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ABSTRACT 
 

Continuum topology of continuous, monolithic compliant mechanisms is designed for finite elastic deformation such that an 

output port moves in a desired direction when a specified force is applied through an input port. The pseudo-rigid body 

equivalent of compliant mechanisms (CMs) has been the conventional approach used by earlier researchers to synthesize and 

analyze compliant mechanisms. Attempts at direct analysis from existing literature are predicted on such assumptions as 

static linearity or a few times geometric nonlinear conditions. These are justifiable in several situations where compliant 

systems have been successful in replacing materials with several moving parts. However, the application domain of 

compliant mechanisms is widening to dynamic environment where the deformations are relatively large.  It is therefore 

necessary to consider nonlinearities resulting from geometry and hyperelasticity. In this paper, methods of continuum 

mechanics and nonlinear finite element method were deployed to develop model that could capture the behaviour of 

compliant mechanisms. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were 

employed, leveraging both ease of use and computational efficiency. Numerical results using published laboratory 

investigated compliant mechanisms reveal the deviation that exists with linear and only geometric nonlinear assumptions.   
 

Keywords: Compliant mechanisms, Hyperelasticity, Nonlinear Finite Element Method, Continuum mechanics, Geometric nonlinearity; 

Finite Deformation, AceGEN, AceFEM 

 

1. INTRODUCTION 

 

Compliant mechanisms are defined as mechanical 

systems that derive some or all of their mobility from the 

flexibility of one or more of their members. Due to the 

large-deflection nature of compliant members, analysis 

and synthesis of such mechanisms are made difficult. One 

difficulty encountered when designing compliant 

mechanisms is understanding the deformational 

characteristics of a flexible continuum. Traditionally, this 

understanding is gained at the expense of cost-prohibitive, 

repetitive prototyping and testing. Thus, compliant 

mechanisms have been limited to applications requiring 

only simple motions. 

 

Fully compliant mechanisms can be viewed as flexible 

continua and can be treated as such in their synthesis and 

analysis (Ananthasuresh and Frecker, 2001). Large and 

small deformations of a flexible body can be modeled in 

the body’s actual continuum form instead of pseudo-rigid-

body models. As such compliant mechanisms can be 

modeled using the methods of continuum solid mechanics 

(Ananthasuresh and Frecker, 2001). The basic idea on the 

design of compliant mechanism is to recast the design 

problem as an optimal material distribution problem so 

that the resulting continuum structure can fulfill the 

requirements of a mechanism and thus, it is called 

continuum compliant mechanism (Wang and Chen, 

2009). Here, we modeled compliant mechanisms using 

the methods of continuum mechanics. Since the material 

comprising compliant mechanisms will generally undergo 

finite strains, displacements, and rotations when the 

mechanism functions under normal design actuation 

forces, the analysis and design framework must be general 

enough to treat finite deformation effects (Swan and 

Rahmatalla, 2004). 

 

In recent years, the research on the design and analysis of 

compliant mechanisms has made great progress, at the 

same time, it has faced many challenges. Compliant 

mechanisms rely on elastic deformation to achieve force 

and motion transmission, such deformations are not 

necessarily small (Howell, 2001). When a structure 

undergoes sufficiently large deformation, the structure 

exhibits nonlinear behaviour. This nonlinear behavior 

comes from two different sources: geometrical and 

material. The former makes it necessary to include 

nonlinear terms in the displacement-strain relations and 

the latter results in the failure of linear material model. 

Although most successful examples of compliant 

mechanism design and analysis by nonlinear formulation 

were reported, most of the designs were based only on 

nonlinearity due to geometry (Yixian and Liping, 2009; 

Jinqing and Xianmin, 2011; Bruns and Tortorelli, 2001; 

Xian et al, 2009; Aten et al, 2012; Joo et al, 2001; Borhan 

and Ahmadian, 2006; Dinesh and Ananthasuresh, 2007; 

Akano and Fakinlede, 2011 ). The use of material model 

may not be valid in practice because materials with large 

compliance are often nonlinear materials (Sigmund, 

2001a, 2001b). Most engineering materials exhibit 

nonlinear behaviour when the deformation is sufficiently 

large. The design and analysis of compliant mechanism 
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should take the material nonlinearity into account because 

the functionalities of the complaint mechanism are 

accomplished from its large deformation (Jung and Gea, 

2002).With the present maturity in the analysis of 

nonlinear materials, the main challenge in its 

implementation is on the computational efficiency. 

