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Abstract  
 
The growing environmental awareness and the apparent conflicts between economic and 

environmental objectives turn naturally energy planning problems into multi-objective 

optimization problems. Combined heat and power (CHP) production is an important high-

efficiency technology to promote under emission trading scheme. In CHP production, joint 

characteristics of heat and power mean that the production planning must be done in coordination.   

A long-term planning problem decomposes into thousands of single period sub-problems.  In this 

paper, a bi-objective multi-period linear programming CHP planning model is presented first. 

Then, an efficient specialized merging algorithm for constructing the exact Pareto frontier (PF) of 

the problem is presented. The algorithm is (theoretically and empirically) compared against a 

modified dichotomic search algorithm. The efficiency and effectiveness of the algorithm is 

justified.  

Keywords:  Combined heat and power production; Multi-objective linear programming; Energy 

optimization; Environmental/economic dispatch.  



Rong, Figueira, Lahelma,  2/26 2/17/2014 

1. Introduction 
 
The increasing concerns about environmental impacts of energy production have become an 

integral part of energy policy planning. To combat climate change, the European Union (EU) has 

launched an emission trading scheme (ETS) since 2005 and has simultaneously promoted clean 

production technology with less emissions (CEC, 2004).  The EU-ETS is now by far the largest 

emissions market in the world, covering more than 11,000 power stations and industrial plants in 

31 countries, as well as airlines. The emission market utilizes the market force to reduce emission 

cost-efficiently.   

 
CHP production means the simultaneous production of useful and electric power in a single 

integrated process. CHP is considered an environmentally beneficial technology because of high 

energy efficiency when compared to conventional condensing power plants. The energy 

efficiency of a gas turbine is typically between 36-40% when used for power production only, but 

over 80% if also the heat is utilized. This leads to significant savings in fuel and emissions, 

typically between 10-40% depending on the technique used and the system replaced (Madlener 

and Schmid, 2003).  

 

In this paper, we have considered using multi-objective linear programming (MOLP) approaches 

to deal with a medium- or long-term CHP environmental/economic dispatch problem (EED), 

which can be viewed as a subproblem of long term CHP planning problem. The environmental 

impact (emission costs) and traditional economic costs are simultaneously considered as two 

competing objectives in the model.  It means that the plant characteristics are assumed to be 

convex.  It has been commented by Rong et al. (2006) that the convexity assumption is not as 

limiting as it may seem. Multiple criteria decision making approaches, including MOLP, have 

long been used in energy planning for both traditional power-only and heat-only systems 

(Pohekar and Ramachandran, 2004; Figueira et al., 2005; Ehrgott et al., 2010) as well as poly-

generation including CHP systems (Rong et al., 2010).  Some recent research related to applying 

MOLP for dealing with poly-generation planning can be referred to Mavrotas et al (2009) and 

Ren et al. (2012).  
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Using various decomposition and coordination techniques, a medium- or long-term planning 

problem can be decomposed into single period sub-problems, which can be solved more or less 

independently depending on the decomposition algorithm and whether the problem includes 

dynamical constraints. The natural period length is typically one-hour. Different decomposition 

algorithms may solve the hourly sub-problems repetitively and coordinate the solution of the 

hourly sub-problems by adjusting the objective function, constraints, or both. The applicable 

decomposition techniques include, e.g., dynamic programming, Lagrangian decomposition, 

Dantzig-Wolfe decomposition, Benders’ decomposition, and various heuristic techniques. 

However, such techniques are beyond the scope of this paper. The interested reader could refer, 

for example, to Dantzig (1963), Wang et al. (1995), Zhao et al. (1999), Conejo et al. (2006) and 

Rong et al. (2008).  In the simplest case, where no dynamical dependencies are present, the 

hourly sub-problems are simply solved in sequence. In a broader context of risk analysis where 

numerous scenarios need to be considered, the simplification of the planning problem (e.g., 

ignoring dynamical constraints) may be necessary (Makkonen and Lahdelma, 1998, 2001; Rong 

and Lahdelma, 2007b).  In addition, in the generation expansion planning context (Rong and 

Lahdelma, 2005; Phupha et al., 2012) where the planning horizon can be long (15 or 20 years), 

the simplification is also needed.   

 

For the single-objective case, the above simplest setting (Lahdelma and Hakonen, 2003; Rong 

and Lahdelma, 2005; Rong, 2006) is a good benchmark for performance evaluations because the 

hourly sub-problems must be solved also in the more complex settings. The simplest setting 

corresponds to the simplest multi-period planning problem.  However, it is not a trivial problem 

in the multi-objective optimization context, where typically there is no single global optimal 

solution. The solution process consists of identify a representation of the Pareto frontier (PF) with 

a number of non-dominated outcomes in the objective space, which corresponds to efficient 

solutions in the decision space. For the MOLP, the continuity of the PF (Ehgrott, 2005) means 

that the number of non-dominated outcomes used to represent the PF can be rather large. 

Therefore, the computation effort can be huge, even though each non-dominated outcome can be 

obtained in polynomial time.  For the bi-objective case, all of the non-dominated outcomes for 

representing the PF can be obtained by solving a series of weighted-sum functions. One approach 
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is called dichotomic search (Aneja and Nair, 1979) and the other approach is called parametric 

simplex method (Ehgrott, 2005).  

