=
+×=

( ) ( ) 2
1 1, , 1 ,

( ) ( ) 2
2 2, 1, 1 1,

( ) ( ) 2
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( ) ( ) 2
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k k
i j i j i j
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i j i j i j

k k
i j i j i j
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i j i j i j

b u u h f

b u u h f
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b u u h f
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+ + − +
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i j i j
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i j i j
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i j i j
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i j i j

c u u

c u u

c u u

c u u

+
− −

+
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+
− + − +

+
+ − + −
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= −

= −
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4 Modified Group AOR Algorithms  
 
 
4.1 Modified Explicit Group AOR (MEG (AOR)) method 
 
   The Modified Explicit Group (MEG) formula was developed by Othman and 
Abdullah (2000) as follows: 
 
 

1
24, 1 1 3

1
242, 2 2 4

1
242, 2 3 1 1

1
24, 2 4 2 2

(7 )

(7 )

(7 )

(7 )

i j

i j

i j

i j

u T W T

u T W T

u T W T

u T W T

+

+ +

+

= + +

= + +

= + +

= + +

             (4.1) 

 
 
where 
 
 

 

2
1 2, , 2 ,

2
2 4, 2, 2 2,

2
3 4, 2 2, 4 2, 2

2
4 2, 2 , 4 , 2

4

4

4

4

i j i j i j

i j i j i j

i j i j i j

i j i j i j

T u u h f

T u u h f

T u u h f

T u u h f

− −

+ + − +

+ + + + + +

− + + +

= + −

= + −

= + −

= + −

                           1 2 4

2 1 3

2 ( )
2 ( )

W T T
W T T

= × +
= × +

. 

 
 
Applying the MEG formula to the grid points as shown in Figure 1, a system of 
linear equations is obtained where the coefficient matrix possesses Property 
- Aπ and is π-consistently ordered. The theory of block Successive Over Relaxation 
(SOR) is valid for this method and consequently the convergence of the method 
can be accelerated by employing a relaxation factor. The optimum value of 
relaxation factor oω can be theoretically estimated as [8]  
 

2 21 4ω π= −o h .                           (4.2) 
    
   To formulate the MEG(AOR) method, we consider the standard five-point 
formula on the 2hΩ grid: 

 
2

, 2, 2, , 2 , 2 ,

1 ( - 4 )
4 + − + −= + + +i j i j i j i j i j i ju u u u u h f                      (4.3)  
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Figure 1:  Groups of  four points with 2h spacing for MEG (AOR) 
 

We apply Equation (4.3) to a group of four points in the solution domain as in 
Figure 1 to produce the following 4x4 system: 
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The MEG(AOR) formula can then be written as follows 
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where                                                       
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Figure 2: The solution domain of the four points MEG (AOR) method 

 
 
It can be observed that Equations (4.4)-(4.5) involve points of type   only . 
Therefore, the iterations can be carried out independently involving only this type 
of points. We can then define the four points MEG (AOR) method as the 
following: 
 
Algorithm 1 
1. Discretise the solution domain into points of type    ,     and    as 

shown in Figure 2. 
2. Evaluate the solution of points type    iteratively using Equation 

(4.4)-(4.5). 
3. Check the convergence. If the iterations converge, go to step 4. Otherwise, 

repeat step 2 until convergence is achieved. 
4. Evaluate the solutions at the remaining points according to the following 

sequence : 
a. points of  type   using the rotated five points approximation formula 

on the 
2h

Ω  grid: 

              2
, 1, 1 1, 1 1, 1 1, 1 ,

1 ( 2 )
4i j i j i j i j i j i ju u u u u h f− − − + + − + += × + + + −  

 
b. points of  type  using the standard five points approximation formula 

on the hΩ  grid:  

            2
, 1, , 1 1, , 1 ,

1 ( )
4i j i j i j i j i j i ju u u u u h f− − + += × + + + − . 
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  Figure 3:  Group of  iterative points with 2h spacing for the MEDG (AOR) 
 
4.2 Modified Explicit decoupled group AOR (MEDG (AOR)) method 
 
   In a recent paper, the Modified Explicit Decoupled Group (MEDG) method 
was proposed as an addition to this family of four-point explicit group methods in 
solving the Poisson equation.  The MEDG method outperforms MEG in terms of 
computing time and also exhibits better accuracy in all of the cases observed. The 
formulation of the MEDG scheme results in the following approximation 
formulas [2, 3]: 
 

                      
1

, 15

1
2, 2 15

(4 )