 

Compared to the vast publications on design and analysis 

of compliant mechanisms with linear materials, very 

limited works can be cited on nonlinear compliant 

material behaviour. Swan and Rahmatalla (2004) 

proposed a methodology for continuum topology design 

of continuous, monolithic, hinge-free compliant 

mechanisms and use finite elastic deformation such that 

an output port region moves in a desired direction when a 

specified force is applied at an input port region. Swan 

and Rahmatalla (2005) developed formulation for design 

of continuous, hinge-free compliant mechanisms. The 

mechanism was examined within a continuum structural 

topology optimization framework. The proposed 

formulation involves solving two nested optimization 

problems. Bruns and Tortorelli (2001) considered 

geometric nonlinearity to propose a well-posed topology 

optimization formulation that leads to convergent mesh-

independent results. They account for large deformation 

of compliant mechanism by using nonlinear elastic 

analysis in the topology optimization. Jung and Gea 

(2002, 2004) studied the topology optimization of both 

geometrically and materially nonlinear structure using a 

general displacement functional as the objective function. 

In order to consider large deformation, they expressed the 

effective stress and strain in terms of 2nd Piola–Kirchhoff 

stress tensor and Green–Lagrange strain tensor, and 

constitutive equation is derived from the relation between 

the effective stress and strain. Compliant mechanisms 

examples were used to validate their study. 

 

Polymers are predominantly used in the design of 

compliant mechanisms (Howell, 2001). It is important to 

use the nonlinear characteristics of polymers to analyse 

the performance of compliant systems. Thermoplastic 

polymers like polypropylene exhibit a viscoelastic 

material response (Mankame and Ananthasuresh, 2004). 

It has been frequently noted that with certain constitutive 

laws, such as those of viscoelasticity and associative 

plasticity, the material behaves in a nearly incompressible 

manner (Zienkiewicz and Taylor, 2000). The typical 

volumetric behavior of hyperelastic materials can be 

grouped into two classes. Materials such as polymers 

typically have small volumetric changes during 

deformation and these are incompressible or nearly-

incompressible materials (ANSYS, 2007). An example of 

the second class of materials is foams, which can 

experience large volumetric changes during deformation, 

and these are compressible materials. This implies that 

most polymers are nearly incompressible. In general, the 

response of a typical polymer is strongly dependent on 

temperature (Bower, 2010). At low temperatures, 

polymers deform elastically, like glass, at high 

temperatures the behaviour is viscous like liquids and at 

moderate temperatures,  they behave like a rubbery solid. 

Hyperelastic constitutive laws are intended to 

approximate this rubbery behaviour. Polymers are capable 

of large deformations and subject to tensile and 

compression stress-strain curves (Gong and Moe, 2002). 

The simplest yet relatively precise description for this 

type of material is isotropic hyperelasticity (Gongand 

Moe, 2002).Suitable hyperelasticity model is employed to 

reproduce the elastic responses for the constitutive theory 

of finite viscoelasticity (Marvalova, 2006). 

 

In this paper, nearly incompressible isotropic 

hyperelasticity constitutive relation is employed to model 

finite viscoelasticity characteristic of polymeric compliant 

mechanisms. The solution methodology involves the 

finite element discretization of the compliant mechanism. 

In order to improve the computational efficiency, a hybrid 

system of symbolic algebra (AceGEN) and a compiled 

back end (AceFEM) were employed for the 

implementation of the solution algorithm. 

 

2. BASIC CONTINUUM MECHANICS 

 

The basic compliant mechanism problem is sketched in 

Fig. 1. It shows the general domain Ω  for the design of a 

mechanism that transforms force applied at the input port 

to a desired displacement at the output port in an efficient 

way. The position vector X  in the reference position is 

transformed to x  in its current position. inu
 is the 

displacement at the input boundary in
  as a result of the 

applied force inF
 at the boundary  while outF

 is a virtual 

force at the output boundary out
 specifying the direction 

of the desired boundary displacement outu
.  

g
is the 

support boundary. 

 

 
 

Fig. 1:  Deformed continuum compliant mechanism 

 

A bare minimum of fundamental concepts in continuum 

mechanics are provided here, as theoretical background 

for large deformations and hyperelastic constitutive 

material relations. Most, if not all of the information 

provided in this section have been extensively discussed 
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in numerous publicly available sources of literature. As a 

proposed starting point, the interested reader is referred to 

Holzapfel, 2000; Mase and Mase, 1999 for a quite 

complete review of continuum mechanics, to Criscione, 

2002; Freed, 1995 for a thorough synopsis of natural 

strain and strain rate, and finally to Bonet and Wood, 

1997 for a similar review of the basic concepts of 

continuum mechanics used in constitutive laws for 

hyperelasticity. 

