Graphical Technique to Locate the
Center of Curvature of a Coupler
Point Trajectory

This paper presents an original technique to locate the center of curvature of the path

Gordon R.Pennock traced by an arbitrary point fixed in the coupler link of a planar four-bar linkage. The
method is purely graphical and the center of curvature; i.e., the center of the osculating
Edward C.Kinzel circle, can be located in a direct manner with few geometric constructions. The advantage
of this technique, compared to the classical approach using the Euler-Savary equation, is
School of Mechanical Engineering, that measurements of angles and distances between points are not required. Also, it is not
Purdue University, necessary to locate inflection points or draw the inflection circle for the instantaneous
West Lafayette, Indiana 47907-2088 USA motion of the coupler link. The technique is based on the concept of a virtual link which

is valid up to, and including, the second-order properties of motion of the coupler link.
The virtual link is coincident with the path normal to the coupler curve; i.e., the line
connecting the coupler point to the velocity pole of the coupler link. The absolute instant
center of the virtual link defines the ground pivot for the link and is, therefore, coincident
with the center of the osculating circle. The authors believe that the graphical approach
presented in this paper represents an important contribution to the kinematics literature
on the curvature of a point trajectory[DOI: 10.1115/1.1798091
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1 Introduction mechanism which contains higher pairs. Pennock and Sankarana-
The planar four-bar linkage is the simplest lower pair meche@yanar[ll] also used virtual links to investigate the curvature of
nism with a mobility of one. Therefore, it is natural that the trad coupler p0|nt trajgctory of a geared seve.n-bar .mechanlsm with

X ' IJnematlc indeterminancy. More recently, virtual links were used

jectory of a pom_t fixed in Fhe coupler I|nI_<, re_ferred t'o as a_cou_pl study the path curvature of coupler curves of the single flier and
curve, has received considerable attention in the kinematics Ilte{%é double flier eight-bar linkagd42,13

ture[1,2]. It is well known that an arbitrary coupler curve of the The focus of this paper is to use a virtual link to locate the
four-bar linkage is a tricircular sext{@,4]. It is also well known pap

that for a study of the instantaneous, second-order propertiescglnter Of. the osculatlng C|rqle of.a coupler curve of the planar
four-bar linkage. The virtual link will connect the coupler point to

motion of the coupler link, the coupler curve can be replaced by, : ' . .
. . ! . ; the ground link and the first- and second-order properties of this
circle, referred to in the literature as the osculating cifde7], link define the center of the osculating circle. The virtual link is
osculation circle[3,8], or osculatory circle[9). The osculating incident with the path normal to the g(Jzou Ierlcurve at a specified
circle and the coupler curve share three infinitesimally separat%%ftant in time or apspecified position of t%e Iinka@encefgrth
points and, therefore, cannot be used for a study of the properUe%erred to as the design positioin other words, the virtual link

. . : re
of motion higher than second-order. For the coupler point undef collinear with the line that connects the coupler point to the
nstantaneous center of zero velocity of the coupler link. An ad-

investigation, the osculating circle is a unique property of the paﬁl
ve}ntage of this technique over other techniques, such as the Euler-

traced by this poin(i.e., the center is coincident with the center of

curvature of the path and the radius is the radius of curvature L ary equation. is that the method is purely graphical: ie.. ana-
the path. In other words, for the purpose of analyzing the instary icalye ﬂations’and measurements o?an )I/eg agd dis,tain;:,es are
taneous velocity and acceleration_of a coupler p_oint, the_ pOinot requ(i]red. Other advantages are the simglicity of the geometric
trajectory can be regarded as a cirt10l. Replacing a point gonstructions and it is not necessary to find inflection points of the
upler link. Sandor et a[.14] presented a graphical method to

trajectory by the osculating circle has proved useful in the kin
matic analysis and synthesis of complex mechanisms with mote . . .
than four links since the special properties of a circle make ve the Euller-Savary.equatllon, however, their methqd requires
relatively easy to investigate the path curvature of such mect§€ construction of the inflection circle for the coupler link.
nisms. 'The important problem, in the proposed approach, is to deter-
This paper will show that the concept of a virtual link, which™n€ the '?”gth of the virtual link; i.e., the distance between th‘?
connects the coupler point with the center of the osculating (:ircﬁ‘eoupler point anq the_ center of curvature of the path tra_ced by_thls
provides geometric insight into the study of path curvature oint. The solution is based on the result that the virtual link
virtual link must be clearly distinguished from a physical "nkcrea_\tes two add'“of‘e!' four-bar Ilnkages which are kmer_natlcally
equivalent to the original four-bar linkage. Two four-bar linkages
are said to be equivalent to thh-order (i=1) if the coupler

