

Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 6 No. 2 (2017), pp. 7-17. © 2017 University of Isfahan

FULL EDGE-FRIENDLY INDEX SETS OF COMPLETE BIPARTITE GRAPHS

WAI CHEE SHIU

Communicated by Tommy R. Jensen

ABSTRACT. Let G = (V, E) be a simple graph. An edge labeling $f : E \to \{0, 1\}$ induces a vertex labeling $f^+ : V \to \mathbb{Z}_2$ defined by $f^+(v) \equiv \sum_{uv \in E} f(uv) \pmod{2}$ for each $v \in V$, where $\mathbb{Z}_2 = \{0, 1\}$ is the additive group of order 2. For $i \in \{0, 1\}$, let $e_f(i) = |f^{-1}(i)|$ and $v_f(i) = |(f^+)^{-1}(i)|$. A labeling f is called edge-friendly if $|e_f(1) - e_f(0)| \leq 1$. $I_f(G) = v_f(1) - v_f(0)$ is called the edge-friendly index of Gunder an edge-friendly labeling f. The full edge-friendly index set of a graph G is the set of all possible edge-friendly indices of G. Full edge-friendly index sets of complete bipartite graphs will be determined.

1. Introduction

Let G = (V, E) be a simple graph. An edge labeling $f : E \to \{0, 1\} \subset \mathbb{N}$ induces a vertex labeling $f^+ : V \to \mathbb{Z}_2$ defined by $f^+(v) \equiv \sum_{uv \in E} f(uv) \pmod{2}$ for each $v \in V$, where $\mathbb{Z}_2 = \{0, 1\}$ is the additive group of order 2. We sometimes view the value of $f^+(v)$ as an integer. For $i \in \{0, 1\}$, let $e_f(i) = |f^{-1}(i)|$ and $v_f(i) = |(f^+)^{-1}(i)|$. Let $I_f(G) = v_f(1) - v_f(0)$. An edge labeling f is edge-friendly if $|e_f(1) - e_f(0)| \leq 1$. The concept of edge-friendly index maybe first introduced by Lee and Ng [4] on considering edge cordial labeling. Unfortunately, we cannot find this paper even through we have asked the authors with response that they also do not have a reprint. Readers are referred to [1] for detail about edge cordiality.

The number $I_f(G)$ is called the *edge-friendly index* of G under f if f is an edge-friendly labeling of G. The set $\text{FEFI}(G) = \{I_f(G) \mid f \text{ is edge-friendly}\}$ is called the *full edge-friendly index set* of G. This is a dual concept of full friendly index set which was first introduced by the author and H. Kwong [10]. Readers who are interested on friendly index or friendly index set may refer to [2,3,5,6,8-16].

MSC(2010): Primary: 05C78.

Keywords: Full edge-friendly index sets, edge-friendly index, edge-friendly labeling, complete bipartite graph. Received: 20 January 2016, Accepted: 17 September 2016.

In [7], the author proposed a conjecture that

Conjecture 1.1.

$$\text{FEFI}(K_{m,n}) = \begin{cases} \{4j - (m+n) \mid 1 \le j \le \lfloor (m+n)/2 \rfloor\}, & \text{if } n \equiv 2 \pmod{4} \text{ and } m = 2 \text{ or } m \text{ is odd}; \\ \{4j - (m+n) \mid 1 \le j \le \lfloor (m+n)/2 \rfloor\}, & \text{if } m \equiv 2 \pmod{4} \text{ and } n = 2 \text{ or } n \text{ is odd}; \\ \{4j - (m+n) \mid 0 \le j \le \lfloor (m+n)/2 \rfloor\}, & \text{otherwise.} \end{cases}$$

This paper is a continuation of [7]. We shall determine full edge-friendly index sets of complete bipartite graphs $K_{m,n}$ and settle the above conjecture.

2. Some Basic Properties

In the following, all graphs are simple and connected. The codomain of any edge labeling is \mathbb{Z}_2 . Suppose f is an edge labeling. A vertex (resp. an edge) is called an *i-vertex* (resp. *i-edge*) under f if it is labeled by $i \in \{0, 1\}$. Notation and concepts not defined here are referred to [17].

Suppose G is a graph of order p. Since $v_f(1) + v_f(0) = p$ for any edge labeling f of G, $I_f(G) = 2v_f(1) - p$. Thus, it suffices to study the number of 1-vertices instead of studying the edge-friendly index of G under f.