 

2.1 Kinematics 
 

A compliant mechanism has material points whose 

positions are given by the vector X in a fixed reference 

configuration rΩ  in 2-D space. After the body is loaded 

each material point is described by its position vector x , 

in the current configuration cΩ .  The position vector in 

the current configuration is given in terms of its Cartesian 

components as, 

 

i iXX E                    (1) 

 

x i ix e                    (2) 

 

iE
 

and ie  are the unit vectors and summations are 

implied. 

 

2.2 Cauchy-Green Deformation Tensors 
 

There are two Cauchy-Green Deformation Tensors in the 

analysis of deformable continuum. We have the right and 

left Cauchy-Green Deformation Tensors. Right Cauchy-

Green tensor is given as, 

 
T C F F       (3) 

 

In the same way, the Left Cauchy-Green Deformation 

(also known as Finger) tensors is given as, 

 
T b F F                    (4) 

 

The Deformation Gradient F  is given as, 

 





x

X
F                         (5) 

 

The determinant of the deformation gradient is usually 

denoted by J and is a measure of the change in volume, 

i.e., 

 
2J det ; J det F C     (6) 

 

 

2.3 Strain Measures 
 

The change in scalar product can be found in terms of the 

material vectors 1dX and 2dX
 
 

 

   

 

1 2 1 2 1 2

1 2

1 1
d d d d d 1 d

2 2

d d

      

  

x x X X X C X

X E X

          (7) 

 

Green (Lagrangian) strain   is then given as, 

 

   

    

T

T T

1 1
=

2 2

1

2

   

      

E C I F F 1

u u u u

                 (8) 

 

Index notation: 

 

  ji k k
ij kl ij

j i j i

uu u u1 1
E F

2 2 X X X X


   
     

     

         (9) 

 

Alternatively, the same change in scalar product can be 

expressed with reference to the spatial elemental vectors 

1dx and 2dx , 

 

   1
1 2 1 2 1 2

1 2

1 1

2 2
d d d d d d

d d

      

  

x x X X x I b x

X Xe    

              

(10) 

 

Almansi (Eulerian) strain is then given as,  

 

   1 11 1

2 2

T      I b I F Fe

              

(11) 

 

2.4 Isotropic Hyperelasticity 
 

Large strain elasticity, or hyperelasticity, is defined in 

terms of a strain energy function. In order to facilitate the 

extension of the above equations to the hyperelastic case, 

the standard theory of isotropic hyperelasticity is briefly 

reviewed first in this section. Hyperelasticity implies the 

existence of a strain energy density function   

dependent upon the Lagrangian or right Cauchy-Green 

tensors as 
 

        C X E X

                                          

(12)

   

The second Piola-Kirchhoff stress S tensor now 

expressed as 

2
  

 
 

S
C E

                         

(13) 

 

 

The stress-strain relation could be written as  
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2 4
2  

  
   

S S
C

E C C C
                                    

(14) 

 

3. METHODOLOGY 
 

Finite element implementations of nearly incompressible 

material models often employ decoupled numerical 

treatments of the dilatation,  U J and deviotoric,   C  

parts of the deformation gradient (Sun et al, 2008). The 

strain energy density function for such a material is 

decoupled as 

 

     U J  C C

                 

(15) 

 

Where 

 

   3tr 


 


C C

                 

(16) 

 

   
2

1U J k J


 


                                       

(17) 

 

k and   are the material properties known as bulk and 

shear modulus respectively. 

 
TC F F                     (18) 

 

F  is the deformation gradient and C is Right Cauchy-

Green tensor.  

 

Mixed elements are often used to accommodate the 

volume constrain in incompressible material problem. 

They are designed to model fully or nearly incompressible 

hyperelastic materials. For a hyperelastic model that can 

have multiple deformations state for the same stress level, 

the penalty factor and the use of Lagrangian multipliers 

might not be most adequate. It is convenient to use a 

three-field mixed Hu-Washizu variation form to 

overcome volumetric locking (Wriggers, 2010). 

