www.combinatorics.ir

FULL EDGE-FRIENDLY INDEX SETS OF COMPLETE BIPARTITE GRAPHS

WAI CHEE SHIU

Communicated by Tommy R. Jensen

Abstract

Let $G=(V, E)$ be a simple graph. An edge labeling $f: E \rightarrow\{0,1\}$ induces a vertex labeling $f^{+}: V \rightarrow \mathbb{Z}_{2}$ defined by $f^{+}(v) \equiv \sum_{u v \in E} f(u v)(\bmod 2)$ for each $v \in V$, where $\mathbb{Z}_{2}=\{0,1\}$ is the additive group of order 2. For $i \in\{0,1\}$, let $e_{f}(i)=\left|f^{-1}(i)\right|$ and $v_{f}(i)=\left|\left(f^{+}\right)^{-1}(i)\right|$. A labeling f is called edge-friendly if $\left|e_{f}(1)-e_{f}(0)\right| \leq 1 . I_{f}(G)=v_{f}(1)-v_{f}(0)$ is called the edge-friendly index of G under an edge-friendly labeling f. The full edge-friendly index set of a graph G is the set of all possible edge-friendly indices of G. Full edge-friendly index sets of complete bipartite graphs will be determined.

1. Introduction

Let $G=(V, E)$ be a simple graph. An edge labeling $f: E \rightarrow\{0,1\} \subset \mathbb{N}$ induces a vertex labeling $f^{+}: V \rightarrow \mathbb{Z}_{2}$ defined by $f^{+}(v) \equiv \sum_{u v \in E} f(u v)(\bmod 2)$ for each $v \in V$, where $\mathbb{Z}_{2}=\{0,1\}$ is the additive group of order 2 . We sometimes view the value of $f^{+}(v)$ as an integer. For $i \in\{0,1\}$, let $e_{f}(i)=\left|f^{-1}(i)\right|$ and $v_{f}(i)=\left|\left(f^{+}\right)^{-1}(i)\right|$. Let $I_{f}(G)=v_{f}(1)-v_{f}(0)$. An edge labeling f is edge-friendly if $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$. The concept of edge-friendly index maybe first introduced by Lee and $\mathrm{Ng}[4]$ on considering edge cordial labeling. Unfortunately, we cannot find this paper even through we have asked the authors with response that they also do not have a reprint. Readers are referred to [1] for detail about edge cordiality.

The number $I_{f}(G)$ is called the edge-friendly index of G under f if f is an edge-friendly labeling of G. The set $\operatorname{FEFI}(G)=\left\{I_{f}(G) \mid f\right.$ is edge-friendly $\}$ is called the full edge-friendly index set of G. This is a dual concept of full friendly index set which was first introduced by the author and H. Kwong [10]. Readers who are interested on friendly index or friendly index set may refer to $[2,3,5,6,8-16]$.

[^0]In [7], the author proposed a conjecture that

Conjecture 1.1.

$\operatorname{FEFI}\left(K_{m, n}\right)= \begin{cases}\{4 j-(m+n) \mid 1 \leq j \leq\lfloor(m+n) / 2\rfloor\}, & \text { if } n \equiv 2 \quad(\bmod 4) \text { and } m=2 \text { or } m \text { is odd; } \\ \{4 j-(m+n) \mid 1 \leq j \leq\lfloor(m+n) / 2\rfloor\}, & \text { if } m \equiv 2 \quad(\bmod 4) \text { and } n=2 \text { or } n \text { is odd; } \\ \{4 j-(m+n) \mid 0 \leq j \leq\lfloor(m+n) / 2\rfloor\}, & \text { otherwise. }\end{cases}$
This paper is a continuation of [7]. We shall determine full edge-friendly index sets of complete bipartite graphs $K_{m, n}$ and settle the above conjecture.

2. Some Basic Properties

In the following, all graphs are simple and connected. The codomain of any edge labeling is \mathbb{Z}_{2}. Suppose f is an edge labeling. A vertex (resp. an edge) is called an i-vertex (resp. i-edge) under f if it is labeled by $i \in\{0,1\}$. Notation and concepts not defined here are referred to [17].

