
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

69
All Rights Reserved © 2012 IJARCET

An Unique Data mining Task for Sorting: Data Preprocessing for efficient

External Sorting

S.Hrushikesava Raju Dr.T. Swarna Latha

Associate Professor, Dept. of CSE, Professor, Dept. of CSE,

 SIETK, Puttur. St.Anns Engineering college, Chirala

 Abstract – This paper presents external

sorting using data preprocessing which is a data

mining technique that adapted generally here.

Generally, huge data of any organization possess

data redundancy, noise and data inconsistency. To

eliminate, Data preprocessing should be performed

on raw data, then sorting technique is applied on it.

Data preprocessing includes many methods such as

data cleaning, data integration, data transformation

and data reduction. Depending on the complexity of

given data, these methods are taken and applied on

raw data in order to produce quality of data. Then,

external sorting is applied. The external sorting now

takes the number of passes less than actual passes

log B (N/M) + 1, and cost of Input / Outputs is less

than 2*N* (log B (N/M) + 1) for the actual of B –

way external merge sorting and also involve least

number of runs compared to actual basic external

sorting.

Keywords: data preprocessing, External Sorting,

Data Cleaning, Passes, Inputs / Outputs, and Runs.

I. Introduction

 In real world, most data collected

should be huge and that consists of lot of

irregularities in terms of missing data, noise, or

even outliers. This data doesn’t possess quality of

information. A data mining technique called Data

Preprocessing is required in order to get quality data

by removing such irregularities. The data

Preprocessing technique has four methods and these

are used appropriately to eliminate particular

complexities that each method can remove.

Those methods are Data cleaning, Data Integration and

Transformation, Data reduction, and Data Discretization

and Summarization.

The first method, Data cleaning is used when

incomplete, noise, or any outliers exist in the data that

can be removed using any of binning, clustering, and

regression techniques. Second is Data integration and

transformation is used when the data set contains objects

with many values or different objects with same value

and the data is not in required interval or range and this

can be eliminated by processing using care in case of

integration and use any of smoothing, attribute/feature

construction, normalization, or aggregation in case of

transformation. The third, data reduction is when the

data set is high dimensional or in large volume, and this

can be avoided by using any of dimensionality

reduction, numerosity reduction or data compression in

order to output the reduced size of that data set which

produce the same results.

Method name Irregularity output

Data cleaning Incomplete,

noise,

inconsistent,

missing

Quality data

Before

integration

Data Integration and

transformation

Object identity

problem

Quality data

with care

taken

Data reduction Data set is high

dimensional

Reduced

size

Data Dicretization

and Summarization

Data continuous Simplified

data sets

Table I : Data preprocessing method’s irregularities

 and their output

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

70
All Rights Reserved © 2012 IJARCET

The data discretization and summarization is

used when data is in continuous and that can be

broken into intervals using either top down or

bottom constructions.

 The table I shows when each stage is required and

what that method will do. The methods of the data

preprocessing are conveniently applied depending

on the complexity of the original data set. This

technique when applied to external sorting yields

time complexities less than their actual time

complexities. Although several approaches such as

double buffering, clustered or un clustered B
+
-tree

are used, that take lot of memory while coding those

structures. The list of external techniques is listed in

table II along with their complexities and purposes.

Technique Purpose Overhead or

complexity

Double

buffering

Minimize I/O

operations

Additional buffer is

maintained for each

input and output

buffer

 Key

Sorting

Keys are small

compared to

records

Each record

associated the key

cause expensive.

Replaceme

nt Selection

Makes heap

Involves many

swappings from

root with last node

and then discards

last node value,

reconstructs heap

until one element

remains. Its Time

complexity –

O(n * log n)

Clustered

B+ - tree

Index allows to

search for

record

Sorts by traversing

the leaf pages

un clustered

B+ - tree

Index allows to

search for

record

Sorts by data

records. Additional

cost incurred for

each page retrieved

just once.

All these external sorting techniques don’t minimize the

disk Input / Output time efficiently. Each technique has

their own drawbacks. Thus, These drawbacks achieved

were also because of data redundancy and replication on

each page or tape. This leads to redundancy after sorting

runs in each phase. To avoid much time complexities or

Minimize I/ O costs, data preprocessing is necessary

before sorting on external storage devices such as tapes,

pages or disks etc. The advantage of performing data

preprocessing is redundant data is eliminated from tapes

or pages, sorting data doesn’t contain redundancy which

also minimize the I/O costs in sorting.