 

To the best of the authors´ knowledge, no research is reported to deal specifically with the bi-

objective multi-period CHP planning problem with no dynamical constraints.  The possible 

reason may be due to the fact that it is the simplest multi-period planning problem and most 

people think that general solution approach can handle it.  On the one hand, the considered 

problem is a meaningful setting for risk analysis and generation expansion planning in practice 

and an efficient solution to the problem is demanding. On the other hand, it is not a trivial task to 

solve it efficiently if the planning horizon is long.  

 

In this paper, motivated by the algorithm for constructing the envelope of the CHP plant based on 

the power price (Rong and Lahdelma, 2007a), an efficient iterative merging algorithm for 

constructing the exact PF for the bi-objective LP CHP planning problem is presented. The idea of 

the algorithm is based on the convexity of the PF (the slopes of two consecutive non-dominated 

outcomes assume a non-decreasing profile). First, for each period t, the exact PF of period t sub-

problem is constructed.  Then, it is merged with the exact PF of previous t-1 periods according to 

the non-decreasing profile of the slope. The exact PF of the problem can thus be constructed 

iteratively.  

 

The paper is organized as follows. Section 2 describes the model of the individual CHP plant as 

well as the model of the bi-objective CHP planning problem.   Section 3 presents two algorithms: 

the first one is a modified dichotomic search algorithm (MDSA) for a general bi-objective LP 

problem;  and, the second one is a specialized merging algorithm (MA) for constructing the exact 

PF for the problem in the current study.  Then, these two algorithms are compared theoretically 

through time complexity analysis.  Section 4 reports the computational results with realistic CHP 

plants.  A comparison is made between MDSA and MA in terms of representation of the PF and 

solution efficiency to validate the theoretical analysis.  
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2. Problem description 
 

In addition to generating units (CHP plant, power-only plant, heat-only plant), a CHP system 

may include non-generating components such as contracts. All the components (plants and 

contracts) can be modeled based on a unified technique as discussed below.  In the subsequent 

discussion, “plants” refer to generating units while “components” include both generating units 

and non-generating components. For the system under study, different types of fuels with 

different specific CO2 emission are burned at plants but it is required that one plant should only 

burn one fuel to facilitate emission calculation.  Usually the fuel with larger emissions is cheaper 

than that with lower emissions. For example, coal is cheaper than natural gas.  It means that there 

is a tradeoff between fuel cost and emission cost.  

Under ETS, the CHP planning problem is to simultaneously optimize the overall net acquisition 

costs for power and heat as well as the emissions costs associated with providing power and heat. 

The emissions for the plant are caused by the fuel burned at the plant. The emissions for the non-

generating component are based on a reference system (e.g., coal-fired condensing power plants 

for power component or coal-fired boiler for heat component). The net acquisition costs consist 

of actual production costs (fuel costs), costs for purchasing components subtracted by revenue 

from selling the produced energy. The planning horizon can be anything from a few days in a 

medium-term problem to multiple years in a strategic long-term planning problem. The medium- 

and long-term problem can decompose multiple hourly sub-problems for solution.   

2.1 CHP plant model 
 
Here we assume, for the sake of simplicity, that the plant characteristics are convex, which allows 

us to use a linear programming (LP) solver for the environmental economic dispatch (EED) 

problem. In addition, the PF is also convex in the MOLP context.  

 

The plant is convex if the feasible operating region (characteristic area) is convex in terms of heat 

and power generation and the production cost is a convex function of the generated heat and 
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power. Convexity of the characteristic area means that if the plant can operate at two different 

points, it can also operate at any point on the line segment connecting them. Convexity of the 

cost function means that the operating cost on the line segment is not higher than the 

corresponding linear combination of the operating costs at the endpoints. Figure 1 illustrates a 

typical operating region in terms of cost, power, and heat (c, p, q) as three triangular facets. The 

projection of the operating region on the (p, q) plane shows the area in which the cogeneration of 

power and heat can be adjusted. For the convex CHP plant, the characteristic operating region 

can be represented as a convex combination (see e.g. Bazaraa and  Shetty, 1993 or Dantzig, 1963) 

of extreme points (cj, pj, qj) (the corner points of the triangular facets in Figure 1).  

 

 

Figure 1. Feasible operating region of a CHP plant. P = power, Q = heat, C = production cost.  

Due to convexity, the hourly power generation Pu,t, heat generation Qu,t, and operating costs Cu,t 

=Cu,t(Pu,t,Qu,t) of plant u can be represented as a convex combination of extreme characteristic 

points (cj,t, pj,t, qj,t ) (the corner points of the triangular facets in Figure 1): 
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 ∑ ∈
=

uJj tjtjtu xcC ,,, ,  

 ∑ ∈
=

uJj tjtjtu xpP ,,, , 

 ∑ ∈
=

uJj tjtjtu xqQ ,,, ,  (1) 

 1, =∑ ∈ uJj tjx ,  

 0, ≥tjx , j∈Ju. 

Here the variables xj,t  are used for forming the convex combination and Ju is the index set of 

extreme points.  This formulation allows the shape of the characteristic to change hourly, but 

assumes that the same number of points |Ju| are used for each hour. If a plant needs fewer points 

at some hours, extra points can be effectively disabled by fixing those xj,t  to zero. This 

formulation can approximate any convex cost function with arbitrarily good precision if a 

sufficiently dense set of extreme points is used. In practice, the extreme points can be determined 

empirically (based on test runs) or calculated based on an analytical model. In either case, the 

necessary number of extreme points will be reasonably small.  If emissions need to be considered 

explicitly, it is convenient to directly transform the extreme characteristic points (cj,t, pj,t, qj,t ) into 

fuel characteristic points (πj,t, pj,t, qj,t ) if a single fuel is burning in the plant, where πj,t  is the fuel 

consumption corresponding to the extreme point. The cost is mainly determined by fuel 

consumption.    