Lemma 2.1 ([4,7]). Let f be any edge labeling of a graph G = (V, E). Then $v_f(1)$ must be even.

By means of the above lemma, we may write $v_f(1) = 2j$ for some j with $0 \le j \le \lfloor p/2 \rfloor$, where f is an edge labeling of a graph G of order p. So $I_f(G) = 4j - p$ for some $j, 0 \le j \le \lfloor p/2 \rfloor$. It implies that

$$\text{FEFI}(G) \subseteq \{4j - p \mid 0 \le j \le \lfloor p/2 \rfloor\}.$$

A labeling matrix $L_f(G)$ for an edge labeling f of a graph G is a matrix whose rows and columns are indexed by the vertices of G and the (u, v)-entry is f(uv) if $uv \in E$, and is * otherwise.

Suppose $L_f(G)$ is a labeling matrix for the edge labeling f of G. If we view the entries of $L_f(G)$ as elements in \mathbb{Z}_2 , then $f^+(v)$ is the v-row sum (as well as v-column sum), where entries with * will be treated as 0.

Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ be the bipartition of the complete bipartite graph $K_{m,n}$. Under this indexing of vertices, a labeling matrix for any edge labeling f is of the form

$$\begin{pmatrix} \bigstar_m & A \\ A^T & \bigstar_n \end{pmatrix}$$

where \bigstar_r is a square matrix of order r with all entries being \ast and A is an $m \times n$ matrix whose entries are elements of \mathbb{Z}_2 . So the multi-set of row sums and column sums of A is equal to the sequence $\{f^+(x_1), \ldots, f^+(x_m), f^+(y_1), \ldots, f^+(y_n)\}$. Thus, we shall only consider such matrix A and we shall denote it as $A_f(G)$ when there is some ambiguity. Thus, we shall use such matrix $A_f(G)$ (or A) to define an edge labeling f. Let $v_A(1)$ denote the number of 1's being row sum or column sum. Then $v_A(1) = v_f(1)$. Similarly, we may define $v_A(0)$, which will equal to $v_f(0)$. Also we may define $e_A(1)$ and $e_A(0)$ to be the number of 1 and 0 used to form the matrix A, respectively. So $e_A(i) = e_f(i), i = 0, 1$.

An $m \times n$ matrix A satisfying the following conditions is called a *friendly matrix* of $K_{m,n}$:

- 1. Each entry of A is either 1 or 0;
- 2. $|e_A(1) e_A(0)| \le 1$.

Actually, in Conjecture 1.1, 2j is equal to $v_A(1)$ for some friendly matrix A. Since we only consider the value of $v_A(1)$ later, we simple write this value as s(A) and called it the *s*-value of A.

It was listed in [7] that

$$\text{FEFI}(K_{1,n}) = \begin{cases} \{-2,2\}, & n = 4k+1; \\ \{1\}, & n = 4k+2; \\ \{0\}, & n = 4k+3; \\ \{-1\}, & n = 4k+4, \end{cases}$$

where $k \geq 0$.

In the following sections, we want to find some friendly matrices A of $K_{m,n}$ such that $v_A(1)$ run through all the possible s-values, where $m, n \ge 2$.

3. Full Edge-friendly Index Sets of $K_{2,n}$

It is known from [7, Example 4.5] that Conjecture 1.1 holds for $n \equiv 2 \pmod{4}$. So we only need to deal with n = 2k + 1 or n = 4k for $k \ge 1$.

For easy to describe some matrices, let $J_{m,n}$ be the $m \times n$ matrix whose entries are 1 and $O_{m,n}$ be the $m \times n$ zero matrix.

We first consider n = 2k + 1, for some $k \ge 1$. We want to show that

(3.1)
$$\operatorname{FEFI}(K_{2,2k+1}) = \{4j - 2k - 3 \mid 1 \le j \le k+1\}$$

Let the block matrix $A_1 = \begin{pmatrix} J_{2,k} & O_{2,k} & 1 \\ 0 \end{pmatrix}$ which is a friendly matrix of $K_{2,2k+1}$. Clearly $s(A_1) = 2$.

For $1 \le i \le k$, let A_{i+1} be the matrix obtained from A_i by swapping $(A_i)_{1,i}$ (the (1,i)-entry of A_i) with $(A_i)_{1,k+i}$. Then $s(A_{i+1}) = s(A_i) + 2 = 2i + 2$. Hence we obtain each even number between 2 and 2(k+1) as a value of s(A) for some friendly matrix A. So we get (3.1).

