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Abstract

The decomposed pyramid vector quantization (DP\WWQ)using 16-dimensional
Barnes-Wall lattice is presented and also its fgorithm. DPVQ is motivated by a
geometric structure of the memoryless Laplaciarraoof vectors. Its quantization vectors
are the points that lie on the surface of 16-dirared pyramid and also are points of Barnes-
Wall lattice, which is an optimum one for this dinséon according to minimization of the
guantization noise.

1. Introduction

The pyramid vector quantizer (PVQ) [1], [2] is hetcal unpretentious solution with
fast and effective processing of input data. TheQRY one member of a class of similarly
defined vector quantizers that select quantizatestors from a suitable lattice, subject to the
geometry induced by the probability density functiof the source. The region of high
probability will have a geometry that is dependemtthe source - for Laplacian source it is a
pyramid. Thus good codebooks of PVQ can also bestoacted as an intersection of the
points of suitable lattice and the geometric re@bhigh probability for this source.

2. Barnes-Wall lattice

PVQ with Barnes-Wall lattice includes quantizatiactors lying on the surface of its
pyramid and also are points of the lattice, whlam optimum one in 16-dimensional space
from viewpoint of minimum quantization noise. BasA&/all lattice [6] was described as

/\16 = U?:lo (ri + 2D16) = U.S:IO/\(J% ' (1)
where r are offset vectorg\;s has the sublattice Z2Bwith 32 coset representatives which are

codewords of [16, 5, 8] first-order Reed-Muller eofvector §). The lattice Qs is 16-
dimensional one with points (b, ..., k) having integer coordinates giving an even sum

16
Dlﬁz{b:(bl,bz,...,blﬁ); >b; :evennumbe}. ©)
i=1
The surface of 16-dimensional integer pyramid §&dléfined as follows
16
S K):{x: z|xi|=K}, ®)
i=1

where the scalar parameter K is an integer radfuthe® pyramid, x=(xXz,...Xg) IS 16-
dimensional point lying on the surface of pyramifl&K). With regard to the possible
intersection of the latticA;s and the pyramid with S(16,K) can be modified digifon of the
Barnes-Wall lattice in dependence on the radius @integer pyramid such a way

0sK<7; A=A =2D,+r,=2D, (4)

8<K <15; A, =2D,,A2UAL..UA® =2D,,|J complement  (5)

K=216; A, =2D, AL UA2YAY.. YA =2D, | complement (6)
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where|J is an operator of unification and the complemeniniication all Iattices/\(l%.

3. Decomposition of pyramid with Barnes-Wall lattice

DPVQ uses for looking up of quantization vectdre tdea of decomposition of 16-
dimensional pyramid and thus decomposition of BsiWall lattice on this pyramid. Every
16-dimensional quantization vector,»,...,lne) can be decomposed on eight 2-dimensional
subvectors (hby),(bs,bs),...,(nsb1e). These subvectors are the points lying on elght
dimensional pyramids with radius

K =[b2j-a| +[b2y]. j=1,2.....8. 7)

If we order individual radiuses;Ko 8-dimensional vector, then we obtain the veofaglobal
scelet (GS) (KKa,...,Ks). GS represents a part of codebook, which contaiegiéterminate
number of quantization vectors (Fig.1a). GS coagifta finite number of subscelets, which
are represented by their vectors. Coordinates efvéttors of subscelets correspond to the
values of patterns of 2-dimensional pyramids wittivaen radius by which are generated the
quantization vectors of DPVQ, as it is seen in igor K=3. The lattice 2R3 has the vector

of GS the same as that one of subscelet. Totabowdtegenerated on the pyramid with radius

16
K=Z‘2dj+rij‘, (8)
=1

where glare the coordinates of points of the latticg &d [ are j-th coordinates of the offset
vectorr;, can be decomposed on a finite number of partdebooks corresponding to the
separate GS which numbers for some values of radgether with numbers of quantization
vectors are in Tab.1.
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—— { GS Y 7 x X
8D olo
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a) b)

Fig.1la) Decomposition of the codebook under GSdtderns of 2-dimensional pyramids for
radius K=3.