This technique has been used in CHP planning (Lahdelma and Hakonen, 2003; Makkonen, 2005; 

Rong, 2006; Rong et al., 2006; and, Rong and Lahdelma, 2007a). Non-CHP components such as 

condensing power plants, hydropower, heat plants, demand-side management components, and 

various bilateral purchase and sales contracts for heat and power can be modeled as special cases 

of  the CHP plant model (1) with either qj,t = 0 (in power components) or pj,t =0  (in heat 

components). For example, in power sales contracts, cj,t ≤0, pj,t ≤0, qj,t =0. For a physical plant, 

cost coordinate cj,t is mainly determined by fuel cost and cj,t, pj,t ,qj,t≥0. For the contracts, the fuel 

characteristics are obtained based on the specified reference system as mentioned before.  
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2.2 Problem formulation 
 

The following notation is introduced to formulate the problem.  

t Index of a period or a point in time. The period t is between points t-1 and t. In our 

problem, period length is one hour.  

T  Number of periods over the planning horizon. 

p, q Super/subscripts or prefixes for power and heat. 

Index Sets 

J Set of extreme points of the operating regions of all components including non-generating 

components (e.g., contracts). ( U Uu uJJ
∈

= ). 

Ju Set of extreme points of the operating region of component u ∈U,  

U Set of all components including non-generating components.  

Parameters 

 (πj,t,pj,t,qj,t) Extreme point j ∈Ju of operating region of component u ∈U (fuel consumption, 

power, heat) in period t. 

ce,t  Emission allowance price for period t. 

cf,j, t Fuel price corresponding to extreme point j ∈Ju (u ∈U ) for period t. 

cp±,t Power sales/purchase price on the power market in period t. 

cq+,t Heat surplus penalty cost in period t. 

ηj Specific CO2 emission for the fuel burned at extreme point j ∈Ju (u ∈U ). 

Pt Power demand in period t. 

Qt Heat demand in period t. 

Decision variables 
 
xj,t Variables encoding the operating level of each component in terms of extreme points j ∈J 

in period t. 

xp±,t Power sales and purchase volume on the power market in period t. 
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xq+,t Heat surplus variable for period t. 

 

When dynamical constraints are ignored, the multi-period CHP planning problem is simply 

represented as the sum of independent periods.  The bi-objective planning problem under study is 

represented as a vmin optimization problem. The operator vmin means vector minimization. The 

vmin problems arise when more than one objective is to be minimized over a given feasible 

region.  

 

vmin ( )( )∑ ∑∑ ∑ = ∈= ∈ +++−− ++−+
T

t Jj tjtejtj
T

t Jj tqtqtptptptptjtjftj xcxcxcxcxc
1 ,,,1 ,,,,,,,,,, , ηππ   (2) 

 

subject to  

      ,1, =∑
∈ uJj

tjx   u∈U,  t = 1,…,T, (3) 

 ttptp
Jj

tjtj Pxxxp =−+ +−
∈
∑ .,,, , , t = 1,…,T, (4) 

 ,,,, ttq
Jj

tjtj Qxxq =− +
∈
∑  t = 1,…,T, (5) 

 xj,t ≥ 0,  j ∈ J,  t = 1,…,T, (6) 

 xq+,t , xp±,t ≥ 0, t = 1,…,T.  (7) 

 

The above model (2)-(7) is a bi-objective LP model for the CHP planning.  The first objective in 

(2) is to minimize the overall net acquisition costs over the planning horizon, which consists of 

actual total production costs (fuel costs), costs for purchasing components subtracted by revenue 

from selling the produced energy. It also includes the penalty for the heat surplus. The second 

objective is to minimize the emissions costs of the components.  The minimum and maximum 

power and heat generation limits of the components are implicitly reflected in the component 

characteristics. In this formulation, the convex combination for each plant in each period is 

encoded by a set of xj,t variables, indicating the operating level of each plant in terms of extreme 

points of the operating region, whose sum is one (3) and that are non-negative (6).   Constraints 

(4) and (5) define the power and heat balances. Since the power can be freely bought (xp-,t) and 

sold (xp+,t)  on the market at price cp-,t  and cp+,t, the power demand (4) can always be satisfied.  
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The model can be infeasible only when the heat production capacity is insufficient. The heat 

balance (5) states that that the demand Qt  in each period t  must be satisfied and if the acquisition 

of heat exceeds the demand, the surplus xq+,t  lead to penalty cost cq+,t
  in the first objective of the 

objective function (2).   

 

For the above formulation, the power market can be treated as a power plant with large enough 

capacity. For the single objective problem with the above first objective as the objective, the 

problem can be solved by Power Simplex algorithm by Lahdelma and Hakonen (2003). If the 

power transaction cost is ignored and electric power can be freely traded (bought or sold) on the 

market, then the model can be simplified to the formulation in Rong and Lahdelma (2007a). Then 

the efficient envelope-based algorithm presented there can be used to solve the problem.  Note 

that emission costs associated with the power market are not explicitly reflected in the 

formulation. They are implicitly considered in the power price.  If the emission allowance price is 

a constant, the formulation is equivalent to simultaneously minimizing net costs and emissions. 