Next, we consider n = 4k, for some $k \ge 1$. Let the block matrix $B_0 = \begin{pmatrix} J_{2,2k} & O_{2,2k} \end{pmatrix}$ which is a friendly matrix of $K_{2,4k}$. Clearly $s(B_0) = 0$. By a similar procedure as above, we will get

$$\{4j - 4k - 2 \mid 0 \le j \le 2k\} \subseteq \text{FEFI}(K_{2,4k})$$

Following lemma was proved at [7, Lemma 4.2]:

Lemma 3.1. Suppose m and n are even. There is a friendly matrix M of $K_{m,n}$ such that $v_M(1) = m+n$.

Combining Lemma 3.1 and the above discussion, we have

$$\text{FEFI}(K_{2,4k}) = \{4j - 4k - 2 \mid 0 \le j \le 2k + 1\}$$

So we have

Theorem 3.2. Conjecture 1.1 holds when m = 2.

For now on, we assume $m, n \geq 3$.

4. Full Edge-friendly Index Sets of $K_{m,n}$ with even m

We list some useful matrices which were defined in [7].

(4.1)
$$A_{2s,4k} = J_{1,k} \otimes A_{2s,4}$$
, the Kronecker product of $J_{1,k}$ and $A_{2s,4}$,

(4.2)
$$A_{2s+1,4k} = J_{1,k} \otimes \begin{pmatrix} A_{2s-2,4} \\ A_{3,4} \end{pmatrix},$$

(4.3)
$$A_{4h+2,4k+2} = \left(\begin{array}{c|c} J_{1,k-1} \otimes A_{4h-4,4} & D_{2h-2} \\ \hline J_{2,4k-4} \otimes A_{3,4} & A_{6,6} \end{array}\right)$$

Before finding the required friendly matrices, we define some procedures:

Procedure R: Let R_0 be a given $m \times 2t$ friendly matrix. For $1 \le i \le t$, let R_i be the matrix obtained from R_{i-1} by swapping $(R_{i-1})_{1,i}$ with $(R_{i-1})_{1,t+i}$.

Procedure C: Let C_0 be a given $2s \times n$ friendly matrix. For $1 \le i \le s$, let C_i be the matrix obtained from C_{i-1} by swapping $(C_{i-1})_{i,1}$ with $(C_{i-1})_{s+i,1}$.

We first consider m = 4h + 2 with $h \ge 1$.

Case 1.1: Suppose $n = 4k, k \ge 1$. In this case, we want to find a friendly matrix A such that s(A) = 2j for each j, where $0 \le j \le 2h + 2k + 1$.

Let $B_0 = (J_{4h+2,2k} \quad O_{4h+2,2k})$. Then $s(B_0) = 0$. Applying Procedure R to B_0 , we get B_i , for $1 \le i \le 2k$. It is easy to see that $s(B_i) = 2i$.

Let $C_0 = \begin{pmatrix} J_{2h+1,4k} \\ O_{2h+1,4k} \end{pmatrix}$. Then $s(C_0) = 4k$. Applying Procedure C to C_0 , we get C_i for $1 \le i \le 2h+1$. Clearly $s(C_i) = 4k + 2i$.

Hence we get the result.

Example 4.1. Consider the graph $K_{6,8}$.

Applying Procedure R to B_0 , we have

$$B_{0} \rightarrow B_{1} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow B_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow B_{4} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Applying Procedure C to C_0 , we have

Hence the corresponding s-values of these matrices are 0, 2, 4, 6, 8, 8, 10, 12, 14.

Case 1.2: Suppose n = 4k + 2, $k \ge 1$. In this case, we want to find a friendly matrix A such that s(A) = 2j for each j, where $0 \le j \le 2h + 2k + 2$.

Let $B_0 = A_{4h+2,4k+2}$ which is defined in (4.3) Then $s(B_0) = 0$.

- Step1: If k = 1, then skip this step. Performing Procedure R to a submatrix $A_{3,4}$ which lies in the last row of the block matrix B_0 , we get two submatrices whose corresponding *s*-values are 2 and 4. We do Procedure R to each of such k - 1 submatrices $A_{3,4}$ of B_0 one by one. Then we get 2k - 2matrices whose *s*-values run through the even numbers between 2 and 4k - 4. After performing this step, let the last matrix be B, i.e., s(B) = 4k - 4.
- Step2: Let D be a 4×6 matrix consisting of the last four rows of the matrix $A_{6,6}$. Now we apply Procedure C to the submatrix D of B. Then we will get two matrices whose s-values are 4k - 2and 4k.

