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Graphical Technique to Locate the
Center of Curvature of a Coupler
Point Trajectory
This paper presents an original technique to locate the center of curvature of the
traced by an arbitrary point fixed in the coupler link of a planar four-bar linkage. T
method is purely graphical and the center of curvature; i.e., the center of the oscul
circle, can be located in a direct manner with few geometric constructions. The advan
of this technique, compared to the classical approach using the Euler-Savary equati
that measurements of angles and distances between points are not required. Also, i
necessary to locate inflection points or draw the inflection circle for the instantane
motion of the coupler link. The technique is based on the concept of a virtual link w
is valid up to, and including, the second-order properties of motion of the coupler
The virtual link is coincident with the path normal to the coupler curve; i.e., the l
connecting the coupler point to the velocity pole of the coupler link. The absolute in
center of the virtual link defines the ground pivot for the link and is, therefore, coinci
with the center of the osculating circle. The authors believe that the graphical appro
presented in this paper represents an important contribution to the kinematics litera
on the curvature of a point trajectory.@DOI: 10.1115/1.1798091#

Keywords: Coupler Point Trajectory, Center of Curvature, Osculating Circle, Virt
Link, Graphical Techniques
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1 Introduction
The planar four-bar linkage is the simplest lower pair mec

nism with a mobility of one. Therefore, it is natural that the tr
jectory of a point fixed in the coupler link, referred to as a coup
curve, has received considerable attention in the kinematics lit
ture @1,2#. It is well known that an arbitrary coupler curve of th
four-bar linkage is a tricircular sextic@3,4#. It is also well known
that for a study of the instantaneous, second-order propertie
motion of the coupler link, the coupler curve can be replaced b
circle, referred to in the literature as the osculating circle@5–7#,
osculation circle@3,8#, or osculatory circle@9#. The osculating
circle and the coupler curve share three infinitesimally separ
points and, therefore, cannot be used for a study of the prope
of motion higher than second-order. For the coupler point un
investigation, the osculating circle is a unique property of the p
traced by this point~i.e., the center is coincident with the center
curvature of the path and the radius is the radius of curvatur
the path!. In other words, for the purpose of analyzing the insta
taneous velocity and acceleration of a coupler point, the p
trajectory can be regarded as a circle@6,10#. Replacing a point
trajectory by the osculating circle has proved useful in the ki
matic analysis and synthesis of complex mechanisms with m
than four links since the special properties of a circle make
relatively easy to investigate the path curvature of such mec
nisms.

This paper will show that the concept of a virtual link, whic
connects the coupler point with the center of the osculating cir
provides geometric insight into the study of path curvature
virtual link must be clearly distinguished from a physical lin
because it is not a rigid body~i.e., the length of a virtual link is a
function of the position of the linkage!. However, the virtual link
is valid for an investigation of the first- and second-order prop
ties of motion of the coupler link. This concept was utilized
Waldron and Kinzel@10# in a study of the path curvature of
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mechanism which contains higher pairs. Pennock and Sankar
rayanan@11# also used virtual links to investigate the curvature
a coupler point trajectory of a geared seven-bar mechanism
kinematic indeterminancy. More recently, virtual links were us
to study the path curvature of coupler curves of the single flier
the double flier eight-bar linkages@12,13#.

The focus of this paper is to use a virtual link to locate t
center of the osculating circle of a coupler curve of the pla
four-bar linkage. The virtual link will connect the coupler point
the ground link and the first- and second-order properties of
link define the center of the osculating circle. The virtual link
coincident with the path normal to the coupler curve at a speci
instant in time or a specified position of the linkage~henceforth
referred to as the design position!. In other words, the virtual link
is collinear with the line that connects the coupler point to t
instantaneous center of zero velocity of the coupler link. An a
vantage of this technique over other techniques, such as the E
Savary equation, is that the method is purely graphical; i.e., a
lytical equations and measurements of angles and distance
not required. Other advantages are the simplicity of the geome
constructions and it is not necessary to find inflection points of
coupler link. Sandor et al.@14# presented a graphical method
solve the Euler-Savary equation, however, their method requ
the construction of the inflection circle for the coupler link.