Suppose G is a graph of order p. Since $v_{f}(1)+v_{f}(0)=p$ for any edge labeling f of $G, I_{f}(G)=$ $2 v_{f}(1)-p$. Thus, it suffices to study the number of 1 -vertices instead of studying the edge-friendly index of G under f.

Lemma $2.1([4,7])$. Let f be any edge labeling of a graph $G=(V, E)$. Then $v_{f}(1)$ must be even.
By means of the above lemma, we may write $v_{f}(1)=2 j$ for some j with $0 \leq j \leq\lfloor p / 2\rfloor$, where f is an edge labeling of a graph G of order p. So $I_{f}(G)=4 j-p$ for some $j, 0 \leq j \leq\lfloor p / 2\rfloor$. It implies that

$$
\operatorname{FEFI}(G) \subseteq\{4 j-p \mid 0 \leq j \leq\lfloor p / 2\rfloor\}
$$

A labeling matrix $L_{f}(G)$ for an edge labeling f of a graph G is a matrix whose rows and columns are indexed by the vertices of G and the (u, v)-entry is $f(u v)$ if $u v \in E$, and is $*$ otherwise.

Suppose $L_{f}(G)$ is a labeling matrix for the edge labeling f of G. If we view the entries of $L_{f}(G)$ as elements in \mathbb{Z}_{2}, then $f^{+}(v)$ is the v-row sum (as well as v-column sum), where entries with $*$ will be treated as 0 .

Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be the bipartition of the complete bipartite graph $K_{m, n}$. Under this indexing of vertices, a labeling matrix for any edge labeling f is of the form

$$
\left(\begin{array}{cc}
\star_{m} & A \\
A^{T} & \star_{n}
\end{array}\right),
$$

where $\boldsymbol{\star}_{r}$ is a square matrix of order r with all entries being $*$ and A is an $m \times n$ matrix whose entries are elements of \mathbb{Z}_{2}. So the multi-set of row sums and column sums of A is equal to the sequence $\left\{f^{+}\left(x_{1}\right), \ldots, f^{+}\left(x_{m}\right), f^{+}\left(y_{1}\right), \ldots, f^{+}\left(y_{n}\right)\right\}$. Thus, we shall only consider such matrix A and we shall denote it as $A_{f}(G)$ when there is some ambiguity. Thus, we shall use such matrix $A_{f}(G)$ (or A) to define an edge labeling f. Let $v_{A}(1)$ denote the number of 1 's being row sum or column sum. Then $v_{A}(1)=v_{f}(1)$. Similarly, we may define $v_{A}(0)$, which will equal to $v_{f}(0)$. Also we may define $e_{A}(1)$ and $e_{A}(0)$ to be the number of 1 and 0 used to form the matrix A, respectively. So $e_{A}(i)=e_{f}(i), i=0,1$.

An $m \times n$ matrix A satisfying the following conditions is called a friendly matrix of $K_{m, n}$:

1. Each entry of A is either 1 or 0 ;
2. $\left|e_{A}(1)-e_{A}(0)\right| \leq 1$.

Actually, in Conjecture 1.1, $2 j$ is equal to $v_{A}(1)$ for some friendly matrix A. Since we only consider the value of $v_{A}(1)$ later, we simple write this value as $s(A)$ and called it the s-value of A.

It was listed in [7] that

$$
\operatorname{FEFI}\left(K_{1, n}\right)= \begin{cases}\{-2,2\}, & n=4 k+1 ; \\ \{1\}, & n=4 k+2 ; \\ \{0\}, & n=4 k+3 ; \\ \{-1\}, & n=4 k+4\end{cases}
$$

where $k \geq 0$.
In the following sections, we want to find some friendly matrices A of $K_{m, n}$ such that $v_{A}(1)$ run through all the possible s-values, where $m, n \geq 2$.

3. Full Edge-friendly Index Sets of $K_{2, n}$

It is known from [7, Example 4.5] that Conjecture 1.1 holds for $n \equiv 2(\bmod 4)$. So we only need to deal with $n=2 k+1$ or $n=4 k$ for $k \geq 1$.

For easy to describe some matrices, let $J_{m, n}$ be the $m \times n$ matrix whose entries are 1 and $O_{m, n}$ be the $m \times n$ zero matrix.