Step3: Let $C_0 = \begin{pmatrix} J_{2h+1,4k+2} \\ O_{2h+1,4k+2} \end{pmatrix}$. Then $s(C_0) = 4k + 2$. Applying Procedure C to C_0 , we get C_i for $1 \le i \le 2h+1$. Then $s(C_i) = 4k+2+2i$.

Hence we get the result.

Example 4.2. Consider the graph $K_{6,10}$.

Step 1: We have

$$B_0 \to B_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \to B_2 = \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Step 2: We have

$$B_2 \to \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & | & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & | & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & | & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & | & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Then the corresponding s-values of these matrices are 0, 2, 4, 6, 8. After applying Procedure C to C_0 , we obtain the s-values being 10, 12, 14, 16. The last matrix of this step is

Case 1.3: Suppose $n = 2t + 1 \ge 4h + 2$. In this case, we want to find a friendly matrix A such that s(A) = 2j for each j, where $1 \le j \le 2h + t + 1$.

To make the presentation easier to follow, we consider the graph $K_{2t+1,4h+2}$, which is isomorphic to $K_{4h+2,2t+1}$.

Let
$$Z_{2t+1,2} = \begin{pmatrix} J_{t,2} \\ 1 & 0 \\ O_{t,2} \end{pmatrix}$$
 and $B_1 = A_{2t+1,4h+2} = \begin{pmatrix} A_{2t+1,4h} & Z_{2t+1,2} \end{pmatrix}$, where $A_{2t+1,4h}$ is defined in

(4.2). It is known that $s(B_1) = 2$ (c.f. [7]).

Do the same procedure as Step 1 of Case 1.2, we get 2h matrices whose *s*-values run through the even numbers between 4 and 4h + 2. After performing this step, let the last matrix be *B*. Note that the submatrix consisting of the last two columns of *B* is still the matrix $Z_{2t+1,2}$. For $1 \le i \le t$, swap $(Z_{2t+1,2})_{i,1}$ with $(Z_{2t+1,2})_{t+1+i,1}$ in the matrix *B*. Then we obtain *t* matrices whose *s*-values run through the even numbers between 4h + 4 and 4h + 2 + 2t.

Hence we get the result.

Example 4.3. Consider the graph $K_{6,7}$. From the above discussion we consider the graph $K_{7,6}$ instead.

Let
$$B_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & | & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 \end{pmatrix}$$
.

Applying the same procedure as Step 1 of Case 1.2, we have

$$B_1 \to B_2 = \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & | & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 \end{pmatrix} \to B_3 = \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ 1 & 1 & 0 & 0 & | & 1 & 1 \\ \hline 1 & 1 & 0 & 0 & | & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & | & 0 & 0 \\ 0 & 1 & 1 & 0 & | & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 \end{pmatrix}$$

Then the corresponding s-values of these matrices are 2, 4, 6. Swapping entries of the submatrix $Z_{7,2}$, we have

$$B_{3} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 \\ \hline \end{pmatrix}$$

Then the corresponding s-values of these matrices are 6, 8, 10, 12.

Next, we consider m = 4h with $h \ge 1$. For easy to present, we consider $K_{n,4h}$ instead of $K_{4h,n}$. If n = 4k + 2, then we can refer to Case 1.1. So we only consider n = 4k and n = 2t + 1.

Case 2.1: Suppose $n = 4k, k \ge 1$. In this case, we want to find a friendly matrix A such that s(A) = 2j for each j, where $0 \le j \le 2h + 2k$.

Let $B_0 = (J_{4k,2h} \quad O_{4k,2h})$. Similar to Case 1.1 we obtain matrix B_i such that $s(B_i) = 2i$ for $0 \le i \le 2h$.

Let $C_0 = \begin{pmatrix} J_{2k+1,2h} & O_{2k+1,2h} \\ O_{2k-1,2h} & J_{2k-1,2h} \end{pmatrix}$. Clearly $s(C_0) = 4h$. Applying Procedure C to C_0 (the first step is redundant), we obtain 2k matrices whose s-values run through the even numbers between 4h and

4h + 4k - 2. Combining with the maximum value obtained in [7, Lemma 4.2], we have the result.