The important problem, in the proposed approach, is to de
mine the length of the virtual link; i.e., the distance between
coupler point and the center of curvature of the path traced by
point. The solution is based on the result that the virtual li
creates two additional four-bar linkages which are kinematica
equivalent to the original four-bar linkage. Two four-bar linkag
are said to be equivalent to thenth-order (n>1) if the coupler
point of one linkage traces a curve which has the same geom
properties as the coupler curve of the other linkage up to
including thenth-order@3,7,10#. In other words, the two linkages
are said to be equivalent to the first-order if the coupler point
one four-bar has the same velocity as the coupler point of
other four-bar. Similarly, the two linkages are said to be equi
lent to the second-order if the two coupler points have the sa
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acceleration. Note that if the two linkages are acceleration equ
lent then they are also velocity equivalent. The concept of
equivalent four-bar linkage has proved useful in the kinema
synthesis of planar mechanisms. For example, kinematic
equivalent linkages are commonly used to duplicate the insta
neous position, velocity, and acceleration of a cam-follow
mechanism@5,8,9#. There are an infinite number of acceleratio
equivalent four-bar linkages for the cam mechanism and the r
tive motions permitted between connected links are the same
though the joints are physically quite different.

The paper is arranged as follows. Section 2 presents the gra
cal technique to locate the center of curvature of a coupler p
trajectory of a four-bar linkage. The procedure takes advantag
the concept of a virtual link to create two four-bar linkages wh
are equivalent to the original linkage and locate the center of
osculating circle. This circle can then be used to study the sec
order properties of the path traced by the coupler point. Sectio
presents a numerical example to compare this original graph
technique with a traditional approach which utilizes the Eul
Savary equation and the inflection circle for the coupler link.
nally, Sec. 4 presents some observations, conclusions and su
tions for future research.

2 Graphical Technique to Locate the Center of Curva-
ture

Consider the planar four-bar linkage OAABOB in the design
position shown in Fig. 1. The ground link OAOB is denoted as link
1, the side links OAA and OBB are denoted as links 2 and 4
respectively, and the coupler link AB is denoted as link 3. T
orientation of links 2 and 4 relative to the ground link are deno
asu2 andu4 , respectively. An arbitrary point fixed in the couple
link is denoted as coupler point C. The figure also shows
trajectory of point C; i.e., the coupler curve, and the osculat
circle. The purely graphical procedure to locate the center of
vature of the coupler curve for the specified design position~i.e.,
the center of the osculating circle! will be presented here in thre
steps.

The first step is to locate secondary instant centers I13 and I24
using the Aronhold-Kennedy theorem. Instant center I13 will
henceforth be referred to as the pole of the coupler link and
noted as point P, see Fig. 2. The line that connects the pol
instant center I12 is referred to as the first ray~and denoted as ray
1! and the line that connects the pole to instant center I14 is re-
ferred to as the second ray~and denoted as ray 2!. Note that the
first and second rays are coincident with the normals to the p
of coupler points A and B, respectively. The line that connects
pole to instant center I24 will be referred to as the first collineatio
axis and denoted as collineation axis 1. The line that connects
pole to coupler point C will be denoted as ray 3 and is norma
the coupler curve in the design position. Therefore, the virtual l

Fig. 1 Coupler curve and the osculating circle
Journal of Mechanical Design
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~denoted as link 5!, which is pinned to the coupler link at C an
pinned to the ground link at OC, must be coincident with ray 3, a
shown in Fig. 2.