We first consider $n=2 k+1$, for some $k \geq 1$. We want to show that

$$
\begin{equation*}
\operatorname{FEFI}\left(K_{2,2 k+1}\right)=\{4 j-2 k-3 \mid 1 \leq j \leq k+1\} \tag{3.1}
\end{equation*}
$$

Let the block matrix $A_{1}=\left(\begin{array}{lll}J_{2, k} & O_{2, k} & 1 \\ & 0\end{array}\right)$ which is a friendly matrix of $K_{2,2 k+1}$. Clearly $s\left(A_{1}\right)=2$.
For $1 \leq i \leq k$, let A_{i+1} be the matrix obtained from A_{i} by swapping $\left(A_{i}\right)_{1, i}$ (the $(1, i)$-entry of $\left.A_{i}\right)$ with $\left(A_{i}\right)_{1, k+i}$. Then $s\left(A_{i+1}\right)=s\left(A_{i}\right)+2=2 i+2$. Hence we obtain each even number between 2 and $2(k+1)$ as a value of $s(A)$ for some friendly matrix A. So we get (3.1).

Next, we consider $n=4 k$, for some $k \geq 1$. Let the block matrix $B_{0}=\left(\begin{array}{ll}J_{2,2 k} & O_{2,2 k}\end{array}\right)$ which is a friendly matrix of $K_{2,4 k}$. Clearly $s\left(B_{0}\right)=0$. By a similar procedure as above, we will get

$$
\{4 j-4 k-2 \mid 0 \leq j \leq 2 k\} \subseteq \operatorname{FEFI}\left(K_{2,4 k}\right)
$$

Following lemma was proved at [7, Lemma 4.2]:
Lemma 3.1. Suppose m and n are even. There is a friendly matrix M of $K_{m, n}$ such that $v_{M}(1)=m+n$.
Combining Lemma 3.1 and the above discussion, we have

$$
\operatorname{FEFI}\left(K_{2,4 k}\right)=\{4 j-4 k-2 \mid 0 \leq j \leq 2 k+1\}
$$

So we have
Theorem 3.2. Conjecture 1.1 holds when $m=2$.
For now on, we assume $m, n \geq 3$.

4. Full Edge-friendly Index Sets of $K_{m, n}$ with even m

We list some useful matrices which were defined in [7].

$$
\begin{aligned}
& A_{2 s, 4}=\left(\begin{array}{ll}
J_{2 s, 2} & O_{2 s, 2}
\end{array}\right) \text { for } s \geq 1, \quad A_{3,4}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right), \\
& D_{s}=\binom{J_{s, 6}}{O_{s, 6}} \text { for } s \geq 1, \quad A_{6,6}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

$$
\begin{align*}
A_{2 s, 4 k} & =J_{1, k} \otimes A_{2 s, 4}, \text { the Kronecker product of } J_{1, k} \text { and } A_{2 s, 4}, \tag{4.1}\\
A_{2 s+1,4 k} & =J_{1, k} \otimes\binom{A_{2 s-2,4}}{A_{3,4}}, \tag{4.2}\\
A_{4 h+2,4 k+2} & =\left(\begin{array}{c|c}
J_{1, k-1} \otimes A_{4 h-4,4} & D_{2 h-2} \\
\hline J_{2,4 k-4} \otimes A_{3,4} & A_{6,6}
\end{array}\right) \tag{4.3}
\end{align*}
$$

Before finding the required friendly matrices, we define some procedures:
Procedure R: Let R_{0} be a given $m \times 2 t$ friendly matrix. For $1 \leq i \leq t$, let R_{i} be the matrix obtained from R_{i-1} by swapping $\left(R_{i-1}\right)_{1, i}$ with $\left(R_{i-1}\right)_{1, t+i}$.
Procedure C: Let C_{0} be a given $2 s \times n$ friendly matrix. For $1 \leq i \leq s$, let C_{i} be the matrix obtained from C_{i-1} by swapping $\left(C_{i-1}\right)_{i, 1}$ with $\left(C_{i-1}\right)_{s+i, 1}$.