Assuming an independent approximation of the 

displacement u , the hydrostatic pressure   and the 

volumetric change parameter  , a variational form for the 

finite deformation hyperelastic problem is given by 

(Mathisen et al, 2011) 

 

     u extp p J dV



           
  C

   

(19) 

Where ext  is the functional for effects of body forces 

and surface tractions and p  is the mixed pressure in the 

deformed configuration. It is convenient to make a 

multiplication split of the deformation gradient into a 

dilatation part
volF  and isochoric part 

isoF . 

 
vol isoF F F                    (20) 

 

Mathisen et al. (2011) defined the two parts as, 

 
vol JF =                                                        (21) 

 
isoF =1                                                           (22) 

 

Equation (22) is required for constant volume state. The 

mixed right Green deformation tensor is expressed as, 

 
T C F F                                                     (23) 

 

Where 

 

θ

J

 
  
 

F F

1
3

                                                     (24) 

 

C is the mixed right Green deformation tensor. The 

variation of Eq. (19) gives, 

 

 

 
ext

p J
dV

p J


  

 

 

 
   

   
   


C

C

       

(25) 

 

A second Piola-Kirchhoff stress is related to the 

derivative of the stored energy function through Eq. (26). 

 

2





S
C

                                             

(26) 

 

Substituting Eq. (26) into Eq. (19) we have, 

 

 

 

1

2 ext

p J
dV

p J

  
 

 

 
     

 
   


C S

        

(27) 

 

The first term in Eq. (27) is the inner virtual work 

inner  given as, 

 

1

2
inner dV



 
 

   
  S C

                                     

(28) 

 

The variation of the mixed right deformation tensor C  is 

given as, 

 

θ θ J

J θ J

 
 

   
    
   

C C + C

2
3 2

3
              (29) 

 

But  

 

J J  C C
1                      (30) 
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Substituting Eq. (30) into Eq. (29), gives 

 

θ θ

J θ


    

      
   

C I C C C + C

2
3

11 2

3 3
       (31) 

 

The first term of the integrand in Eq. (27) could be 

expanded as  

 

1
3

1

1

3

1

3

IJ IJ iI iJ IJ

iI iJ IJ

iI jJ jJ iI iJ IJ

C S F F S

F F S

F F F F F S
J

 






  





   
    
   

(32) 

 

The Kirchhoff and Cauchy stresses based on the mixed 

deformation gradient are related as (Zienkiewicz and 

Taylor, 2000) 

 

1 T
ij iI IJ jJ ijF S F 


      FSF             (33) 

 

If we also note that  

 
1 1u u ujJ jJ j k kJ j k kj j jkJ

F F F F     
          (34) 

 

Substituting Eqs. (33) and (34) into Eq. (32), gives 

 

1

3

1 1

3 3

IJ IJ j j ii i j ij

i
rr ij ij rr

j

C S u u

u

x


    




   



 

 
   

 

  
    

  

         (35) 

 

Equation (35) could be expressed in terms of Cauchy 

stress using Eq. (33) as 

 

1 1
u

3 3
IJ IJ kk i j ij ij kkC S      

 
   

 
        (36) 

 

Substituting Eq. (36) into Eq. (27) gives 

   

 i j ij ij ext

p p p J dV

u p p J dV





   

     

       

     
 



   

(37) 

  

Where 

 

tr
3

iip
 

 




                                        

(38) 

 

The variation of the deformation tensor is also given as 

(Bonet and Wood, 1997) 

 

divJ J  u                    (39) 

 

Equation (39) simplifies Eq. (37) to 

 

 

 

ij ij ij

ext

p p dV

J
p p dV

p J dV







 

   


  

     

  
     

  

  






          

(40) 

 

3.1 Finite Element Discretization 
 

The current configuration x may be expressed in terms of 

a displacement u from the reference configuration 

coordinates X as  

 

= +x X u                                                               (41) 

 

The reference coordinate and displacement field are 

approximated by isoparametric interpolations given in 

Eqs. (42) and (43) respectively. 

 

 = r
ri iX N X                                                            (42) 

 

 = r
ri iu N u                                                               (43) 

 

The approximation of the displacement tensor becomes 

 

= r
r, ji, j i
ˆu N u                                                 (44) 

 

Using the approximations of Eqs. (42) and (43) the matrix 

form of Eq. (40) becomes 

 

 

 -

T T T T
u e u

T T
p

T T
ext

ˆ ˆdV dV

J dV

p p dV

 







    

 

 

  

 

 

 





u B u B

P N

N

            

(45)

 

 

Where uB  is the strain displacement matrix given by 
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1 2

2

2 1

0
x x

= 0 0
x

0
x x

r r

r
u

r r

N N

N

N N

  
 