This is the traditional way to model the EED problem (Abido, 2003).  

 

3. Solution approach  

 
In this section, the optimality concept for multi-objective optimization is reviewed.  Then, a 

modified dichotomic search algorithm (MDSA) for solving a general bi-objective LP problem is 

presented and the time complexity of the algorithm is given. Next, the procedure for merging 

algorithm (MA) for solving problem (2)-(7) is presented and the time complexity of the algorithm 

is also given.  Finally, MA and MDSA are compared theoretically.  

3.1 Optimality concept for multi-objective optimization  
 
Let X denote the set of feasible solutions in the decision space and Y their images in the objective 

space. The image of solution x∈X is f(x) = (f1(x),…,fr(x)), where r ≥2.  Solving multi-objective 

optimization problem here is interpreted as generating its efficient set XE  in the decision space 

and corresponding image YN = f(XE) in the decision space Rr, called Pareto  frontier (PF)  or  non-

dominated set.   
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The dominance relations are defined based on the componentwise ordering of Rr, for y1, y2∈ Rr,  
 

rkyyyy kk ,...,1,2121 =≤⇔≤  and 21 yy ≠  
rkyyyy kk ,...,1,2121 =<⇔<  

 
The relations ≥ and > are defined accordingly. 
 
For the vmin problem, rRxf ∈)(  is dominated by rRxf ∈)(  if )()( xfxf ≤ .  

XE = {x∈X: there exists no Xx∈  with )}()( xfxf ≤ . 

 

f2(x)

f1(x)

×

•

•
•

•
• o

...

•

 
Figure 2  The PF profile of bi-objective vmin LP problem. 

 

For MOLP, the PF is convex and continuous.  In principle, the extreme efficient solutions (EESs) 

are sufficient to characterize the PF because all the efficient solutions of the problem can be 

obtained by the convex combination of EESs.  The image of the EES in the objective space 

corresponds to the extreme point of the PF, called extreme non-dominated outcome.   

Accordingly, the images of the non-extreme efficient solutions are called non-extreme non-

dominated outcomes. The PF for the bi-objective vmin LP problem is a piecewise linear convex 

curve as shown in Figure 2, where point ‘• ’ represents an extreme non-dominated outcome while 

point ‘o ’ represents a non-extreme non-dominated outcome.    

 

Now we introduce the concept for the slopes of the PF, where PF:={ |}|,...,1),,( 21 N
kk Ykyy = .  

Assume that the elements in PF are arranged according to an increasing order of the first 

objective, i.e. ||
1

1
1

NYyy <<L .  It means that  ||
2

1
2

NYyy >>L  . The slopes )1,( +kkγ  of the PF are 

defined according to two consecutive non-dominated outcomes  
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  1||,...,1,)1,(
1

1
1

2
1

2 −=
−
−

=+ +

+

Nkk

kk

Yk
yy
yykkγ     (8) 

The slopes of the PF assume a non-decreasing profile according to the convexity of the PF.   

 

In the following, we introduce notation for the current problem. Let xt and x denote the decision 

variable vector in period t and over the entire planning horizon, respectively. 

tqtqtptptptptjJj tjftjtt xcxcxcxcxfy ,,,,,,,,,,1,1 )( +++−−∈
+++−== ∑ π   (9) 

∑ ∈
==

Jj tjtejtjtt xcxfy ,,,2,2 )( ηπ     (10) 

∑ =
==

T

t txfxfy
1 111 )()(     (11) 

∑ =
==

T

t txfxfy
1 222 )()(     (12) 

 
The weighted-sum function with a weight vector ),( 21 λλλ =  is defined as  

)()()( 2211 xfxfxf λλ +=λ     (13) 

 

3.2 Modified dichotomic search algorithm (MDSA)  
 
The dichotomic search algorithm (DSA) was a general approach for solving the bi-objective LP 

problem. It was first developed by Aneja and Nair (1979) for solving the bi-objective LP 

transportation problem. In the multi-objective combinatorial optimization context, it was mainly 

used to find the supported non-dominated outcomes for the problem (Ehrgott and Gandibluex, 

2007; and, Figueira et al., 2013). The supported non-dominated outcomes of the problem can be 

obtained by solving a series of weighted-sum functions while the unsupported non-dominated 

outcomes cannot be reached by any weighted-sum function (Steur, 1986).  To facilitate 

discussion, we call the algorithms by Aneja and Nair (1979), by Ehrgott and Gandibluex (2007) 

and by Figueira et al. (2013) DSA1, DSA2 and DSA3, respectively.  These algorithms are the 

same in the basic principle that attempts to enumerate all possible new non-dominated outcomes 

between two known non-dominated outcomes. There are slight differences in the structure of the 

algorithm and in determining whether a new outcome is dominated or not. DSA1 and DSA3 

adopt an iterative procedure while DSA2 adopts a recursive procedure.  For determining whether 
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a new outcome is dominated or not, the new outcome is compared with only two known non-

dominated outcomes on which the weight vector is based for DSA1 and DSA3 while the new 

outcome is compared against all the known outcomes explicitly for DSA2.   