because it is not a rigid body.e., the length of a virtual link is a
function of the position of the linkageHowever, the virtual link X : : .
is valid for an investigation of the first- and second-order propeP©int of one linkage traces a curve which has the same geometric
ties of motion of the coupler link. This concept was utilized by"oPerties as the coupler curve of the other linkage up to and
Waldron and Kinze[10] in a study of the path curvature of a'ncluding thenth-order[3,7,10. In other words, the two linkages
are said to be equivalent to the first-order if the coupler point of
Contributed by the Mechanisms and Robotics Committee for publication in thoene four-bar has. t.he same veIoc_|ty as the coupler point Of. the
JOURNAL OF MECHANICAL DESIGN. Manuscript received September 23, 2003; reOther four-bar. Similarly, the two linkages are said to be equiva-
vised February 13, 2004. Associate Editor: D. C. H. Yang. lent to the second-order if the two coupler points have the same
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Coupler Curve

Fig. 1 Coupler curve and the osculating circle

. . . . _ Collineation Axis 17 ‘
acceleration. Note that if the two linkages are acceleration equiva-

lent then they are also velocity equivalent. The concept of an  Fig. 2 Instant centers, collineation axis 1 and ray 3
equivalent four-bar linkage has proved useful in the kinematic
synthesis of planar mechanisms. For example, kinematically

equivalent linkages are commonly used to duplicate the instanfgenoted as link § which is pinned to the coupler link at C and
neous position, velocity, and acceleration of a cam-followgjinned to the ground link at & must be coincident with ray 3, as
mechanisn5,8,9. There are an infinite number of acceleratiorshown in Fig. 2.

equivalent four-bar linkages for the cam mechanism and the rela-The second step is to find the collineation axis for the four-bar
tive motions permitted between connected links are the same ey@Rage formed by links 1, 2, 3, and virtual link 5; i.e., the line
though the joints are physically quite different. connecting the pole to instant centgy.| This line will be referred

The paper is arranged as follows. Section 2 presents the grapBias the second collineation axis and denoted as collineation axis
cal technique to locate the center of curvature of a coupler poiit see Fig. 8. Note that the instant centegslis coincident with
trajectory of a four-bar linkage. The procedure takes advantagec@fupler point C, and instant centgg Will be coincident with the
the concept of a virtual link to create two four-bar linkages WhicRin connecting the virtual link to the ground link; i.e.OAlso
are equivalent to the original linkage and locate the center of thgte that the coupler link for the four-bar linkage formed by links
osculating circle. This circle can then be used to study the second-2 3. and virtual link 5 has the same first- and second-order
order properties of the path traced by the coupler point. Sectiomgyperties of motion as the coupler link of the original four-bar
presents a numerical example to compare this original graphigakage formed by links 1, 2, 3, and 4. Therefore, the two four-bar
technique with a traditional approach which utilizes the EUle[i'nkageS must have the same pole and the same pole tangent. Also
SaVary equation and the inflection circle for the COUpler link. Fhote that the two |inkages have the same ray 1.
nally, Sec. 4 presents some observations, conclusions and suggeshe graphical technique to find collineation axis 2 is to draw a
tions for future research. circle of arbitrary radius and whose center is coincident with the
pole. This circle will henceforth be referred to as the construction
. . circle, as shown in Fig.(&). Denote the points of intersection of
2 Graphical Technique to Locate the Center of Curva- this circle with ray 3 as point D; with the collineation axis 1 as
ture point E, with ray 1 as point F, and with ray 2 as point G. Now

Consider the planar four-bar linkage,®BOg in the design draw a line, denoted as; L. connecting points D and E and then
position shown in Fig. 1. The ground link@y is denoted as link draw a line parallel to |, denoted as }, through point G. The
1, the side links QA and Q;B are denoted as links 2 and 4,point of intersection of line b with the construction circle is
respectively, and the coupler link AB is denoted as link 3. Th@enoted as point H. Finally, draw a line connecting point H and
orientation of links 2 and 4 relative to the ground link are denotelf#e pole P. The result of this geometrical construction is that line
as#f, and,, respectively. An arbitrary point fixed in the couplerPH is collineation axis 2, and this can be proved as follows.
link is denoted as coupler point C. The figure also shows theAccording to Bobillier's theoren6,9] the angle between col-
trajectory of point C; i.e., the coupler curve, and the osculatifl€ation axis 1 and ray 1, denotedan Fig. 3(b), is equal to the
circle. The purely graphical procedure to locate the center of cibgle between ray 2 and the pole tangent. Similarly, the angle
vature of the coupler curve for the specified design positien, between the pole tangent and ray 1, denoteg asthe figure, is
the center of the osculating cir¢leill be presented here in three €qual to the angle between ray 3 and collineation axis 2. If the
steps. angle between ray 3 and line PH is denotedyase., ZDPH=1,