( 4 )
i j

i j

u m n

u m n+ +

= +

= +
                        (4.6) 

where                                           

    
2

2, 2 2, 2 2, 2 ,

2
, 4 4, 4, 4 2, 2

8

8
i j i j i j i j

i j i j i j i j

m u u u h f

n u u u h f
− − + − − +

+ + + + + +

= + + −

= + + −
 

                               
   Applying this formula to each of the blocks of points as shown in Figure 3, a 
system of linear equations is obtained. The resulted coefficient matrix is again 
block tridiagonal, has Property A(π) and is π-consistently ordered.  Thus, the 
convergence of this method is guaranteed and the spectral radius of the group 
Jacobian iterative matrix can be estimated as [2] 

   2 214( ) 1
3

B hρ π≈ − .                       (4.7) 

The theoretical optimum relaxation factor ωo for implementing the group SOR 
iterative scheme can thus be computed from the formula 

)(11
2

2 B
o

ρ
ω

−+
=                     (4.8) 

with ( )Bρ as stated in (4.7). 
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Figure 4: The discretized solution domain of the four points MEDG (AOR) 

method for n=14 
 
To formulate the MEDG (AOR) method, we consider the rotated five-point 
approximation formula with 2h spacing: 
                                    

        2
, -2, -2 -2, 2 2, -2 2, 2 ,

1 ( -8 )
4i j i j i j i j i j i ju u u u u h f+ + + += + + + .              (4.9)                 

                               
The resulting grid can be viewed in Figure 4 with a meshsize 2h.  It is obvious 
that the evaluation of Equation (4.9) involves only points of type . 
The discretized solution domain may be divided into four types of points as 
shown in Figure 4. The MEDG( AOR) formula can be obtained by applying 
Equation (4.9) to groups of points of type    in the solution domain in a similar 
manner as Equation (3.3). The application will produce a 4x4 system which can 
be inverted and rewritten in explicit forms in the form of two equations: 
                             

 
( 1) ( )
, ,

( 1) ( )
2, 2 2, 2

4 (1 )

4 (1 )

k k
i j i j

k k
i j i j

u m n u

u m n u

ω

ω

+

+
+ + + +

= + + −

= + + −
                          (4.10) 

 
where 

 

'
1 1

2

15 15

15

rF Fm

Fn

ω

ω

= +

=

        

2,2
2)(

4,4
)(
,4

)(
4,2

0
)1(

2,2
)1(

2,2
)1(

2,2
'

1

,
2

01

)(
2,2

)(
2,2

)(
2,20

8

8

++++++

+
+−

+
−+

+
−−

+−−+−−

−++=

−++=

−=

++=

ji
k

ji
k

ji
k
ji

k
ji

k
ji

k
ji

ji

k
ji

k
ji

k
ji

fhuuuF
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          (4.11)                 

                           
   Using the scheme (4.10)-(4.11), it is easy to see that the black filled points are  
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linked only to the same type of points. Thus the iterative procedure involving the 
formulas (4.10)-(4.11) can be performed independent of the other type of points. 
Figure 4 shows the discretization points of a unit square domain with n=14 and 
the various types of points involved.  We can then formulate the four points 
MDEG (AOR) method as in Algorithm 2: 
 
Algorithm 2 
1.   Divide the solution domain into points of type   ,    ,      and   

    as shown in Figure 4. 
2.   Iterate on the solution at points of type     using Equation (4.10)-(4.11). 
3.   Check the convergence. If the iteration converges, go to step 4.  Otherwise, 
repeat step 2 until it converges. 
4.   Solve the solutions at the remaining points directly once according to the 
following sequence: 

a. points of  type      using the standard five-point formula on 2hΩ  
grid 

                                  

            2
, 2, , 2 2, , 2 ,

1 ( 4 )
4i j i j i j i j i j i ju u u u u h f− − + += × + + + −  

 
b. points of  type    using the rotated five points formula on the

2h
Ω  

grid:  2
, 1, 1 1, 1 1, 1 1, 1 ,

1 ( 2 )
4i j i j i j i j i j i ju u u u u h f− − − + + − + += × + + + −  

 
c. points of type      using the standard five points formula on the hΩ  

grid:    2
, 1, , 1 1, , 1 ,

1 ( )
4i j i j i j i j i j i ju u u u u h f− − + += × + + + −  

 
 
 
5 Computational Complexity Analysis 
 
   In this section, we shall present an analysis on the total computing costs for 
the methods under investigation. Assume that there are m2 internal mesh points in 
the solution domain where m = n-1.  Assuming that the values h2fi,j, r/24, ω /24, 
1- ω  are stored beforehand, we shall estimate the total arithmetic operations per 
iteration for each method.  From Equation (3.1), it may be calculated that the EG 
(AOR) scheme involves a total of 38/4(m-1)2k additions and 25/4(m-1)2k 
multiplications (excluding the convergence test), where k is the number of 
iterations. This method also need to compute the solutions at the ungrouped 
iterative points which requires an additional 4(2m-1)k additions and (2m-1)k 
multiplications.  For the EDG (AOR) method, only half of the mesh points are 
used to perform the iterative process while the solutions at the remaining points  
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will be solved by using the standard five-point formula. Assuming that the values 
h2fi,j, r/15, w/15, 1-w are stored beforehand, Equation (3.2) requires a total of 
14/4(m-1)2k + 4/2m2 additions and  9/4(m-1)2k + 1/2m2  multiplications 
excluding the convergence test. For n even where n/2 is not divisible by 2, an 
additional 4mk additions and 2mk multiplications are needed to compute the 
ungrouped iterative points next to the upper and right boundaries [1]. 
 