 

For our problem, it is found that the comparison scheme to determine whether the new outcome 

is dominated or not for DSA1 and DSA3 is not sufficient to guarantee that the algorithm work 

properly because it is possible that new outcome coincides with the other known non-dominated 

outcomes.  The reason behind this originates from the fact that it is possible for DSA to generate 

non-extreme non-dominated outcome.  A modified DSA (MDSA) proposed on the basis of DSA3 

is given below.    

 

Algorithm 1. Modified dichotomic search algorithm (MDSA) for solving the bi-objective vmin 

LP  problem.   

Step 1. Compute the lexicographic minimal (lexmin) solutions x1 and x2 with respect to f1 and f2, 

respectively. Let )}:)(),(min{(lexarg 211 Xxxfxfx ∈∈ and 

)}:)(),(min{(lexarg 122 Xxxfxfx ∈∈ .Let y1:= f(x1), y2:= f(x2), V:= ∅ and k:=2. 

Step 2. Let R:={y1,…,yk} with kyyy 1
2
1

1
1 L<<  . If R\V ={yk}, then stop; otherwise let  

}\:min{arg 1 VRyyyi ∈∈ . 

Step 3. Let 1
221 : +−= ii yyλ  and ,: 1

1
12

ii yy −= +λ   form weighted-sum function (13).  

Step 4. Compute the single objective optimal solution x  with respect to (13). If 1
111 )( +<< ii yxfy  

and ii yxfy 22
1

2 )( <<+ , then 1+ky := )(xf  and R:=R ∪ yk+1; otherwise let V:=V ∪ yi. Let 

k := k+1 and go to Step 2.  

 
At the end of the procedure, Set R corresponds to YN, i.e., |R| = |YN| and the non-dominated 

outcomes are arranged in an increasing order of the first objective in the set.  

 

It can be seen from Algorithm 1 that the main modification lies in how to determine whether the 

new outcome is dominated or not at Step 4. The comparisons remain restricting to two known 

non-dominated outcomes but comparison scheme changes from directly comparing with the two 

non-dominated outcomes of DSA3 to locating the position of the new outcome.  This scheme 
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originates from the convexity property of the PF, i.e., if the new outcome is located between the 

two consecutive non-dominated outcomes on which the weight vector is based, then it is not 

dominated; otherwise, it is dominated (coincides with the known non-dominated outcomes).  This 

is due to the fact that DSA allows multiple (more than two) outcomes with the same slope to 

coexist, i.e., the coexistence of the extreme and the non-extreme non-dominated outcomes.   The 

remaining modification is just an adaption of DSA3 from solving vmax to solving vmin problem. 

For example, maximal minimal, lexmax lexmin and arglexmax arglexmin as well as the 

ranking order at Step 2.  

 

Lemma 1. The  time complexity of Algorithm 1 for solving a general bi-objective LP problem  is 

O(h(n,m) |YN|), where h(n,m) is the time complexity of  solving the corresponding single 

objective LP problem and  n and m are number of variables and number of constraints for the 

problem.  

 

Proof:  To generate YN, the number of weighted-sum functions (single objective problem) to 

solve is |R|+|V| = |YN|+|YN|-1=2|YN|-1 according to the terminating condition at Step 2 of 

Algorithm 1.  The time complexity of solving one single objective problem is h(n,m).  Thus, the 

time complexity of Algorithm 1 for solving a general bi-objective LP problem is O(h(n,m) |YN|).  

 

 

Corollary 1  The time complexity of solving problem  (2)-(7) is O(g(ns,ms)T|YN|), where g(ns,ms) 

is time complexity of solving a single period sub-problem of (2)-(7) and ns= |J|+3  and ms = |U|+2 

are number of variables and number of constraints for the single period sub-problem.  

3.3 Merging algorithm (MA) 
 
The idea of merging algorithm (MA) is based on the convexity of the PF for the MOLP. If the 

non-dominated outcomes are arranged in an increasing order of the first-objective, then, for the 

vmin problem, the slopes of the PF assume a non-decreasing order profile as mentioned in 

Section 3.1.   This profile is true for both the PF of the single period sub-problem and the PF of 

the multi-period problem. If the single period sub-problem is independent of each other, then the 

slopes of the PF for the single period sub-problem should be maintained in the slopes of the PF 
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for the multi-period problem as illustrated in Figure 3. Consequently, the PF of multi-period 

problem is the accumulative results of the single period sub-problem in terms of slopes.   

 

B’

A’

(b)(a)

E
D
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A

C

E
D

B

A

...

f1(x)

f2(x)f2(xt)

f1(xt)

×

•

•
•

•
•

•

•
•

• •
•

 
  

Figure 3. The PF of a single period sub-problem and the multi-period problem 

 

In Figure 3, sub-figures (a) and (b) are the PF of a single period t  sub-problem and the PF of the 

multi-period problem including period t, respectively.  All the slopes in the single period sub-

problem will appear in the multi-period problem.  For example, ),( BAγ  and ),( EDγ  in (b) are 

the same as ),( BAγ  and ),( EDγ  in (a). ),( AB ′γ  and ),( DB′γ in (b) come from other periods 

than t. ),( CBγ  and ),( DCγ  in (a) should be located between points A′and B′  in (b).  However, 

the absolute coordinates of the points in (b) should be the sum of the coordinates for the single 

period sub-problems.  

 
In the following, the algorithm for merging the PF of the two-period problem is first given. Then 

the algorithm for generating the PF of the problem (2)-(7) is presented. 