The first step is to locate secondary instant centgyand b, thenline PG is collineation axis 2 if it can be shown that the angle
using the Aronhold-Kennedy theorem. Instant centgy will —¥=/A- Recall the theorem that the angle at the center of a circle is
henceforth be referred to as the pole of the coupler link and d&tice the angle at the circumference of the circle when subtended
noted as point P, see Fig. 2. The line that connects the poleb the same arc. Therefore, observe from Fig) 3hat
instant centerb is referred to as the first rajand denoted as ray /EPG=2/EHG and < DPH=2/DEH (1a)

1) and the line that connects the pole to instant centerslre-

ferred to as the second régnd denoted as ray).2Note that the Since lines  and L, are parallel then

first and second rays are coincident with the normals to the paths _

of coupler points A and B, respectively. The line that connects the +EHG=/DEH (16)
pole to instant center] will be referred to as the first collineation The conclusion from Eqgla) and(1b) is that

axis and denoted as collineation axis 1. The line that connects the

pole to coupler point C will be denoted as ray 3 and is normal to £EPG=2DPH=7y @
the coupler curve in the design position. Therefore, the virtual linklso observe from Figs. (@) and 3b) that
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Collineation Axis 2 Collineation Axis 2., s
Construction Circle \E ~

(@) Collineation Axis 1" Fig. 4 Instant centers | ,5 and |5

Pole Tangent

Collineation Axis 2 agreement with the Aronhold-Kennedy theorem for the five-bar

linkage formed by links 1, 2, 3, 4, and the virtual link 5 which has
an instantaneous single degree-of-freedom. Also note that due to
Bobillier's theorem, the angle between collineation axis 1 and ray
1 is equal to the angle between collineation axis 3 and ray 3.
Therefore, it can be shown that the angle between collineation
axes 2 and 3 is equal to the angle between rays 1 amdizh is

the difference in the orientation of side links 2 and 4 relative to

(b)  Collineation Axis 17 ‘

Fig. 3 (a) The construction circle and collineation axis 2, (b) a
proof of the geometric construction

L EPG=a+ LAPB=p (3)
. . Fig. 5 Center of curvature of the trajectory of point C
Equating Egs(2) and (3) gives the result that the angle=2.
Therefore, the line PG is indeed collineation axis 2. Pole Tangent

The third, and final, step is to locate the absolute instant centCollineation Axis 2. \L,
of the virtual link; i.e., |5, using the equivalent four-bar-linkage s
formed by the ground link €@0,, link 2 (O,A), link 3 (AC), and !
virtual link 5 (CQ.). From the Aronhold-Kennedy theorem, the :
instant center,k is the point of intersection of the line connecting \
instant centers,t and ks with collineation axis 2, see Fig. 4. \
Therefore, instant centeyslis the point of intersection of the line \
connecting 4, and bs with ray 3 as shown in the figure. Recall L
that the center of curvature of the coupler curve, in the desic I
position, is coincident with the absolute instant center of the vil L
tual link. Also recall that the center of curvature @ the center ~ Collineation Axis 3
of the osculating circle, as shown in Fig. 5. The distance from tt -~
center of curvature to coupler point C defines the length of virtu: 7
link 5; i.e., the radius of curvature of the trajectory of point C. s
Note that the equivalent four-bar linkage formed by ground linl Ray3.”
Oc0g, link 4 (OgB), link 3 (BC), and virtual link 5 (CQ) can
also be used to locate instant centgy. IThe graphical construc-
tion is the same as before and, in this case, the collineation axis ‘
referred to as the third collineation axis and denoted as colline Collineation Axis 17
tion axis 3, as shown in Fig. 6. It is interesting to note that instant
centers 44, ly5, and bs lie on the same straight line. This is in Fig. 6 Collineation axis 3
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Pole Tangent

Construction Circle

Collineation Axis 17 .