II. Related Work

 According to [14],[15] and [1,2], the

various external sorting techniques although performing

external sorting that achieved with a variety of

overheads. According to [9], certain types of lemmas are

used to achieve efficient external sorting but it works on

only one disk model although it takes less Input / Output

operations than normal merge sort. To overcome the

overheads of various external sorting techniques and

also external sorting using 3 lemmas, data preprocessing

[4,5] is proposed before external sorting is used. The

external sortings are categorized into 2 types

importantly. They are k-way external sorting and poly

phase merge sorting for k-way merge sorting. According

to Mark Allen Weiss, the external sorting applied on the

data although that r of disk accesses or inputs / outputs

costs huge compared to disk accesses on data without

redundancy.

The time complexities of k-way merging and poly phase

merging on the data that involves redundancy is in the

table III. The variables here are k denote k-way sorting,

N denote number of items on initial tape, and M is initial

run size.

 The time complexities or overheads incurred for

the same external sorting strategies that don’t involve

redundancy are found less than actual complexities for

the data that involve redundancy by some examples in

Experimental results.

 Table 1.2: External Sorting Techniques

Table II: External sorting Techniques

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

71
All Rights Reserved © 2012 IJARCET

III. Proposed Work

In this, Data preprocessing is an important

task that removes redundancy by using a variable

length record. This record avoids loss of data and is

used to represent the data only once although it

maintains the number of occurrences of that item.

This data preprocessing also used to reduce the

number of runs involved in the merge during each

pass when the data possess redundancy hugely. A

method of data preprocessing called Data Cleaning

is used to eliminate data redundancy, noise, and

inconsistency that exist in data available on initial

tape or page. The advantages of data preprocessing

is shown in table 3.1 as follows according to type of

data.

Type of data usefulness

Numeric data

with redundancy

Eliminate redundancy without

loss of data by using variable

length record.

Alphanumeric

data

It sorts numeric data separately,

and alphabets separately on

each of alternative tapes.

Strings Eliminates redundancy by using

string type of variable length

record.

In all above types, data preprocessing reduce the number

of disk accesses or Input / output cost in terms of

eliminating redundancy. Data Preprocessing supposed

be applied on the data before sorting results many

benefits greatly that leads to perform external sorting

efficiently. Here, data preprocessing algorithm or

pseudo code is given for each type of data and also

algorithm is defined for external sorting.

A. Data Preprocessing: The separate methods are

defined based on type of data such as integer,

alphanumeric, and strings.

a. Pseudo code for Numeric data with redundancy:

Void NdataPreprocessor(int data[][], int size)

1. define variable length record that contain

numeric key along with count.

typedef struct Nrecord{

int key, count;

}

Nrecord *arr; // it stores various duplicated

numbers along with count from arr[0] to arr[i]

where i denote i number of duplicated elements

exists.

declare int array – int *k, also int *hh used to

store unique key values and index k is used;

declare index h for k array with initial value 0, p

maintains count for each duplicated element

and is 0 initially. define z= r * c;

2. compare first key with rest of the keys in order to

test for redundancy. This is repeated for rest of

keys with later elements.

for i=0 to number of rows i.e r and i++ for every

next step

for j=0 to number of columns i.e c and j++ for

every next step

{ k[h]=data[i][j]; h++; }

for(i=0;i< r * c; i++) // testing each key with

later elements

{

key=k[i]; // key is temporary int variable

for(j=1;j<r*c;j++) { // traverse the total array

if(key == k[j]) { ++p; // counts redundant item

Method Tapes

required

of passes

K-way external

sorting

2 * k Log k N/M +1

Poly phase merging k + 1 Depends on

how large the

data size on

initial tape

Table III: Time Complexities for external sorting

strategies

Table IV: Data preprocessing uses according to

type of data

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

72
All Rights Reserved © 2012 IJARCET

if(p>1) // item removed from second copy onwards

{

free(int(k[j]) // removes duplicated memory

z--; // int variable z maintains up to date array size

}

else continue; }

if(p!=0 && p!=1)

{

arr[i]=(key, ++p); // redundant item value, count

hh[k1]=arr[i].key; k1++; }

else { hh[k1]=k[i]; k1++;

display element is not redundant }

3. Now, data resulted in hh int array doesn’t

contain duplication for any element. This also

represents data preprocessing for Numerical data.