  

 
 

 
  
 
   

B                                           (46) 

 

J
p p



 
    

 
m 

                                            

(47) 

 

p  and m are the mean stress and the mean matrix 

operator respectively, given as 

 

 
TTp


  


m m =

                                 

(48) 

 

3.2 Tangent Stiffness 
 

Linearization of  Eq. (25) using the G  teaux derivative 

may be assembled as  

 

   

   

   

J J

J ext

dV

p dV p dV

p dV



 




  

  

  

 
          

 

    

    



 



C S C C
C

     

(49) 

 

Where  , p , C , J  etc. represent incremental 

quantities and  is the material tangent moduli given as 

 
2

4 2
 

 
  

S

C C C
                                

(50) 

 

Equation (49) could be written in indicial form as 

 

   

   

   

ij ij ijijkl ij

ext

C C C S dV

p J dV p J dV

p J dV



 



  

  

  

 
        

    

    



 



                  

(51) 

 

The spatial tangent of a constitutive model of Eq. (50) is 

denoted by the transformation given as (Taylor, 2000) 

 

1 T T


 FF F F                  (52) 

 

The inner virtual work of Eq. (51) could be written matrix 

form as 

 

 
uu u up

u p

pu p 0

inner

T T T
e

ˆ

ˆ ˆ, ,

ˆ



  





  


   
   

       
       

K K K

K K K

K K

u

u u

p

 
 

(53)

 
 

Equation (53) may be split into the constitutive  
 

i jK
c

 

and geometric 
 

i jK
g

parts 

 

   
ij ij ij K K K

c g

                   

(54) 

 

The constitutive tangent terms for symmetric moduli are 

expressed as 

 

 
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(55) 

 

Where 

 





N N

                                                             

(56) 

 

and in matrix notation 

 

 

T T
dev dev dev dev

Tˆ ˆp p Î p p




 


 
    

 

D I DI m + m

+ mm

 

                

(57) 

 

T

dev dev 
 

 
 

D I D Dm + 

                           

(68) 

 

pT


 
 
 

D Dm m

                                               

(59) 

 

D  is the transformation of   given as 
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(60) 

 

and the deviatoric matrix operator devI  and stress dev  

are given as 

 

dev dev dev


     


I I Im m  

            

(61) 

 

I  is the fourth rank unit tensor. Î  is the matrix form of 

the fourth rank identity tensor 

 

2 0 0
1

0 2 0
2

0 0 1

Î

 
 


 
                                                           

(62) 

 

The geometric tangent term of Eq.  (54) is given as 

 

   g
uu dV



   K N N

                                           

(63) 

 

Where N is the spatial gradient of the shape function 

 

3.3 Principle of Virtual Work 
 

The principle of virtual work postulates that the external 

and the internal virtual work are the same. 

 

int ernal inertial inner ext     

                  

(64) 

     

This means that the internal virtual work stored in the 

material is equal to the external virtual work done on the 

material by external forces. If we consider contact force t  

and body force b  as external forces the following relation 

holds: 

 

V Sext . d . d

 

     u b u t

                   

(65) 

  

The virtual inertial work resulting from the kinetic energy 

is given as 

 

Vinertial d



    u u

                                    

(66) 

 

The compact form of linearized inner virtual work is 

obtained with definitions of the deformation-dependent 

geometric element stiffness matrix  e e
gk u  and the 

deformation-dependent material element stiffness matrix 

 e e
mk u  from Eq. (54). 

 

   

 

e e e e e e e

e e e e

inertial g m

t

 



     
 

  

u k u k u u

u k u u
           

(67) 

 

with the sum yielding the tangential element stiffness 

matrix  e e
tk u  

 

3.4 Approximation of Inertial Virtual Work 
 

Besides discretization of inner virtual work, transient 

mechanical problems also demand discretization of 

dynamic virtual work. If we approximate the variation of 

displacements as well as continuous accelerations with the 

assistance of shape functions according to Eqs. (42) and 

(43), we get the approximation of virtual work of inertial 

forces. 

 

e e e e e eVT
inertialW d



       u N N u u um

         

(68) 

 

Where 

 

e VT d



 N Nm

                                                    

(69) 

 

Then the system mass matrix M  is given as 

 

e

e=1

NE

M m

                                                    

(70) 

 

NE  represents the number of elements 

 

3.5 Approximation of Virtual Work of 

External Loads 
 

The loads acting on a plane element can be divided into 

loads acting in the field and those acting at the boundaries 

of the field. Typical loads in the field are gravitational 

loads whereas actual structural loads are dominated by 

boundary loads such as pressure. With the help of 

displacement variation approximation as in Eqs. (42) and 

(43), a consistent element load vector of volume loads  b  
can be obtained based on external virtual work. 