Fig. 7 Purely graphical technique to locate the pole tangent

ground link Q\QOg; i.e., 8,— 6,). Similarly, it can be shown that  Fig. 8 Center of curvature of the path trajectory point C
the angle between collineation axes 1 and 2 is equal to the angle
between rays 2 and 3.

Summary of the Graphical Technique coincident with the pole tangent. Recall that the pole, the pole
tangent, and the pole norm@bhich indicates the direction of the

1. Locate pole P and instant centgj &nd draw collineation 516 acceleration define the canonical system for the coupler
axis 1 and ray 3; i.e., the line through P and the coupler poiff [15].

C.(SeeFig.2 _ It is interesting to note that the center of curvature of the tra-
2. Draw the construction circle. Then draw the lingsand L, jectory traced by point C can be obtained directly from the pole
and collineation axis 2See Fig. 8)). velocity, denoted as U, see Fig. 8. The procedure is to project the

3. Locate the instant centejzland then locate the instant CeNole velocity unto the line that is drawn through the pole and

ter I;s. (See Fig. 4 The center of curvature of the pathrﬁarallel to the path tangent of point C. This vector, denoted as

ga?cled by the coupler point C is coincident with instant ce 'tps, represents the velocity of a point fixed in the virtual link 5
15+

and coincident with pole P. Next draw a line through the tip of this
Pole Tangent. Note that the graphical procedure presented iiector and the tip of the velocity vector of point C, denoted as V

this paper, to obtain the center of curvature of the coupler poilihe intersection of this line with the line passing through the pole
trajectory, does not require the pole tangent. The pole tangeiid point C(i.e., the path normais the center of curvature of the
defines the direction of the velocity of the pole. For the sake @fajectory traced by the coupler point.
completeness, a purely graphical technique to locate the pole tanThe following section will show that the results of the purely
gent will be presented here. Draw a construction circle; i.e., graphical concepts, presented in this section, are in complete
circle of arbitrary radius and center coincident with the pole. Feigreement with the traditional approach which requires the inflec-
convenience, the construction circle shown in Figa)3will be tion circle for the coupler link and the Euler-Savary equation
used again here, see Fig. 7. Then draw a line, denoted; as 3,8,10. The reader can compare the two approaches and note that
connecting points F and G and draw a line, denoted,aphrallel  neither inflection points of the coupler link nor the pole tangent
to L3 through point E. The point of intersection of ling With the  are required in the graphical technique proposed in this paper.
construction circle is denoted as point T. Finally, draw a line con-
necting point T and the pole P. The result of this geometrical
construction is that line PT is the pole tangent, and this can Be Numerical Example

proved as follows. : _ ; e ;
Since the angle at the center of a circle is twice the angle at %Cﬁgilgier;g;‘ii?nusr zg ILnZS%%\G\&OAB:, ig%vinn;n:é%z% zvrlrt]h
circumference of the circle, when subtended by the same arc, t% QB=38cm (consiBstent Wit’h the dimensi(,)ns of Figsj 1
/EPF=2/ETF and /GPT=2/GFT (48) through 7. Note that linear dimensions can be presented without
units because they can be scaled uniformly to any convenient
Also, since lines k and L, are parallel then scale[12]. For convenience, the metric length of centimeters will
be used in this section. The location of coupler point C is specified

#ETF=2GFT (40) by the distance A&12.5 cm and the angle BAC=75 deg. For
The conclusion from Eqg4a) and(4b) is that convenience, the design position is specified by the amgle
£ EPF=/ GPT 5) 0 deg.

Following the purely graphical technique presented in Sec. I,
which states that the angle between collineation axis 1 and ray 1he location of the center of curvature of the path traced by point
equal to the angle between ray 2 and line PT. Recall BobillierG (in the design positionis as shown in Fig. 9. The important
theorem states that the angle between collineation axis 1 and fobservation is that no measurements are required in finding this
ray 1 is equal to the angle between ray 2 and the pole tangemsult. If the radius of curvature of the path traced by poitit €,
Therefore, the line that connects pole P and point T is indedte radius of the osculating cirglés required then the distance
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Inflection Circle for 3/1