b. Data Preprocessing for Alphanumeric data:

Void ANDataPreprocessor(char data[][],int size)

1. Declare two arrays inta for integer data and

chara for character data. int *inta; char *chara;

Declare integer k array – int *k to store two

dimensional data. declare indexes h, i, j

2. separate the given data such that inta stores

only numeric data, and chara array stores only

character data. It involves 2 steps.

a) Storing given data in single character array

for(i=0;i<r; i++)

for(j=0;j<c;j++)

 k[h]=data[i][j];

b) separate data in single dimensional array

into appropriate arrays inta, and chara.

indexes d for chara and j for inta are used are 0

intially.

for(i=0;i<r*c;i++)

if(k[i]>=a&&k[i]<=z||k[i]>=A && k[i]<=Z)

{ chara[d]=k[i]; d++; }

else if(k[i]>= 36 && k[i]<=45) {

 inta[j]=k[i]; j++; }

3. Eliminate data redundancy in inta array by calling

NDataPreprocessor() and also in chara data by calling

the following code.

z=r * c; // data set size

for(i=0;i< r * c; i++) //

{

key=k[i]; // key is char variable

for(j=1;j<r*c;j++) { // traverse the total array

if(key == k[j]) { ++p; // counts redundant item

if(p>1) {

free(int(k[j]) // removes duplicated memory

z--; // maintains up to date array size }

else continue; }

if(p!=0 && p!=1) { arr[i]=(key, ++p); // redundant item

value, count where arr record contains char type key.

gg[k1]=arr[i]. key; k1++; where gg int array stores

unque char keys and used its index k1 and is 0 initially.

}

else { gg[k1]=k[i]; k1++;

 display element is not redundant }

3. Now, two data arrays int array hh and char array

gg resulted doesn’t contain duplication for any element.

This also represents output of data preprocessing for

both Numerical and character data.

c. Data Preprocessing for String Data: It eliminates

duplicated copy of every string. It also uses variable

length record that contains string as key and also

number of occurrences of it.

typedef struct Srecord

{

String *s; int count; };

The Pseudo code is defined as follows:

Void SDataPreprocessor(String data[][], int size)

1. Declare string array- String *ss[r * c]; // variable

length strings are accessed by ss. r * c is data set size.

Also String *as[z] where z value is resultant set size and

is r * c initially.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

73
All Rights Reserved © 2012 IJARCET

Declare indexes i, j in order to compare first key

with rest, and second with third onwards, and third

with fourth onwards, and so on.

2. Eliminate duplication in string data.

a. store strings in two dimensional form into a

single dimensional form.

for(i=0;i<r;i++)

for(j=0;j<c;j++) {

ss[k]=data[i][j]; // initial k is 0

b. duplication of strings that are maintained

only once in the data set.

for(i=0;i< r * c; i++) //

{

key=ss[i]; where key is also variable length string.

for(j=1;j<r*c;j++) { // traverse the total array

if(key == ss[j]) { ++p; // counts redundant item

if(p>1) // remove from second copy onwards {

free(SizeOf(ss[j]) // removes duplicated memory

z--; // maintains up to date array size }

else continue; }

if(p==0 || p==1 and m<z) //m is index and is 0

{ as[m]=ss[i];

 m++ ; //unique keys are stored in as string array}

if(p!=0 && p!=1) {

arr[i]=(key, ++p); // redundant item value, count

else element is not redundant

as[m]=arr[i].key; m++; // index incremented to store

next key

}

FlowChart for Data Preprocessing: It shows the

flow of actions in data preprocessing based on type

of data. This module in flow chart takes the data

first, then applies appropriate data preprocessing

method depending on type of data provided to sort.

Moreover, It is a Graphical technique that clearly

conveys information and its meaning to the end user

who even doesn’t know about programming. The

following denotes flow chart for data Preprocessing

module which can be applied prior to sorting.

B. Algorithm for external sorting: It provides the

pseudo code that accomplishes the external sorting for

m-way merge sorting. This sort works same line K-way

merge sort but it involves least number of runs for the

data that initially have lot of redundancy.

Algorithm B-way Externalsortnig(dataset)

Input: put the items of dataset on first tape or page of

inputs. 2 * B tapes or pages are used.

output: sorted data placed on single tape or page

1. Take data on first tape or page of size M which

is main memory size successively till data size is

reached.