   Next we estimate the computational complexity of the MEG (AOR) method 
where only a quarter of the mesh points are involved in the iterations while the 
remaining points will be calculated directly once using the rotated five-point 
method and followed by the standard five-point formula as explained in 
Algorithm 1.  From Equations (4.4)-(4.5), we assume that the values h2fi,j, r/24, 
ω  /24, 1-ω   are stored beforehand. It could be shown that this method involves 
a total of  38/16 (m-1)2k + 4/4 (m+1) 2+ 4/2 (m2-1)  additions and  29/16 
(m-1)2k + 2/4 (m+1) 2 + l/2 (m2-1)  multiplications.            
 
   The MEDG (AOR) method iterates on 1/8 of the grid points, which is a half of 
the total points required in the MEG (AOR) method. Again we assume that the 
values h2fi,j, r/15, w/15, 1-w are stored beforehand. The remaining points will be 
calculated directly once using the standard five-point formula with grid spacing 
2h, followed by the rotated five-point and the standard five-point formula as 
shown in Algorithm 2. Hence, it can be calculated that a total of 14/16 (m-1)2k + 
4/8 (m-1)2 + 4/4 (m+1) 2+4/2 (m2-1)   additions and 9/16 (m-1)2k + 2/8 (m-1)2 + 
2/4 (m+1) 2 + l/2 (m2-1)   multiplications to complete the method.  Assuming 
that the execution times for the addition, multiplication and division operations 
are roughly the same, the total computing operations required for the four iterative 
methods are summarized in Table 1.      
  

Table 1 : The total computing costs for the four AOR methods 
Method Total computing operations 

EG (AOR) (63/4) (m-1)2 k + 5 (2m-1)k 
EDG (AOR) (23/4) (m-1)2 k + (5/2) (m2 -1)+ 6 mk 
MEG (AOR) (67/16)(m-1)2 k + (6/4)(m+1) 2 

+(5/2)(m2-1) 
MEDG (AOR) (23/16) (m-1)2 k + (6/8) (m-1)2 

+(6/4)(m+1) 2 +(5/2) (m2-1) 

              k = the number of iterations; m=n-1 

6  Numerical Experiments and Results 

   In order to compare the methods which were described in the previous 
sections, the algorithms were tested on the following model problem: 

yxe
y
u

x
uu −=

∂
∂

+
∂
∂

=∇ 22

2

2

2
2                     (6.1) 
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with Dirichlet boundary conditions in the unit square satisfying its exact solution 

Ω∂∈= − ),(,2),( yxeyxu yx . The tolerance used was ε = 1.0 x 10 -6 and the 
acceleration parameter, w, was chosen between 1 to 2 which give the least number 
of iterations. Different grid sizes of n = 22, 42, 62, 82, 102, 202, 402, 602, 802 
and 1002 were chosen to record the timings and iteration counts of all group AOR 
methods described in Section 4. The numerical results of the experiments for the 
EG (AOR) and MEG (AOR) are shown in Table 2 while the performances of the 
EDG (AOR) and MEDG (AOR) are given in Table 3. The value of r  was found 
to be close to the value of ω  as depicted in the tables.  
 

Table 2 : Number of iterations and computation timings for EG(AOR) and 
MEG(AOR) methods 

n 

EG(AOR)  MEG(AOR) 

r ω  k t 
average 

error r ω  k t 
average 

error 
22 1.76 1.55-1.61 46 0.016 3.5E-06 1.51 1.49-1.509 21 <0.016 6.5E-05 
42 1.848 1.84-1.845 75 0.031 2.2E-06 1.685 1.66-1.68 36 <0.016 1.4E-04 
62 1.8802 1.85-1.88 95 0.064 1.3E-05 1.7889 1.71-1.78 55 <0.016 6.5E-05 
82 1.9064 1.89-1.9 120 0.178 1.6E-05 1.817 1.777-1.81 66 0.016 3.8E-05 