 

3.5.1 Volume Loads 
 

e e ee VT
ext d




       u N b u pr

                    

(71) 

 

Where the element vector of volume forces 
e

rp  is then 

given as, 
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e VT d



 r N bp

                                                   

(72) 

 

3.5.2 Boundary Loads 
 

The element load vector of element boundary loads t  is 

derived by observation of external virtual work. Here, the 

boundary   can here be divided into four boundaries    

of the element. 

 
4 4

1 1

e ie
ext i ext

i i
i

. d . d



    

 

      u t u t

                                            

(73) 

 

The approximation of displacement variation of each 

boundary ie  after the Jacobi transformation is given as 

 
e ei

ext ni
  

 u r

                                                

(74) 

 

The summation of all correspondingly calculated 

equivalent loads e

ni
r  for i 1,2,3,4 yields the consistent 

equivalent loads of an element. 

 
4 4

1 1
4

1

e ei
ext ext ni

i i

e e e e
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i

. .

  

 
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 



  

 

 



u r
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(75) 

3.6 Nonlinear Elastomechanics Equations of 

the Continuum Compliant Mechanism 
 

The principle of virtual work can now be approximated in 

the element plane as 

 

   e e e e e e e e e
i p n       u u u r u u r rm

        

(76) 

 

By summing Eq.  (76) or explicitly, the vector of internal 

loads,

 

   e e

e=1

NE

i ir u r u  with the vector of external 

loads  e e
p nr r  and the mass matrix 

e
m , we obtain the 

system-related spatially discrete formulation of the 

principle of virtual work, 

 

 i      u u u r u u rM

                                   

(77) 

 

which can be transferred  to an initial value problem of 

non-linear elastodynamics by application of lemma of 

variation calculus.  The problem is defined by the semi-

discrete differential equation of motion of the second 

order. 

 

 i u r u rM

                                                

(78) 

 

For elastostatic or quasi-static problems of the continuum 

compliant mechanism, we can formulate the discrete 

equation of non-linear static equilibrium by neglecting the 

inertial forces uM 0 . 

 

 i r u r

                                              

(79) 

 

4. ILLUSTRATIVE EXAMPLES AND 

VALIDATIONS 

 

The analysis of compliant mechanisms using the plane 

stress elements is illustrated with example problems 

where the goal is to determine the appropriate 

methodology for the design and analysis of compliant 

mechanisms. Results from linear, geometric nonlinear and 

hyperelasticity formulations were compared with 

experimental results. In order to validate the transient 

deflection of a compliant link, we compare the simulation 

results with the experimental results obtained by earlier 

researchers. Four cases were looked into for this 

comparative analysis. For the finite element 

approximation of the above formulations we used 4-node 

isoperimetric elements. The entire mechanism geometry 

was built as adequate. The essential and natural boundary 

conditions were stated. All the finite element codes have 

been produced by using a hybrid system of symbolic 

algebra, AceGEN (Korelc, 2011), which has been 

developed for automatic generation of finite element 

codes (Korelc, 1997). The computations have been carried 

out by the compiled back end, AceFEM (Korelc, 2011). 

 

4.1 Compliant Bistable Micromechanism 
 

The experimental setup by Tsay et al. (2005) is shown in 

Fig.2. The experimental rig consists of vibration isolation 

platform to separate external vibarations; a micrography 

system to capture images to be recorded by computer; a 

workbench where the chip is laid; scanning electronic 

microscope (SEM) for observation and measurement; 

power supply system to drive the actuators. The purpose 

of their experiment was to observe if the micromechanism 

was bistable and to measure the deflection of the bistable 

mechanism. 
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Fig. 2: SEM images of the Compliant Bistable Mechanism 

switched by a probe. 

(a) Before switched;   (b) after switched (Tsay et al., 2005) 

 

Figs. 2 (a) and (b) show the images of the compliant 

bistable micromechanism before and after being switched. 

After stirred by the probe, the compliant bistable 

micromechanism switched from the first stable position to 

the second one and held still. It indicates that the 

compliant bistable micromechanism functioned as 

expected. The displacement of central mass was measured 

by the attached function of SEM. 