Case 2.2: Suppose n = 2t + 1, $t \ge 1$. In this case, we want to find a friendly matrix A such that s(A) = 2j for each j, where $0 \le j \le 2h + t$.

Let $B_0 = A_{2t+1,4h}$. It is known [7] that $s(B_0) = 0$. Apply the procedure similar to Step 1 of Case 1.2 we obtain 2h matrices whose s-values run through the even numbers between 2 and 4h. The last matrix

$$B_{2h}$$
 is $J_{1,h} \otimes \begin{pmatrix} A_{2t-2,4} \\ B_{3,4} \end{pmatrix}$, where $B_{3,4} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

Before we continue the construction, we define two more procedures.

Procedure S1: Consider the matrix $A_{4,4}$. We perform the following two steps:

$$A_{4,4} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \to A_{4,4}^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \to A_{4,4}^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Clearly, $s(A_{4,4}^{(1)}) = 2$ and $s({2 \choose 4,4}) = 4$.

Procedure S2: Consider the matrix $S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$. We perform the following two steps: $S \to S_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \to S_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

Clearly, s(S) = 4, $s(S_1) = 6$ and $s(S_2) = 8$.

Now we return to consider Case 2.2.

Suppose t = 2k+1. Then the first 4 columns of B_{2h} is $\begin{pmatrix} J_{k,1} \otimes A_{4,4} \\ B_{3,4} \end{pmatrix}$. Applying Procedure S1 to $A_{4,4}$ of the first 4 columns of B_{2h} one by one, we obtain 2k matrices whose s-values run through the even numbers between 4h + 2 and 4h + 4k. Combining with the maximum value obtained in [7, Lemma 4.2], we have the result.

Suppose t = 2k. Then the first 4 columns of B_{2h} is $\begin{pmatrix} J_{k-1,1} \otimes A_{4,4} \\ S \end{pmatrix}$. Applying Procedure S1 to $A_{4,4}$ of the first 4 columns of B_{2h} one by one, we obtain 2k-2 matrices whose *s*-values run through the even numbers between 4h + 2 and 4h + 4k - 4. After that, applying Procedure S2 to S of the first 4 columns of B_{2h} we obtain two matrices whose s-values are 4h + 4k - 2 and 4h + 4k. So we have the result.

Example 4.4. Consider the graph $K_{9,4}$. Applying a similar procedure as Step 1 of Case 1.2, Procedure S1 and then Procedure S2, we have

$$B_{0} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline$$

Hence the corresponding s-values of these matrices are 0, 2, 4, 6, 8, 10, 12.

Combining the discussions above, we have

Theorem 4.1. Conjecture 1.1 holds when m is even.

5. Full Edge-friendly Index Sets of $K_{m,n}$ with odd m and n

Now, by symmetry we have to deal with three cases: (a) m = 4h + 3 and n = 4k + 3; (b) m = 4h + 1and n = 4k + 3; (c) m = 4h + 1 and n = 4k + 1.

Let
$$A_{3,3} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $A_{4,3} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $A_{5,3} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A_{4,5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, and
 $A_{5,5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Note that all *s*-values of these friendly matrices are 0.

Case (a): Suppose m = 4h + 3 and m = 4k + 3. We start from the friendly matrix

$$A_{4h+3,4k+3} = \begin{pmatrix} A_{4h,4k} & J_{h,1} \otimes A_{4,3} \\ J_{1,k} \otimes A_{3,4} & A_{3,3} \end{pmatrix},$$

whose s-value is 0. We apply a similar Procedure R to each submatrix $A_{3,4}$ lying in the last row of the block matrix $A_{4h+3,4k+3}$ one by one. Then we obtain 2k matrices whose s-values run through the even numbers between 2 to 4k. After that, we apply Procedure C to submatrices $A_{4,3}$ lying in the last column of the block matrix $A_{4h+3,4k+3}$ one by one. Then we obtain 2h matrices whose s-values run through the even numbers between 2 + 4k to 4h + 4k.