The second step is to find the collineation axis for the four-
linkage formed by links 1, 2, 3, and virtual link 5; i.e., the lin
connecting the pole to instant center I25. This line will be referred
to as the second collineation axis and denoted as collineation
2, see Fig. 3~a!. Note that the instant center I35 is coincident with
coupler point C, and instant center I15 will be coincident with the
pin connecting the virtual link to the ground link; i.e., OC. Also
note that the coupler link for the four-bar linkage formed by lin
1, 2, 3, and virtual link 5 has the same first- and second-or
properties of motion as the coupler link of the original four-b
linkage formed by links 1, 2, 3, and 4. Therefore, the two four-b
linkages must have the same pole and the same pole tangent.
note that the two linkages have the same ray 1.

The graphical technique to find collineation axis 2 is to draw
circle of arbitrary radius and whose center is coincident with
pole. This circle will henceforth be referred to as the construct
circle, as shown in Fig. 3~a!. Denote the points of intersection o
this circle with ray 3 as point D; with the collineation axis 1 a
point E, with ray 1 as point F, and with ray 2 as point G. No
draw a line, denoted as L1 , connecting points D and E and the
draw a line parallel to L1 , denoted as L2 , through point G. The
point of intersection of line L2 with the construction circle is
denoted as point H. Finally, draw a line connecting point H a
the pole P. The result of this geometrical construction is that l
PH is collineation axis 2, and this can be proved as follows.

According to Bobillier’s theorem@6,9# the angle between col
lineation axis 1 and ray 1, denoted asa in Fig. 3~b!, is equal to the
angle between ray 2 and the pole tangent. Similarly, the an
between the pole tangent and ray 1, denoted asb in the figure, is
equal to the angle between ray 3 and collineation axis 2. If
angle between ray 3 and line PH is denoted asg; i.e., /DPH5g,
then line PG is collineation axis 2 if it can be shown that the an
g5b. Recall the theorem that the angle at the center of a circl
twice the angle at the circumference of the circle when subten
by the same arc. Therefore, observe from Fig. 3~a! that

/EPG52/EHG and /DPH52/DEH (1a)

Since lines L1 and L2 are parallel then

/EHG5/DEH (1b)

The conclusion from Eqs.~1a! and ~1b! is that

/EPG5/DPH5g (2)

Also observe from Figs. 3~a! and 3~b! that

Fig. 2 Instant centers, collineation axis 1 and ray 3
NOVEMBER 2004, Vol. 126 Õ 1001
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/EPG5a1/APB5b (3)

Equating Eqs.~2! and ~3! gives the result that the angleg5b.
Therefore, the line PG is indeed collineation axis 2.

The third, and final, step is to locate the absolute instant ce
of the virtual link; i.e., I15, using the equivalent four-bar-linkag
formed by the ground link OCOA, link 2 (OAA), link 3 ~AC!, and
virtual link 5 (COC). From the Aronhold-Kennedy theorem, th
instant center I25 is the point of intersection of the line connectin
instant centers I23 and I35 with collineation axis 2, see Fig. 4
Therefore, instant center I15 is the point of intersection of the line
connecting I12 and I25 with ray 3 as shown in the figure. Reca
that the center of curvature of the coupler curve, in the des
position, is coincident with the absolute instant center of the
tual link. Also recall that the center of curvature OC is the center
of the osculating circle, as shown in Fig. 5. The distance from
center of curvature to coupler point C defines the length of virt
link 5; i.e., the radius of curvature of the trajectory of point C.

Note that the equivalent four-bar linkage formed by ground l
OCOB, link 4 (OBB), link 3 ~BC!, and virtual link 5 (COC) can
also be used to locate instant center I15. The graphical construc
tion is the same as before and, in this case, the collineation ax
referred to as the third collineation axis and denoted as collin
tion axis 3, as shown in Fig. 6. It is interesting to note that inst
centers I24, I45, and I25 lie on the same straight line. This is i