 

Let YN,t denote set of  non-dominated outcomes for the period t sub-problem. If |YN,t| = 1,  then it 

is a trivial case to merge, it is simply to add each non-dominated outcome of the other period 

with ( 1
,2

1
,1 , tt yy ). In the following assume that |YN,t| ≥ 2 and the non-dominated outcomes 

{( k
t

k
t yy ,2,1 , ), k= 1,…,YN,t } are arrange in an increasing order of the first objective. The slopes of 

the PF for two periods t1 and t2 are sequentially chosen according to a non-decreasing order to 

obtain the PF of the two-period problem.  The algorithm is given below.  
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Algorithm 2. Procedure for merging the PF of two periods 

Step 1.  Initialization. k:= 1, i:=1, j:=1. 

Step 2.  

            if (|YN,t1| = 1 or |YN,t2| =1) 
                   if (|YN,t1| = 1) 
                          for (k = 1 to |YN,t2|) 
                               ., 2,2

1
1,222,1

1
1,11

k
tt

kk
tt

k yyyyyy +=+=  
                          end for 
                    else  
                           for (k= 1 to |YN,t1|) 
                               ., 1

2,21,22
1

2,11,11 t
k

t
k

t
k

t
k yyyyyy +=+=  

                            end for 
                     end if      
             else 
                   while (i <|YN,t1| or j<|YN,t2| ) 
                   while (i <|YN,t1| and j<|YN,t2|)     
           ., 2,21,222,11,11

j
t

i
t

kj
t

i
t

k yyyyyy +=+=  
             k:= k+1.                                     
                                   if ( )1,()1,( 21 +<+ jjii tt γγ     
                                         i := i+1..                   
                                   else if ( )1,()1,( 21 +=+ jjii tt γγ                                        
                                         i := i+1, j := j+1. 
                                   else 
        j := j+1 
                            end while 
                            while (i <|YN,t1|) 
                                ., 2,21,222,11,11

j
t

i
t

kj
t

i
t

k yyyyyy +=+=  
                                  k:= k+1, i := i+1. 
                           end while 
                           while (j <|YN,t2|) 
                                 ., 2,21,222,11,11

j
t

i
t

kj
t

i
t

k yyyyyy +=+=                                   
            k:= k+1,   j := j+1. 
                           end while 
                     end while 
                     ., 2,21,222,11,11

j
t

i
t

kj
t

i
t

k yyyyyy +=+=                       
               end if 
             
 At the end of Algorithm 2, k is the number of non-dominated outcomes for two periods.  k= 

max(|YN,t1| , |YN,t2|) if  |YN,t1| =1 or |YN,t2| =1 and k ≤ 1|||| 2,1, −+ tNtN YY  otherwise. It is clear that the 

time complexity of Algorithm 2 is O(k).  The output of Algorithm 2 is {( kiyy ii ,...1),, 21 = } 
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Algorithm 3. Merging algorithm (MA) for generating the PF of problem (2)-(7). 

Step 1. t:= 1,  call Algorithm 1 to generate the PF:= {( ||,...1),, ,,2,1 tN
i

t
i

t Yiyy = } of the period t sub-

problem, t2:= t; t:= t+1. 

Step 2.  

          while (t<T+1)  

                Call Algorithm 1 to generate the PF:= {( ||,...1),, ,,2,1 tN
i

t
i

t Yiyy = } of period t sub-

problem;  t1:= t.  

                  Call Algorithm 2 to generate PF:= {( },...1),, 21 kiyy ii =  by merging PF:= 

{( ||,...1),, 1,1,21,1 tN
i

t
i

t Yiyy = } and PF:= {( ||,...1),, 2,2,22,1 tN
j

t
j
t Yjyy = }.  

                  if (t<T)  

                        |YN,t2|:= k, i
ty 2,1 := iy1 , i

ty 2,2 := iy2 , i =1,…,k.  

                  end if  

                  t:= t+1.                 

        end while 

 

Lemma 2.  |YN| = O(T) and the time complexity of Algorithm 3 for solving problem (2)-(7) is 

O(g(ns,ms) T), where g(ns,ms) is time complexity of solving a sing period sub-problem of (2)-(7) 

and ns = |J|+3  and ms= |U|+2 are number of variables and number of constraints for the single 

period sub-problem. 

 

Proof:  Assume that the slopes of the PF in period t =1,…,T are unique, then 

)1|(|1||
1 ,max, −+= ∑ =

T

t tNN YY , where MY tN ≤|| ,  and M is a constant. Then ≤≤ |||| max,NN YY   

.)1(1 TM −+  Thus, |YN| = O(T).  

 

The time complexity of generating the PF of a single period sub-problem is g(ns,ms) and the time 

complexity of Algorithm 2 is O(|YN|).  According to Algorithm 3, the accumulative effect of T is 

fully reflected in |YN|.  Thus, the time complexity of Algorithm 3 for solving problem (2)-(7) is 

O(g(ns,ms) |YN|) = O(g(ns,ms) T) .  
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3.4 Theoretical comparisons of MDSA and MA   
 
Let || MD

NY  and || M
NY  denote the size of the non-dominated set of problem (2)-(7) generated by 

MDSA and MA respectively. Both MDSA and MA generate the exact PF for problem (2)-(7).  

|||| MMD
NN YY ≥  because MDSA has chance to generate the non-extreme non-dominated outcomes  

while MA only generates extreme non-dominated outcomes. Based on the results of numerical 

experiments, for the single period problem, it seems that MDSA does not generate non-extreme 

non-dominated outcomes. The number of non-extreme non-dominated outcomes generated by 

MDSA increases as the planning horizon increases.   