Tab. 1
Number of quantization vectors Number of glolzalstes
2Ds6 complement  sum 206 complement  sum
K=4 512 0 512 4 0 4
K=8 44 032 3840 47 872 18 30 48
K=10 0 92 160 92 160 0 236 236
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Generation of quantization vectors i.e. points afrigs-Wall lattice on the 16-dimensional
pyramid on the basis of GS [A, B, C, D, E, F, G,dfl]attice 20 is carried out under Fig.2a,
in which the 4-dimensional vectors are created doiylmnation of all 2-dimensional vectors
from two belonging 2-dimensional pyramids whichivsgs are combined as follows AB, CD,
EF, GH. By analogues way all 8-dimensional vectars created by combination of 4-
dimensional vectors and then 16-dimensional vectyrscombination of 8-dimensional
vectors from belonging 4 or 8-dimensional pyramréspectively. The principle of generation
of quantization vectors on the basis of GS [A B € B G H] of the complement is described
in Fig.2b. Bellow the every radius of the GS of @@ment are points lying on 2-dimensional
pyramids of the patterns, which values create tloedinates of the GS of complement. Lines
in Fig.2b show the manner of grouping of the posuscessively to 16-dimensional vectors.
Then full lines crossing from the left to the riglepresent the quantization vectors, which
must lie on the surface of 16-dimensional pyramithwadius K and are also the points of
Barnes-Wall lattice.

[ABCDE F G H]J [A B C D E F G H]
e e e

(fuf2) (fafs) (fsfe) (fiafia)  (fisifie)

16-D

a) b

Fig.2 The principle of generation of 16-dimensiogalantization vectors represented by a
global scelet from a) lattice 3D; b) complement.

4. Algorithm of decomposed pyramid vector quantization

On the basis of decomposition of 16-dimensionahpyd with Barnes-Wall lattice the
fast algorithm of DPVQ search for only a part imstef full search for the codebook by using
calculation of Euclidean distances thereby redunamber of matematic operations. The fast
algorithm of DPVQ is as follows:

1. Scale input vectox=(x1,Xs,...,x16) by the coefficient c, i.ex,=cx. By scaling we can
increase signal to noise ratio (SNR). Maximum ofRSMe get for the optimum
coefficient gp, which is determined experimentally in dependeocythe radius K and
the energy of input vectors..

2. Scaled 16-dimensional vector, is arranged to 8-dimensional vectde(d;,dy,...,th),
where d is a sum of absolute values of the first two congrts of the vectox,, d, — next
two and so on.

3. Finding such a 8-dimensional vecip(A,B,C,D,E,F,G,H)from the set of vectors of GS
and their modification, which has the smallest Elean distancénm, to the vectod

Bmin = (A=p1)? +(B-p2)* +...+ (H - pg)? (©)
Generation all 16-dimensional quantization vecteesented by the vectof GS.
5. Input vectorx, is comparated to the generated 16-dimensionaltgadion vectors and
the vectolb is selected with the smallest Euclidean distanma fthe vectox,.
6. Inverse scaling of the vectbrto the output quantized vecta&r= b/c.

B
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5. Simulation results

The proposed algorithm of the DPVQ was verifiedtiom PC Pentium 166 MHz and
was simulated for the sequence of 22000 input vecdnd 16-dimensional pyramid with
radius K=4, 8, 10. The input training sequence exftors was generated by independent and
identically distributed Laplacian random variabledth zero mean values and unitary
variances. From the values K of 16-dimensional pydawith Barnes-Wall lattice follow out
number of quantization vectors N in Tab.2, thaedetnes a bit rate n bit/sample. Results of
simulation are also in this table, where efficiewfyDPVQ is measured by SNR in decibels,

while oﬁ IS mean square value of quantization noise.

Tab. 2
K N n(bit/sample.) Copt SNR(dB) | O}
4 512 0.5625 1.02 3.1187 0.4874
8 47 872 0.9717 1.25 5.1487 0.3059
10 92 160 1.0307 1.42 5.6354 0.2718

The time of the vector quantization in the PC by $earching of the codebook of PVQ was
2ours and 27 minutes and for the fast algorithm tthee was only 11 minutes for 16-

dimensional pyramid with radius K=10. On the otlmde the number of operations
[multiplications / divisions] for the full searchgarithm is 183 312 per sample and for the
fast algorithm only 336 at the same parameters.

6. Conclusion

DPVQ is a suboptimum vector quantization [3], whican reach higher efficiency
then that one of optimum vector quantization [4] &ssumption the same complexity of
implementation, because it can has larger dimerai@gual number of bits per sample. The
proposed algorithm of DPVQ is very fast, becausdgogs not look up the full codebook of
PVQ, but only its part represented by a vector &. @ results in lower requirements for
memory and also the computational complexity, whates possibility of fast vector
quantization of images with high efficiency.
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