2. Sort them internally using either Quick sort or

Merge sort and Write them on output tapes

alternatively.

3. Read first runs from all output tapes or pages,

merge and sort them internally, and write it on

input tape. Similarly, Read second runs on all

output tapes and write them on input tape

alternatively on input tapes till last runs are read

from all output tapes.

Start

Declare variables based on type of data

check type

of data

eliminate

duplication

separate data into nteger

data and character data

eliminate

duplication

eliminate duplication in both types

 produce data set with unique keys

 end

Figure I: Data Preprocessing Steps

numeric

alphanumeric

string

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

74
All Rights Reserved © 2012 IJARCET

4. Read first runs from input tapes, merge and

sort them using sorting algorithm and write on

output tapes alternatively from second run to last

runs that are read from input tapes.

5. repeat 2 to 4 steps till total data comes on

single output tape.

Advantages: Although it yields same number of

passes in some cases, the number of disk accesses

or input and output costs are reduced greatly in

terms of runs.

Flow chart for efficient sorting:

IV. Experimental results with Examples

This presents a table which shows the number of

runs incurred before data preprocessing and after

data preprocessing. From this, how the numbers of

disk accesses are involved or the complexity

involved is affected in terms of input and output

costs and runs.

Example1: Consider the data set 10 3 3 7 1 1 1 78 2 2 2

2 3 3 3.

The purpose of taking higher way of merge sorting is to

reduce number of passes. Examples include 2-way

merging takes 4 passes, 3-way merging takes 3-passes,

and so on. Consider Ti and To are input and output tapes

from which both read and write are possible.

a. With Redundancy:

Step1: Initial Run construction pass – assume main

memory size is 3

 Step2: read data of run size 3, sort and write on

output tapes alternatively.

 Step3: Read first runs, merge and sort them, and

write it on input tape. Next, read second runs and merge

and sort them, write on input tapes alternatively till lazst

runs from output tapes are read.

Step4: Read first runs from input tapes, merge and sort

them, and write on output tape. Read second runs from

input tapes, sort and merge them and write on output

tapes alternatively till last runs were read from output

tapes.

Start

Declare variables, tapes as arrays or pointer arrays based on data type

 read data from first input tape or page

 sort them and write on output tapes

 read first runs from output tapes, sort and merge and write on input

tapes alternatively

check whether last

runs were read

 read first runs from input tapes, and write on output tapes alternatively

 all sorted data deposited on single output tape or page

End

Figure II : External Sorting Steps

Ti1 10 3 3 7 1 1 1 78 2 2 2 2 3 3 3

Ti2

Ti3

To1

To2

To3

Ti1

Ti2

Ti3

To1 3 3 10 2 2 2

To2 1 1 7 3 3 3

To3 1 2 78

Ti1 1 1 1 2 3 3 7 10 78

Ti2 2 2 2 3 3 3

Ti3

To1

To2

To3

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

75
All Rights Reserved © 2012 IJARCET

There are four passes incurred for the above data set

that involve redundancy.

b. Without Redundancy:

First, data preprocessing applied on original data

which is huge and involves inconsistency, and noise

generally. So, data preprocessing is used to

eliminate such things from original data and

produces data set of items: 10 3 7 1 78 2

Step1: Initial run construction pass – run size is 3.

Step2: read data input tape according to run size 3,

sort and write on output tapes alternatively.

Step3: read data from output tapes, merge and sort

them, and write on input tape alternatively.

Only three passes are required to sort data on external

device for the data without redundancy.

The following table shows the significance difference

between data with redundancy and data preprocessing

whenever to sort data using B-way external sorting.

The following graph denotes that if the large data set

contains lot of redundancy, then the number of disk

accesses are reduced or minimized by applying data

preprocessing. The data set that possess lot of

redundancy is inversely proportional to number of

accesses or input and output costs, runs and even

number of passes.