102 1.924 1.899-1.920 146 0.250 2.4E-05 1.851 1.865-1.890 77 0.031 1.0E-05 
202 1.960 1.905-1.920 278 1.313 2.2E-05 1.920 1.909-1.920 145 0.234 7.0E-06 
402 1.979 1.952-1.968 532 9.266 2.2E-05 1.959 1.948-1.960 277 1.813 1.0E-05 
602 1.986 1.970-1.978 782 29.000 2.5E-05 1.972 1.971-1.977 414 5.984 3.4E-05 
802 1.990 1.975-1.983 1030 73.036 2.5E-05 1.979 1.974-1.979 547 14.141 3.2E-05 
1002 1.992 1.980-1.986 1275 152.625 2.0E-05 1.983 1.976-1.982 666 28.25 2.8E-05 

k is the number of iterations, t is the computation timings 

Table 3 : Number of iterations and computation timings for EDG(AOR) and 
MEDG(AOR) methods 

n 

EDG(AOR) MEDG(AOR) 

r ω  k t 
average 

error r ω  k t 
average 

error 
22 1.695 1.68-1.69 34 <0.016 5.5E-05 1.472 1.44-1.47 18 <0.016 5.7E-04 
42 1.8124 1.79-1.81 57 0.016 1.4E-05 1.656 1.61-1.65 31 <0.016 1.8E-04 
62 1.8655 1.832-1.85 78 0.031 6.5E-06 1.747 1.68-1.74 42 <0.016 8.4E-05 
82 1.8946 1.871-1.889 101 0.064 3.7E-06 1.799 1.75-1.79 54 <0.016 4.6E-05 
102 1.915 1.883-1.903 118 0.172 1.1E-05 1.836 1.768-1.790 62 0.016 1.2E-05 
202 1.955 1.917-1.940 222 0.735 9.0E-06 1.912 1.865-1.890 116 0.188 7.0E-06 
402 1.977 1.952-1.970 423 5.078 1.6E-05 1.954 1.928-1.942 224 1.125 1.1E-05 
602 1.985 1.959-1.970 613 15.625 3.0E-05 1.969 1.942-1.960 326 3.468 1.7E-05 
802 1.988 1.963-1.977 799 36.140 4.0E-05 1.977 1.948-1.960 428 8.094 4.0E-05 

1002 1.991 1.966-1.980 981 69.796 4.0E-05 1.981 1.961-1.974 527 15.985 3.8E-05 
k is the number of iterations, t is the computation timings 
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Figure 5: The number of iterations for the four group explicit AOR methods. 
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Figure 6: The computation timings for the four group explicit AOR methods. 

 
Figure 5 shows the comparison between the four methods implemented in terms 
of number of  iterations, k , while Figure 6 illustrates the execution timings.  
Table 4 tabulates the estimations of the total operation counts for all the four 
methods for different grid sizes. The total number of arithmetic operations for 
these methods were obtained by combining the results for the experimental 
number of iterations shown in Tables 2 and 3 with the number of operations 
required in each iteration by each method.   
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Table 4 : The total computational effort with different grid sizes 

 
n 

Methods  Methods 
EG(AOR) EDG(AOR) MEG(AOR) MEDG(AOR) 

k o.c. k o.c. k o.c. k o.c. 
22 46 299230 34 83484  21 37001 18 12476 
42 75 1920375 57 542422  36 248046 31 79346 
62 95 5443975 78 1652148  55 844191 42 235116 
82 120 12192600 101 3781886  66 1795286 54 528086 

102 146 23141730 118 6881508  77 3265481 62 939856 
202 278 175697390 222 51427732  145 24449706 116 6862206 
402 532 1342770660 423 390577738  277 186234406 224 52284406 
602 782 4438635910 613 1272020478  414 625551606 326 170421606 
802 1030 10390645150 799 2945759994  547 1468528806 428 396808806 

1002 1275 20094006375 981 5649141886  666 2792886006 527 762323506 
k = the number of iterations; o.c. = total operation count 

  

 

7 Conclusion 

   This paper is concerned with the application of the AOR scheme to a recently 
developed method, the Modified Explicit Decoupled Group (MEDG) iterative 
method due to Ali and Ng (2008), for solving the two dimensional elliptic pdes. 
This method was derived from a skewed (rotated) five-point finite difference 
discretisation which results in a reduced system with lower computational 
complexity compared to schemes derived from the standard five-point difference 
approximation. We compare its performance with the other existing explicit group 
AOR counterparts, mainly the EG (AOR), EDG (AOR) and MEG (AOR) 
methods.  Theoretically it is shown that the MEDG (AOR) has the least 
computational effort compared to the other AOR methods.  From the 
experimental results, we can clearly see that the MEDG (AOR) shows the best 
execution timings among the family of AOR methods followed by the MEG 
(AOR) which is in agreement with the theoretical complexity analysis. The gains 
in timings of the MEDG (AOR) method over EDG (AOR) and MEG (AOR) 
methods range approximately 76% to 78% and 35% to 43% respectively.  In 
conclusion, the developed MEDG (AOR) is able to show substantial reduction in 
execution timings and computational effort compared with the group AOR 
scheme shown in Ali and Lee (2007).   
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