We first consider $m=4 h+2$ with $h \geq 1$.
Case 1.1: Suppose $n=4 k, k \geq 1$. In this case, we want to find a friendly matrix A such that $s(A)=2 j$ for each j, where $0 \leq j \leq 2 h+2 k+1$.

Let $B_{0}=\left(\begin{array}{ll}J_{4 h+2,2 k} & O_{4 h+2,2 k}\end{array}\right)$. Then $s\left(B_{0}\right)=0$. Applying Procedure R to B_{0}, we get B_{i}, for $1 \leq i \leq 2 k$. It is easy to see that $s\left(B_{i}\right)=2 i$.

Let $C_{0}=\binom{J_{2 h+1,4 k}}{O_{2 h+1,4 k}}$. Then $s\left(C_{0}\right)=4 k$. Applying Procedure C to C_{0}, we get C_{i} for $1 \leq i \leq 2 h+1$. Clearly $s\left(C_{i}\right)=4 k+2 i$.

Hence we get the result.

Example 4.1. Consider the graph $K_{6,8}$.
Let $B_{0}=\left(\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$ and $C_{0}=\left(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.

Applying Procedure R to B_{0}, we have

$$
\begin{aligned}
& B_{0} \rightarrow B_{1}=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow B_{2}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \rightarrow B_{3}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow B_{4}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Applying Procedure C to C_{0}, we have

$$
\begin{aligned}
& C_{0} \rightarrow C_{1}=\left(\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow C_{2}=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \rightarrow C_{3}=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

Hence the corresponding s-values of these matrices are $0,2,4,6,8,8,10,12,14$.
Case 1.2: Suppose $n=4 k+2, k \geq 1$. In this case, we want to find a friendly matrix A such that $s(A)=2 j$ for each j, where $0 \leq j \leq 2 h+2 k+2$.

Let $B_{0}=A_{4 h+2,4 k+2}$ which is defined in (4.3) Then $s\left(B_{0}\right)=0$.
Step1: If $k=1$, then skip this step. Performing Procedure R to a submatrix $A_{3,4}$ which lies in the last row of the block matrix B_{0}, we get two submatrices whose corresponding s-values are 2 and 4 . We do Procedure R to each of such $k-1$ submatrices $A_{3,4}$ of B_{0} one by one. Then we get $2 k-2$ matrices whose s-values run through the even numbers between 2 and $4 k-4$. After performing this step, let the last matrix be B, i.e., $s(B)=4 k-4$.
Step2: Let D be a 4×6 matrix consisting of the last four rows of the matrix $A_{6,6}$. Now we apply Procedure C to the submatrix D of B. Then we will get two matrices whose s-values are $4 k-2$ and $4 k$.
Step3: Let $C_{0}=\binom{J_{2 h+1,4 k+2}}{O_{2 h+1,4 k+2}}$. Then $s\left(C_{0}\right)=4 k+2$. Applying Procedure C to C_{0}, we get C_{i} for $1 \leq i \leq 2 h+1$. Then $s\left(C_{i}\right)=4 k+2+2 i$.

Hence we get the result.
Example 4.2. Consider the graph $K_{6,10}$.

$$
\text { Let } B_{0}=\left(\begin{array}{cccc|cccccc}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text { and } C_{0}=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

Step 1: We have

$$
B_{0} \rightarrow B_{1}=\left(\begin{array}{cccc|cccccc}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow B_{2}=\left(\begin{array}{llllllllll}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Step 2: We have

$$
B_{2} \rightarrow\left(\begin{array}{llll|llllll}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll|llllll}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then the corresponding s-values of these matrices are $0,2,4,6,8$. After applying Procedure C to C_{0}, we obtain the s-values being $10,12,14,16$. The last matrix of this step is

$$
C_{3}=\left(\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Case 1.3: Suppose $n=2 t+1 \geq 4 h+2$. In this case, we want to find a friendly matrix A such that $s(A)=2 j$ for each j, where $1 \leq j \leq 2 h+t+1$.