For the $A_{3,3}$ lying at the lower-right corner of the block matrix $A_{4h+3,4k+3}$, we apply the following procedure:

$$A_{3,3} \to \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Note that, the last step is to replace a 0 to 1. The resulting matrix is still friendly. So we obtain three more matrices whose s-values are 4h + 4k + 2, 4h + 4k + 4 and 4h + 4k + 6. Hence we get the result. **Case (b):** Suppose m = 4h + 1 and n = 4k + 3. We start from the friendly matrix

$$A_{4h+1,4k+3} = \left(A_{4h+1,4k} \middle| \begin{array}{c} J_{h-1,1} \otimes A_{4,3} \\ A_{5,3} \end{array} \right),$$

where $A_{4h+1,4k}$ was defined in (4.2). Similar to Case (a), we apply Procedure R and Procedure C to each submatrices $A_{3,4}$ and $A_{4,3}$, respectively. Then we obtain 2k + 2h - 2 matrices whose *s*-values run through the even numbers from 2 to 4h + 4k - 4. After that, replace the lower right corner $A_{5,3}$ by the following 4 matrices we will get 4 matrices whose *s*-values are 4h + 4k - 2, 4h + 4k, 4h + 4k + 2 and 4h + 4k + 4:

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Hence we get the result.

Case (c): Suppose m = 4h + 1 and m = 4k + 1. We start from the friendly matrix

$$A_{4h+1,4k+1} = \left(A_{4h+1,4k-4} \mid \begin{array}{c} J_{h-1,1} \otimes A_{4,5} \\ A_{5,5} \end{array} \right)$$

Similar to Case (a), we apply Procedure R and Procedure C to each submatrices $A_{3,4}$ and $A_{4,5}$, respectively. Then we obtain 2k + 2h - 4 matrices whose *s*-values run through the even numbers from 2 to 4h + 4k - 8. After that, replace the lower right corner $A_{5,5}$ by the following 5 matrices we will get 5 matrices whose *s*-values are 4h + 4k - 6, 4h + 4k - 4, 4h + 4k - 2, 4h + 4k, and 4h + 4k + 2: $\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

Hence we get the result.

Combining the discussions above, we have

Theorem 5.1. Conjecture 1.1 holds when both m and n are odd.

That means Conjecture 1.1 holds for any case.

References

- [1] K. L. Collins and M. Hovey, Most graphs are edge cordial, Ars Combin., 30 (1990) 289–295.
- [2] H. Kwong, S. M. Lee and H. K. Ng, On friendly index sets of 2-regular graphs, Discrete Math., 308 (2008) 5522–5532.
- [3] H. Kwong and S. M. Lee, On friendly index sets of generalized books, J. Combin. Math. Combin. Comput., 66 (2008) 43–58.
- [4] S. M. Lee and H. K. Ng, A conjecture on edge cordial trees, Abstracts Amer. Math. Soc., 9 (1988) 286-287.
- [5] S. M. Lee and H. K. Ng, On friendly index sets of bipartite graphs, Ars Combin., 86 (2008) 257–271.
- [6] E. Salehi and S. M. Lee, On friendly index sets of trees, Congr. Numer., 178 (2006) 173-183.
- [7] W. C. Shiu, Extreme edge-friendly indices of complete bipartite graphs, Trans. Comb., 5 no. 3 (2016) 11–21.
- [8] W. C. Shiu and M. H. Ho, Full friendly index sets and full product-cordial index sets of some permutation Petersen graphs, J. Comb. Number Theory, 5 (2013) 227–244.
- [9] W. C. Shiu and M. H. Ho, Full friendly index sets of slender and flat cylinder graphs, Trans. Comb., 2 no. 4 (2013) 63-80.

- [10] W. C. Shiu and H. Kwong, Full friendly index sets of $P_2 \times P_n$, Discrete Math., **308** (2008) 3688–3693.
- [11] W. C. Shiu and H. Kwong, Product-cordial index and friendly index of regular graphs, Trans. Combin., 1 no. 1 (2012) 15–20.
- [12] W. C. Shiu and S. M. Lee, Full friendly index sets and full product-cordial index sets of twisted cylinders, J. Comb. Number Theory, 3 (2011) 209–216.
- [13] W. C. Shiu and M. H. Ling, Full friendly index sets of Cartesian products of two cycles, Acta Math. Sin. (Engl. Ser.), 26 (2010) 1233–1244.
- [14] W. C. Shiu and F. S. Wong, Full friendly index sets of cylinder graphs, Australas. J. Combin., 52 (2012) 141-162.
- [15] D. Sinha and J. Kaur, Full friendly index set-I, Discrete Appl. Math., 161 (2013) 1262-1274.
- [16] D. Sinha and J. Kaur, Full friendly index set-II, J. Combin. Math. Combin. Comput., 79 (2011) 65-75.
- [17] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

Wai Chee Shiu

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China Email: wcshiu@math.hkbu.edu.hk