 
 

Fig. 3: Deformed and undeformed Complaint Bistable 

Micromechanism 

 
 

Fig. 4. Stresses of elastic members of Complaint Bistable 

Micromechanism 
 

The deformed and undeformed positions of this 

mechanism is shown in Fig. 3 while the displacement of 

central mass from this experiment is compared with three 

analysis assumptions; linear, geometric nonlinear and 

hyperelasticity and shown in Fig. 4. 

 

4.2 Compliant Mechanical Amplifier 
 

Ouyang et al., (2008) conducted the experiment. The 

prototype Compliant Mechanical Amplifier (CMA) is 

shown in Fig. 5 (a). In the experimental setup, two PZT 

actuators (AE0505D16 by Tokin, each has the maximum 

stroke of up to 16 µm with the maximum output force of 

850 N) were installed between two driving links. 

 

 

 
 

Fig. 5:  (a) Prototype of CMA  (b) Compliant Mechanical 

Amplifier (Ouyang et al., 2008) 

A controller was designed to provide the control signal to 

an amplifier (ENV 400, Piezosystem Jena) that was used 

to supply voltage of about 150 V for the PZT actuators. 

Strain gauges were glued to two sides of each PZT 

actuator and acted as a pair to measure the displacement 

of the PZT actuators. The output displacement of the 

CMA was captured using an eddy current sensor and 

recorded by a voltmeter. For static experiments, a 

dSPACE hardware was used to form the controller. The 

PZT actuators were driven by PZT amplifiers through 

controlling the input voltage. The strokes of PZT 

actuators were measured by strain gauges and then 

obtained through A/D converter of the dSPACE 

hardware. The output displacement of the CMA was 

captured using an eddy current sensor and recorded by a 

voltmeter. For dynamic experiments, the PZT amplifiers 

were directly connected with a signal generator of a 

dynamic analyzer where a pseudorandom signal was 

generated, and the response of the CMA was sent to the 

dynamic analyzer for processing. 

 

 
 

Fig. 6: Deformed and undeformed Complaint Mechanical 

Amplifier 
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Fig. 7:  Output - Input displacement history of the 

Compliant Mechanical Amplifier 

 

The deformed and undeformed positions of this 

mechanism are shown in Fig 6. The experimental result is 

compared with three analysis assumptions: linear, 

geometric nonlinear and hyperelasticity as shown in    Fig. 

7. 

 

4.3 Compliant Forceps 
 

Shuib et al. (2007) used the pseudo rigid body method as 

a methodology to perform the stress analysis of a 

compliant forceps. They used finite element analysis 

software, I–DEAS (Integrated Design Engineering 

Analysis Software) to validate the result from the pseudo 

rigid body model. 

 

 
 

Fig. 8:  Compliant forceps and its finite element analysis 

(Shuib et at., 2007) 

 

 
 

Fig.9: Load verses Maximum stress history of Compliant 

Forceps 

 

Fig. 8 shows the compliant forceps and its finite element 

analysis meshing. We extended the analysis to geometric 

nonlinear and large deformation effects. The comparative 

analysis result is shown in Fig. 9. 

 

4.4 Compliant Stroke Amplifier 
 

A planar compliant stroke amplifier is described with 

initial topology, size, shape and boundary conditions (Joo 

et al., 2001) as shown in Fig. 10. 

 

 
 

Fig. 10: Problem specification for compliant stroke amplifier 

design (Joo et al., 2001) 

 

The direction of the desired output motion is out of phase 

(opposite to input direction) with the input displacement 
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Fig. 11: Deformed complaint stroke amplifier mechanism 

modeled with all linearity 

 

 
 

Fig. 12: Deformed complaint stroke amplifier mechanism 

modeled with geometric nonlinearity (GNL) 

 

 
 

Fig. 13: Deformed complaint stroke amplifier mechanism 

modeled with hyperelasticity 

 

 

 

 

 
 

Fig. 14: Output - Input displacement history of complaint 

stroke amplifier mechanism 

 

 
 

Fig.15: Dynamic response of a compliant link 

 

We analyzed this CM using linear, geometric nonlinear 

and hyperelasticity assumptions. The deformed and 

undeformed mechanisms with the respective assumptions 

are shown in Figs. 11 to 13 while Figs. 14 and 15 show 

the displacement history and dynamic response of a 

compliant link respectively. 

 

5. OBSERVATIONS AND DISCUSSION 

OF RESULTS 
 

Figs. 4 and 9 show the load - stress history of the selected 

compliant mechanisms. The stress history for each 

analysis considered differs from that of the experiment. 