To make the presentation easier to follow, we consider the graph $K_{2 t+1,4 h+2}$, which is isomorphic to $K_{4 h+2,2 t+1}$.
Let $Z_{2 t+1,2}=\left(\begin{array}{c}J_{t, 2} \\ 1 \\ O_{t, 2}\end{array}\right)$ and $B_{1}=A_{2 t+1,4 h+2}=\left(\begin{array}{ll}A_{2 t+1,4 h} & Z_{2 t+1,2}\end{array}\right)$, where $A_{2 t+1,4 h}$ is defined in (4.2). It is known that $s\left(B_{1}\right)=2$ (c.f. [7]).

Do the same procedure as Step 1 of Case 1.2, we get $2 h$ matrices whose s-values run through the even numbers between 4 and $4 h+2$. After performing this step, let the last matrix be B. Note that the submatrix consisting of the last two columns of B is still the matrix $Z_{2 t+1,2}$. For $1 \leq i \leq t$, swap $\left(Z_{2 t+1,2}\right)_{i, 1}$ with $\left(Z_{2 t+1,2}\right)_{t+1+i, 1}$ in the matrix B. Then we obtain t matrices whose s-values run through the even numbers between $4 h+4$ and $4 h+2+2 t$.

Hence we get the result.

Example 4.3. Consider the graph $K_{6,7}$. From the above discussion we consider the graph $K_{7,6}$ instead.

$$
\text { Let } B_{1}=\left(\begin{array}{llll|ll}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

Applying the same procedure as Step 1 of Case 1.2, we have

$$
B_{1} \rightarrow B_{2}=\left(\begin{array}{cccc|cc}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow B_{3}=\left(\begin{array}{cccc|cc}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Then the corresponding s-values of these matrices are $2,4,6$. Swapping entries of the submatrix $Z_{7,2}$, we have

$$
B_{3} \rightarrow\left(\begin{array}{llll|ll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll|ll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll|ll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Then the corresponding s-values of these matrices are $6,8,10,12$.

Next, we consider $m=4 h$ with $h \geq 1$. For easy to present, we consider $K_{n, 4 h}$ instead of $K_{4 h, n}$. If $n=4 k+2$, then we can refer to Case 1.1. So we only consider $n=4 k$ and $n=2 t+1$.

Case 2.1: Suppose $n=4 k, k \geq 1$. In this case, we want to find a friendly matrix A such that $s(A)=2 j$ for each j, where $0 \leq j \leq 2 h+2 k$.

Let $B_{0}=\left(\begin{array}{ll}J_{4 k, 2 h} & O_{4 k, 2 h}\end{array}\right)$. Similar to Case 1.1 we obtain matrix B_{i} such that $s\left(B_{i}\right)=2 i$ for $0 \leq i \leq 2 h$.

Let $C_{0}=\left(\begin{array}{cc}J_{2 k+1,2 h} & O_{2 k+1,2 h} \\ O_{2 k-1,2 h} & J_{2 k-1,2 h}\end{array}\right)$. Clearly $s\left(C_{0}\right)=4 h$. Applying Procedure C to C_{0} (the first step is redundant), we obtain $2 k$ matrices whose s-values run through the even numbers between $4 h$ and $4 h+4 k-2$. Combining with the maximum value obtained in [7, Lemma 4.2], we have the result.

Case 2.2: Suppose $n=2 t+1, t \geq 1$. In this case, we want to find a friendly matrix A such that $s(A)=2 j$ for each j, where $0 \leq j \leq 2 h+t$.

Let $B_{0}=A_{2 t+1,4 h}$. It is known [7] that $s\left(B_{0}\right)=0$. Apply the procedure similar to Step 1 of Case 1.2 we obtain $2 h$ matrices whose s-values run through the even numbers between 2 and $4 h$. The last matrix $B_{2 h}$ is $J_{1, h} \otimes\binom{A_{2 t-2,4}}{B_{3,4}}$, where $B_{3,4}=\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right)$.

Before we continue the construction, we define two more procedures.
Procedure S1: Consider the matrix $A_{4,4}$. We perform the following two steps:

$$
A_{4,4}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \rightarrow A_{4,4}^{(1)}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \rightarrow A_{4,4}^{(2)}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

Clearly, $s\left(A_{4,4}^{(1)}\right)=2$ and $s\binom{(2)}{4,4}=4$.