 

Moreover, MA is more efficient than MDSA according to Lemma 2 and Corollary 1.  According 

to |YN| = O(T), the time complexity of  MDSA for solving problem (2)-(7) is O(g(ns,ms) T2) while 

the time complexity of MA is O(g(ns,ms) T).  If  T is much larger than ns and ms, then g(ns,ms) can 

be treated as a constant and the time complexity of MDSA is reduced to  O(T2) while the time 

complexity of MA is O(T).  

4. Computational experiments   
 
To evaluate the efficiency and effectiveness of the merging algorithm (MA), the modified 

dichotomic search algorithm (MDSA) was used as a benchmark. In addition, to verify the 

correctness of MDSA, a general dichotomic search algorithm (DSA) was also implemented, 

where the new outcome is compared against all known non-dominated outcomes explicitly at 

Step 4 of Algorithm 1.   The on-line envelope based (ECON) algorithm developed by Rong and 

Lahdelma (2007a) was used an LP solver for solving the single objective (weighted-sum function) 

hourly sub-problem.  For handling small-size problem, on the average, ECON is 467 times faster 

than ILOG CPLEX (Rong and Lahdelma, 2007a) (CPLEX is general commercial software for 

solving large-scale mathematical programming problems).   

 

All algorithms (MDSA, DSA and MA) were implemented in C++ in the Microsoft visual studio 

2003 environment. All experiments were carried out on a 2.49 GHz Pentium PC with 2.9 GB 

RAM under Windows XP operating systems.  
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4.1 Test problems 
 
Our test problems were adapted from the non-convex problems (Rong and Lahdelma, 2007c) 

ignoring the non-convexity characteristics. In practice, the non-convexity characteristics may be 

ignored in some strategic planning where the capacities of the plants are main concerns. The 

original test problems consist of six plants, where there are three real plants and three derived 

plants according to the real plants. Among the three real plants, one is backpressure (BP) plant 

(A1) and other two are combined steam and gas cycle (CSG) plants (B1 and C1). Three derived 

plants (A2, B2 and C2) were constructed by perturbing the extreme points and restricting the 

plants (A1, B1 and C1) to operate within certain regions.  In the current study, the fuel burned at 

each plant needs to be considered explicitly since emission cost is explicitly considered as an 

objective. It is assumed that plants (A1 and A2) are coal -fired, plants (B1 and B2) are gas-fired 

and plants (C1 and C2) are oil-fired.  Table 1 summarizes the properties of six plants relevant to 

the current study.  

 

Table 1 Properties of CHP plants 

Plant Type  Points Fuel  
A1 BP 28 coal 
B1 CSG 27 gas 
C1 CSG 28 oil 
A2 BP 16 coal 
B2 CSG 16 gas 
C2 CSG 16 oil 

 

Then six test problems are generated based on different combination of above six plants. Table 2 

shows the dimensions of the single period test problems. As mentioned in the beginning of 

Section 4, since the ECON algorithm is used as an LP solver, it means that the transaction costs 

in the market are ignored, i.e., .,, tptp cc −+ =  Then, the power sales and purchase volume ( tpx ,± ) 

can be replaced by one variable tpx ,  (refer to Rong and Lahdelma, 2007a). Consequently, the 

number of variables and the number of constraints for the hourly sub-problem are ns = |J|+2 and 

ms = |U|+2 respectively.  To form a valid test problem, the heat demand is generated based on 

history data of a Finnish energy company, power price is generated based on the spot price 
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history of the Nordic power market (Nord pool, 2004) and emission allowance price is generated 

based on  uniform distribution within [6,16] €/ton 

 

Table 2. Dimensions of the single period problems 

Model  |U| ms ns 
D1 4 6 77
D2 3 5 85
D3 4 6 101
D4 5 7 105
D5 5 7 117
D6 6 8 103

 

4.2 Computational results 
 
We have solved test problems using general DSA, MDSA and MA for different planning 

horizons T (two-week (336 hour), four-week (672), eight-week (1344) and one-year (8760)).  If 

the planning horizon is less than one year, then we have solved multiple non-overlap planning 

problems for the corresponding horizon within a year for each test problem and the average 

results of the corresponding horizons are obtained.  For example, for an eight-week planning 

horizon, we can form a total of  6 non-overlap planning problems with six starting periods such 

as 1, 1345, 2689, 4033, 5377 and 6721. The numerical results showed that MDSA and the 

general DSA generate the same representation of the non-dominated set for all the test problems. 

It means that the comparison scheme at Step 4 of MDSA is correct.  In addition, MDSA gains a 

little advantage over the general DSA in terms of solution time. The average improvement is 

between 1% and 2% for the considered test problems.  This may be due to the fact that solving 

weighted-sum functions for DSA is more time consuming than determining whether a new 

outcome is dominated or not.   

 

In the following, the results of MDSA and MA for different planning horizons are reported.  

Tables 3 and 4 give the non-dominated set size and solution time for MDSA and MA respectively. 