The linear and geometric nonlinear analyses did not show 

any form of convergence with the experimental results as 

seen in the case of hyperelasticity. There is a wider range 

of deviation between the linear model and the 

experimental results while the results obtained from the 

geometric nonlinear model displayed a mid-range 

deviation from the experimental results. The results of the 

hyperelastic model however are in agreement with that 

from experiment. We attribute the little discrepancy 
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between the experimental and the hyperelasticity results 

to the differences in the device geometry, mainly in the 

thickness of the compliant mechanism which is highly 

uncertain due to low fabrication tolerances of 

micromachining. 

 

The linear and geometric analyses in Figs. 7 and 14, gave 

a different result pattern from the results obtained in the 

experiment and finite deformation. However, all the three 

categories of analyses showed an initial agreement before 

parting ways at the 3 mm (Fig.7) and 0.2 mm (Fig.14) 

input displacements. It means that before this deviation, 

ordinary linear or only geometric nonlinear analysis could 

capture the deformation behaviour in a given compliant 

mechanism. Any result obtained after this would not be 

reliable for any engineering inference.  

 

Fig. 14 shows the dynamic response of a compliant link of 

the case study compliant mechanism. The dynamic 

response from GNL and linear models show some 

agreement in midrange. Hyperelasticity effects become 

critically important at the end points. Failure may result 

from these end points despite current analysis in the 

midrange. This further show why compliant systems that 

are subjected to large deformations cannot be modeled 

accurately using linear or only geometrical nonlinear 

models 

 

6. CONCLUSION 
 

In this paper, we have presented a new methodology for 

the analysis of compliant mechanisms. We have shown 

that the choice of either linear or geometric nonlinear 

analysis is reliable to a certain extent in the deformation 

behaviour of compliant mechanisms. While geometric 

nonlinear or even linear model could capture the CM 

deformation behaviour when input load or displacement is 

relatively small, results obtained herein have shown that 

for large input load or displacement, the only reliable 

result is that from hyperelasticity.  

 

Furthermore, our results have shown that the stress history 

did not give tolerance for either linear or geometric 

nonlinear assumptions. Only a hyperelasticity model 

vividly captures the true stress history of the CM. The 

understanding of stress behaviour in compliant 

mechanisms is of much importance since failure could 

result from improper stress history.  

 

The dynamic response shows that the effects of material 

nonlinearity become critically important at the end points. 

Failure may result from these end points.  

 

Therefore, design and analysis of compliant mechanisms 

considering the effects of both geometric and material 

nonlinearities is therefore very essentials. 

 

Moreso, integration of numerical and symbolic techniques 

resulted in a remarkable progress in the applicability, 

versatility, robustness and efficiency of the algorithm for 

the solution of the problem. 

 

APPENDIX 
 

AceGen procedure for generating code to work in finite 

element environment consists of a several steps: 

 

Step 1 – Initialization 

 

 Read of AceGen code generator 
<<"AceGEN";

 
 

 Select the working environment  
SMSInitialize ["CompliantMechanism", 

"Environment"  "AceFEM"] 

 

 Select the type of finite element (Q1- 2D four 

node finite element) 
SMSTemplate["SMSTopology"  "Q1",

"SMSSymmetricTangent" True]





 

Step 2 – Definition of user subroutine 

 

SMSStandardModule["Tangent and residual"];

 

 Definition of input-output variables 

 Kinematics of the selected type of finite element 

 Definition of test function 

 Definition of governing equations 

 Definition of Jacobian matrix 

 Definition of stiffness matrix 

 

Step 3 – Definition of output variables using 

subroutine for postprocessing 

 

SMSStandardModule["Postprocessing"];

 

Step 4 – Generation of code 

SMSWrite[];  

 

Standard AceFEM procedure consists two basic phase. 

 

1. Phase Data Entry  

 

 phase starts with SMTInputData[]  

 description of the material model of finite 

element  SMTAddDomain defined by code 

which must be generated before analysis  

 mesh generating  

InputData,SMTAddElement  

 setting boundary conditions  

SMTAddEssentialBoundary  

 setting loads  

SMTAddNaturalBoundary  
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2. Phase Analysis  

 

 phase starts with              

 solution procedures are executed by the user 

enters inputs  SMTConvergence  

 solving problem by standard Newton-Raphson 

iterative method 

 postprocessing of results as part of analysis  

 

SMTShowMesh or later independently of the analysis 

SMTPut  
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