Pole Normal

Fig. 9 Inflection circle and center of curvature of trajectory of
point C

OcC can be measured from the scaled drawing. For this example,

the radius of curvature of the point trajectory is measured as Fig. 10  Single flier eight-bar linkage
OcC=8.74cm.
The Euler-Savary equation states that the radius of curvature of
the path traced by the coupler point C can be written as 1 1 1 @
(PO)? P& PC PL
) C ) Substituting the measured values into this equation gives the same

result; namely, P@=28.25 cm. Therefore, the analytical results
where ¢ is an inflection point of the coupler link, see Fig. 9. Toobtained in this section are in complete agreement with the purely
locate this inflection point it is standard practice to first draw thgraphical technique that is presented in Sec. 2.
inflection circle for the coupler link. Recall that the inflection
circle is defined as the locus of points in the coupler link that ar .
instantaneously traveling on straight lines or the locus of points£ Concluding Remarks
the coupler link that have no normal acceleration; i.e., inflection This paper presents a graphical technique to locate the center of
points. The inflection circle can be drawn by locating the infleurvature of the path traced by an arbitrary point fixed in the
tion points ] and & that correspond to points A and B, respeceoupler link of a planar four-bar linkage. The feature of this tech-
tively, in the coupler link. These two inflection points are obtainedique is that a virtual link is used to connect the coupler point to

from the Euler-Savary equation; i.e., the ground link. The virtual link is valid up to, and including, the
second-order properties of motion of the coupler link. The virtual
(PA)? (PB)? link is coincident with the path normal of the coupler point and

hA= O\A and 4B= OgB ) the length of the link is the distance between the coupler point and

the center of curvature of the path traced by this point. The tech-

From a scaled drawing of the linkage, the measured distances igue presented in this paper is purely graphical; i.e., no analytical
PA=23.90 cm and PB8.70 cm. Substituting these values, angquations or measurements are required. Another advantage is that
the specified link dimensions, into Eq3) gives JA=32.64cm the technique requires few geometric constructions and it is not
and §B=1.99 cm. Since pole P and the inflection poiniadd & necessary to draw the inflection circle for the coupler link.
lie on the circumference of the inflection circle then the circle can A previous papef12] investigated the curvature of the path
be drawn, see Fig. 9. The center of the inflection circle is denot&dced by coupler point Q of the single flier eight-bar linkage
as O and the inflection pole is denoted as J. The diameter of #feown in Fig. 10. The graphical technique used the equivalent
inflection circle is measured as #83.27 cm. The pole tangent four-bar linkage defined by ground link 1 (Oy), virtual link 15
and pole normal are also shown in the figure. The pole tangent({3,M), coupler link 8 (MQN), and virtual link 18 (NQ) as
inclined at 133.33 deg to the line passing through the ground pisisown in Fig. 11a). The coupler pins M and N are defined as the
On0g. points of intersection of link 6 with links 5 and (®r the links

The intersection of the line connecting pole P to coupler point Etended, respectively. The paper showed that the centers of cur-
with the inflection circle gives the inflection poing.JThe dis- vature Q, and Q can be obtained in a straightforward manner by
tances from P to C and fromJdo C are measured and the resultsising the concept of virtual links and equivalent four-bar linkages.
are PG=19.51 cm and JC=43.54 cm, respectively. These mea¥Finally, the location of the center of curvature of the trajectory of
surements are then substituted into Eg).to give the location of point Q was obtained from the pole;? the inflection circle
the center of curvature of the path traced by point C on the patspecified by inflection pointsyJand ) and the Euler-Savary
normal; i.e., QC=8.74cm. The distance from the pole to theequation, see Fig. ). This paper, however, now makes it pos-
center of curvature is PG-PC+ CO:=28.25 cm. Alternatively, sible to perform this final step without finding inflection points,
the Euler-Savary equation can be written as drawing the inflection circle, using analytical equations, or mak-
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2\Q using geometric constructions. These figures can be created to
make use of the parametric solvers so that they will be updated as
the design is iterated as part of the design process. This technique
is an alternative to writing analytical code and will provide the
engineer with geometric insight without having to formulate non-
linear equations. The proliferation of the computer aided design
packages makes this a viable educational and industrial tool.

The graphical techniques, developed in this paper, will be used
in a future research activity to create a graphical program that uses
parametric constraints. The goal is to make the program be easily
adapted to investigate the path curvature of a coupler point trajec-
tory of any planar, single-degree-of-freedom linkage. The research
will extend the graphical kinematic computer programming of
path curvature to the kinematic synthesis of the planar four-bar
linkage and the Stephenson and the Watt six-bar linkages. The
authors also believe that the work presented in this paper can be
extended to include the higher-order properties of motion of the
coupler link. For example, the concept of a virtual link should
provide important insight into the third-order properties of motion
of a coupler link and afford a purely graphical technique to draw
the well-known cubic of stationary curvatufé,9].

AN
Path ™.
Normal ™
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