Procedure S2: Consider the matrix $S=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right)$. We perform the following two steps:

$$
S \rightarrow S_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \rightarrow S_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Clearly, $s(S)=4, s\left(S_{1}\right)=6$ and $s\left(S_{2}\right)=8$.
Now we return to consider Case 2.2 .
Suppose $t=2 k+1$. Then the first 4 columns of $B_{2 h}$ is $\binom{J_{k, 1} \otimes A_{4,4}}{B_{3,4}}$. Applying Procedure S 1 to $A_{4,4}$ of the first 4 columns of $B_{2 h}$ one by one, we obtain $2 k$ matrices whose s-values run through the even numbers between $4 h+2$ and $4 h+4 k$. Combining with the maximum value obtained in [7, Lemma 4.2], we have the result.

Suppose $t=2 k$. Then the first 4 columns of $B_{2 h}$ is $\binom{J_{k-1,1} \otimes A_{4,4}}{S}$. Applying Procedure S1 to $A_{4,4}$ of the first 4 columns of $B_{2 h}$ one by one, we obtain $2 k-2$ matrices whose s-values run through the even numbers between $4 h+2$ and $4 h+4 k-4$. After that, applying Procedure S 2 to S of the first 4 columns of $B_{2 h}$ we obtain two matrices whose s-values are $4 h+4 k-2$ and $4 h+4 k$. So we have the result.

Example 4.4. Consider the graph $K_{9,4}$. Applying a similar procedure as Step 1 of Case 1.2, Procedure S1 and then Procedure S2, we have

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Hence the corresponding s-values of these matrices are $0,2,4,6,8,10,12$.
Combining the discussions above, we have

Theorem 4.1. Conjecture 1.1 holds when m is even.

5. Full Edge-friendly Index Sets of $K_{m, n}$ with odd m and n

Now, by symmetry we have to deal with three cases: (a) $m=4 h+3$ and $n=4 k+3$; (b) $m=4 h+1$ and $n=4 k+3$; (c) $m=4 h+1$ and $n=4 k+1$.
Let $A_{3,3}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), A_{4,3}=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right), A_{5,3}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), A_{4,5}=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$, and
$A_{5,5}=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Note that all s-values of these friendly matrices are 0.
Case (a): Suppose $m=4 h+3$ and $m=4 k+3$. We start from the friendly matrix

$$
A_{4 h+3,4 k+3}=\left(\begin{array}{cc}
A_{4 h, 4 k} & J_{h, 1} \otimes A_{4,3} \\
J_{1, k} \otimes A_{3,4} & A_{3,3}
\end{array}\right)
$$

whose s-value is 0 . We apply a similar Procedure R to each submatrix $A_{3,4}$ lying in the last row of the block matrix $A_{4 h+3,4 k+3}$ one by one. Then we obtain $2 k$ matrices whose s-values run through the even numbers between 2 to $4 k$. After that, we apply Procedure C to submatrices $A_{4,3}$ lying in the last column of the block matrix $A_{4 h+3,4 k+3}$ one by one. Then we obtain $2 h$ matrices whose s-values run through the even numbers between $2+4 k$ to $4 h+4 k$.

For the $A_{3,3}$ lying at the lower-right corner of the block matrix $A_{4 h+3,4 k+3}$, we apply the following procedure:

$$
A_{3,3} \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Note that, the last step is to replace a 0 to 1 . The resulting matrix is still friendly. So we obtain three more matrices whose s-values are $4 h+4 k+2,4 h+4 k+4$ and $4 h+4 k+6$. Hence we get the result. Case (b): Suppose $m=4 h+1$ and $n=4 k+3$. We start from the friendly matrix

$$
A_{4 h+1,4 k+3}=\left(\begin{array}{l|c}
A_{4 h+1,4 k} & \begin{array}{c}
J_{h-1,1} \otimes A_{4,3} \\
A_{5,3}
\end{array}
\end{array}\right)
$$

where $A_{4 h+1,4 k}$ was defined in (4.2). Similar to Case (a), we apply Procedure R and Procedure C to each submatrices $A_{3,4}$ and $A_{4,3}$, respectively. Then we obtain $2 k+2 h-2$ matrices whose s-values run through the even numbers from 2 to $4 h+4 k-4$. After that, replace the lower right corner $A_{5,3}$ by the following 4 matrices we will get 4 matrices whose s-values are $4 h+4 k-2,4 h+4 k, 4 h+4 k+2$ and
$4 h+4 k+4:$