 

Based on Table 3, first, the size of non-dominated set is roughly proportional to T. Second, 

|||| MMD
NN YY ≥  and the |||| MMD

NN YY −  increases as T increases, from 4 for two-week horizon to 
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1191 for one-year horizon. These results agree with the discussion in Section 3.4.  The above first 

point implies that it may not be a trivial problem to find the exact the PF of the long-term CHP 

planning problem even though dynamical constraints are ignored due to the large size of the non-

dominated set.  The second point means that the representation of the non-dominated set based on 

the results of MA is compact. According to MA algorithm, if the slopes for the PF are unique for 

all single period models, then ).1|(|1||
1 ,max, −+= ∑ =

T

t
M

tN
M

N YY   8.0||/|| max, ≈N
M

N YY  for the problems 

considered in the experiment. It means that about 20% slopes of the PF for different periods 

coincide.   

Table 3.  The average number of non-dominated outcomes for MDSA and MA for different 
planning horizons.  
 
Model MDSA  MA 
 one-year eight-week four-week two-week one-year eight-week four-week two-week
D1 46114 7163.3 3428.3 1794.9 45475 7144.3 3423.1 1793.5 
D2 42170 6480.0 3106.9 1629.4 41463 6437.5 3088.6 1621.8 
D3 71603 10809.3 5313.3 2745.4 69648 10747.7 5297.8 2741.2 
D4 49352 7674.0 3691.4 1912.0 48561 7651.5 3685.2 1909.9 
D5 49778 7679.3 3733.2 1927.0 49075 7653.2 3727.2 1925.1 
D6 75649 11487.5 5590.5 2909.6 73297 11397.0 5567.2 2902.7 

 

 

Table 4. The average solution time (s) for MDSA and MA for different planning horizons.  

Model MDSA     MA    
 one-year eight-week  four-week two-week  one-year eight-week four-week two-week 
D1 2349.22 56.64 13.52 3.55 12.59 0.58 0.23 0.10 
D2 2114.20 50.77 12.13 3.19 10.97 0.56 0.22 0.099 
D3 4607.83 107.78 26.41 6.83 27.42 0.89 0.32 0.13 
D4 3321.08 80.77 19.36 5.02 13.72 0.66 0.25 0.11 
D5 3764.98 90.88 22.02 5.70 15.11 0.65 0.26 0.11 
D6 6905.44 159.99 39.01 10.14 28.66 1.05 0.37 0.15 

 

Based on Table 4, the solution time for MDSA is roughly proportional to T2 while the solution 

time for MA is roughly proportional to kT, where k≤10. It means that the solution time of the 

single period model is bounded by a constant.  This again agrees with the discussion in Section 

3.4. It can be seen that MA is much more efficient. It is not difficult for MA to handle problems 

for long planning horizons (e.g. 15 or 20 years). On the other hand, it can be seen that it is even 

difficult for MDSA to handle two-week planning problems if ECON is replaced by CPLEX.  
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Similarly, the MA is also more efficient than the ε -method where the single-period model is 

solved by a general solver. Finally, we use MA to investigate the effect of emission allowance 

price on the size of non-dominated set and on the solution efficiency according to yearly planning 

problems. We use the scenario with constant emission allowance price as a benchmark. It is 

equivalent to contrasting the difference between the traditional EED (EED1) (Abido, 2003) and 

the current EED (EED2). Table 5 shows the results.   

 

 Table 5.  Effect of the emission allowance price on the size of non-dominated set and on the 

solution efficiency for yearly planning problems. 

Model  

 
||

1 ,∑ =

T

t
M

tNY  EED1  EED2 

  CPU (s) || M
NY  

 
||/|| max,N

M
N YY  CPU (s) || M

NY  ||/|| max,N
M

N YY
D1 65898 4.66 17520 0.31  12.59 45475 0.80 
D2 59778 4.52 16812 0.33  10.97 41463 0.81 
D3 93734 8.28 31043 0.37  27.42 69648 0.82 
D4 76585 5.55 21611 0.32  13.72 48561 0.72 
D5 72628 6.53 24191 0.38  15.11 49075 0.77 
D6 102003 10.86 37849 0.41  28.66 73297 0.79 

 

For both EED1 and EED2, ||
1 ,∑ =

T

t
M

tNY  are the same. It means that allowance price does not affect 

the size of the non-dominated set for a single period sub-problem. However, the size of the non-

dominated ( || M
NY ) for the EED1 is much smaller because profiles of the PF from period to period 

are similar. Based on   ||/|| max,N
M

N YY , 60% to 70% slopes of the PF for the single-period sub-

problems coincide for the EED1 while about 20% slopes coincide for the EED2.  This means that 

the planning problem under ETS is harder than the traditional planning problem considering 

emissions. This also reflects in the solution time (CPU(s)).    

 

5 Conclusion 
 
In this paper, we have presented an efficient specialized merging algorithm (MA) to find the 

exact PF for the bi-objective convex CHP planning problem. The size of the non-dominated set is 

proportional to the planning horizon. For a yearly planning problem, the size can be more than 
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40,000. Such a large size challenges the solution of the problem even though each non-dominated 

outcome can be obtained by a polynomial algorithm for the traditional dichotomic search 

algorithm. It is difficult for a general solver such as CPLEX to handle the problem. The 

efficiency of the MA is justified theoretically and empirically.  The MA is applicable to the long 

term planning problem for risk analysis and generation expansion planning. The MA may lay 

foundation for integrating multicriteria decision analysis and scenario planning (Stewart et al. 

2013).   
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