Factor Sorting on Data

with

redundancy

Sorting on Data

after data

preprocessing

Input and

output

costs or

number of

disk

accesses

(15 + 15+15 +

15) * 2

= 120 accesses

= 2*N* (log B

(N/M) + 1)

=2 * 15 * 4

2 * 6 * 3 = 36

accesses

Number of

runs

5+2+1 excluding

initial pass

2 + 1 excluding

initial pass

Number of

passes

3 + initial run

pass = 4

2 + initial pass =3

Ti1

Ti2

Ti3

To1 1 1 1 2 2 2 2 3 3 3 3 3 7 10 78

To2

To3

Ti1 10 3 7 1 78 2

Ti2

Ti3

To1

To2

To3

Ti1

Ti2

Ti3

To1 3 7 10

To2 1 2 78

To3

Ti1 1 2 3 7 10 78

Ti2

Ti3

To1

To2

To3

Number of disk accesses

re
d
u

n
d

an
cy

Figure III: Redundancy versus Number

of accesses relationship

Table V: Comparison of data with redundancy and

without redundancy

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 9, November 2012

76
All Rights Reserved © 2012 IJARCET

V. Conclusion

This concludes that as data redundancy

exists as increasing. Data preprocessing module

helps to reduce the number of disk accesses or

number of input and output costs, number of runs,

and even number of passes for B-way external

merge sort. The data preprocessing is flexible to

work on the data of any data type. This data

preprocessing module also helps to avoid loss of

data by defining a record which contain item value

and count of it for each duplicated element in the

data set. This work can be enhanced in future such

that it can also be implemented on individual items

when they are of records or some complex data

types and can be allowed to sort them efficiently.

References:

[1] Chapter7, Data Structures and Algorithm

Analysis in C++ by Mark Allen Weiss.

[2] Chapter7, Data Structures and Algorithm

Analysis in Java by Mark Allen Weiss.

[3] Sorting, Data Structures and Algorithms Alfred

V. Aho, John E. HopCroft and Jelfrey D. Ullman,

Addison –Wesley, 1983.

[4] Data Preprocessing, Data Mining Principles and

Techniques by Micheline Kamber and Jiawei Han.

[5] Margaret H Dunham, Data Mining Introductory

and Advanced Topics, Pearson Education, 2e, 2006.

[6] Sam Anahory and Dennis Murry, “Data

Warehousing in the Real World”, Pearson Education,

2003.

[7] D. E. Knuth (1985), Sorting and Searching, The

Art of Computer Programming, Vol. 3, Addison –

Wesley, Reading, MA, (1985).
[8]] AV88.pdf, Input and Output Complexity of

Sorting and related problems, Algorithms and Data

Structures by Alok Aggarwal and Jeffrey Scott

Vitter.

[9] An efficient External Sorting Algorithm, pp.159

– 163, by Leu, , Fang-Cheng; Tsai, Yin-Te; Tang, Chuan

Yi ,Information Processing Letters 75 2000.

[10] Data Mining: Practical Machine Learning

Tools and Techniques, Second Edition (Morgan

Kaufmann Series in Data Management Systems),

Ian H. Witten, Eibe Frank, Morgan Kaufmann,

2005.

[11] Pt03.pdf, Introduction to Data Mining, part3: Data

Preprocessing, Zhi – Hua Zhou, Dept. of CSE, Nanjing

University, Spring 2012.

[12]www.cs.uiuc.edu/homes/hanj/cs412/bk3/pp.3-pp.14,

03Preprocessing.ppt.

[13] ww.cs.gsu.edu/~cscyqz/courses/dm/slides/pp.1-

pp.4,ch02.ppt.

[14] inst.eecs.berkeley.edu/~cs186/fa06/lecs/pp.1-pp.7

& pp.11-pp.16,05Sorting.ppt.

[15] www.cs.rutgers.edu/~muthu/ppt2-ppt7 & ppt10-

ppt17,lec9-04.ppt.

[16] data.ppt.pdf, Introduction to Data Mining: Data

Preprocessing by Chiara Rebso, KDD- LAB, ISTI –

CNR, Pisa, Italy.

[17]ijret.org/volumes/2012_11_Vol.../P2012_01_03_02

2.pdf.

About Authors:

 Mr. S. HrushiKesava Raju, working

as Associate Professor in the Dept. of

CSE, SIETK, Narayanavanam Road,

Puttur. He is persuing Ph.D from

Raylaseema University in area Data

Mining tasks on advanced Data

Structures. His areas of interest are

Data Mining, Data Structures, and

Network Security.

Dr. T. Swarna Latha, working as

Professor in the Dept. of IT, St. Anns

Engineering and Techology, Chirala.

She had completed Ph.D from S.V.

University in area Network Security.

She is presently guiding many

scholars in various disciplines.

http://www.cs.rutgers.edu/~muthu/ppt2-ppt7