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Hence we get the result.
Case (c): Suppose $m=4 h+1$ and $m=4 k+1$. We start from the friendly matrix

$$
A_{4 h+1,4 k+1}=\left(\begin{array}{l|c}
A_{4 h+1,4 k-4} & J_{h-1,1} \otimes A_{4,5} \\
A_{5,5}
\end{array}\right) .
$$

Similar to Case (a), we apply Procedure R and Procedure C to each submatrices $A_{3,4}$ and $A_{4,5}$, respectively. Then we obtain $2 k+2 h-4$ matrices whose s-values run through the even numbers from 2 to $4 h+4 k-8$. After that, replace the lower right corner $A_{5,5}$ by the following 5 matrices we will get 5 matrices whose s-values are $4 h+4 k-6,4 h+4 k-4,4 h+4 k-2,4 h+4 k$, and $4 h+4 k+2$: $\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$, and $\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$.

Hence we get the result.
Combining the discussions above, we have

Theorem 5.1. Conjecture 1.1 holds when both m and n are odd.
That means Conjecture 1.1 holds for any case.

References

[1] K. L. Collins and M. Hovey, Most graphs are edge cordial, Ars Combin., 30 (1990) 289-295.
[2] H. Kwong, S. M. Lee and H. K. Ng, On friendly index sets of 2-regular graphs, Discrete Math., 308 (2008) 5522-5532.
[3] H. Kwong and S. M. Lee, On friendly index sets of generalized books, J. Combin. Math. Combin. Comput., 66 (2008) 43-58.
[4] S. M. Lee and H. K. Ng, A conjecture on edge cordial trees, Abstracts Amer. Math. Soc., 9 (1988) 286-287.
[5] S. M. Lee and H. K. Ng, On friendly index sets of bipartite graphs, Ars Combin., 86 (2008) 257-271.
[6] E. Salehi and S. M. Lee, On friendly index sets of trees, Congr. Numer., 178 (2006) 173-183.
[7] W. C. Shiu, Extreme edge-friendly indices of complete bipartite graphs, Trans. Comb., 5 no. 3 (2016) 11-21.
[8] W. C. Shiu and M. H. Ho, Full friendly index sets and full product-cordial index sets of some permutation Petersen graphs, J. Comb. Number Theory, 5 (2013) 227-244.
[9] W. C. Shiu and M. H. Ho, Full friendly index sets of slender and flat cylinder graphs, Trans. Comb., 2 no. 4 (2013) 63-80.
[10] W. C. Shiu and H. Kwong, Full friendly index sets of $P_{2} \times P_{n}$, Discrete Math., 308 (2008) 3688-3693.
[11] W. C. Shiu and H. Kwong, Product-cordial index and friendly index of regular graphs, Trans. Combin., 1 no. 1 (2012) 15-20.
[12] W. C. Shiu and S. M. Lee, Full friendly index sets and full product-cordial index sets of twisted cylinders, J. Comb. Number Theory, 3 (2011) 209-216.
[13] W. C. Shiu and M. H. Ling, Full friendly index sets of Cartesian products of two cycles, Acta Math. Sin. (Engl. Ser.), 26 (2010) 1233-1244.
[14] W. C. Shiu and F. S. Wong, Full friendly index sets of cylinder graphs, Australas. J. Combin., 52 (2012) 141-162.
[15] D. Sinha and J. Kaur, Full friendly index set-I, Discrete Appl. Math., 161 (2013) 1262-1274.
[16] D. Sinha and J. Kaur, Full friendly index set-II, J. Combin. Math. Combin. Comput., 79 (2011) 65-75.
[17] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

Wai Chee Shiu

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China Email: wcshiu@math.hkbu.edu.hk

[^0]: MSC(2010): Primary: 05C78.
 Keywords: Full edge-friendly index sets, edge-friendly index, edge-friendly labeling, complete bipartite graph.
 Received: 20 January 2016, Accepted: 17 September 2016.