Fig. 3 „a… The construction circle and collineation axis 2, „b… a
proof of the geometric construction
1002 Õ Vol. 126, NOVEMBER 2004
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agreement with the Aronhold-Kennedy theorem for the five-
linkage formed by links 1, 2, 3, 4, and the virtual link 5 which h
an instantaneous single degree-of-freedom. Also note that du
Bobillier’s theorem, the angle between collineation axis 1 and
1 is equal to the angle between collineation axis 3 and ray
Therefore, it can be shown that the angle between collinea
axes 2 and 3 is equal to the angle between rays 1 and 2~which is
the difference in the orientation of side links 2 and 4 relative

Fig. 4 Instant centers I 25 and I15

Fig. 5 Center of curvature of the trajectory of point C

Fig. 6 Collineation axis 3
Transactions of the ASME
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ground link OAOB; i.e., u42u2). Similarly, it can be shown tha
the angle between collineation axes 1 and 2 is equal to the a
between rays 2 and 3.

Summary of the Graphical Technique

1. Locate pole P and instant center I24 and draw collineation
axis 1 and ray 3; i.e., the line through P and the coupler po
C. ~See Fig. 2!.

2. Draw the construction circle. Then draw the lines L1 and L2
and collineation axis 2.~See Fig. 3~a!!.

3. Locate the instant center I25 and then locate the instant cen
ter I15. ~See Fig. 4!. The center of curvature of the pat
traced by the coupler point C is coincident with instant ce
ter I15.

Pole Tangent. Note that the graphical procedure presented
this paper, to obtain the center of curvature of the coupler p
trajectory, does not require the pole tangent. The pole tan
defines the direction of the velocity of the pole. For the sake
completeness, a purely graphical technique to locate the pole
gent will be presented here. Draw a construction circle; i.e
circle of arbitrary radius and center coincident with the pole. F
convenience, the construction circle shown in Fig. 3~a! will be
used again here, see Fig. 7. Then draw a line, denoted as3 ,
connecting points F and G and draw a line, denoted as L4 , parallel
to L3 through point E. The point of intersection of line L4 with the
construction circle is denoted as point T. Finally, draw a line c
necting point T and the pole P. The result of this geometri
construction is that line PT is the pole tangent, and this can
proved as follows.

Since the angle at the center of a circle is twice the angle at
circumference of the circle, when subtended by the same arc,

/EPF52/ETF and /GPT52/GFT (4a)

Also, since lines L3 and L4 are parallel then

/ETF5/GFT (4b)

The conclusion from Eqs.~4a! and ~4b! is that

/EPF5/GPT (5)

which states that the angle between collineation axis 1 and ray
equal to the angle between ray 2 and line PT. Recall Bobillie
theorem states that the angle between collineation axis 1 and
ray 1 is equal to the angle between ray 2 and the pole tang
Therefore, the line that connects pole P and point T is ind

Fig. 7 Purely graphical technique to locate the pole tangent
Journal of Mechanical Design
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coincident with the pole tangent. Recall that the pole, the p
tangent, and the pole normal~which indicates the direction of the
pole acceleration!, define the canonical system for the coupl
link @15#.

It is interesting to note that the center of curvature of the t
jectory traced by point C can be obtained directly from the p
velocity, denoted as U, see Fig. 8. The procedure is to project
pole velocity unto the line that is drawn through the pole a
parallel to the path tangent of point C. This vector, denoted
uP5

t , represents the velocity of a point fixed in the virtual link
and coincident with pole P. Next draw a line through the tip of th
vector and the tip of the velocity vector of point C, denoted as VC.
The intersection of this line with the line passing through the p
and point C~i.e., the path normal! is the center of curvature of the
trajectory traced by the coupler point.

The following section will show that the results of the pure
graphical concepts, presented in this section, are in comp
agreement with the traditional approach which requires the infl
tion circle for the coupler link and the Euler-Savary equati
@3,8,10#. The reader can compare the two approaches and note
neither inflection points of the coupler link nor the pole tange
are required in the graphical technique proposed in this pape

3 Numerical Example
Consider the four-bar linkage OAABOB, shown in Fig. 9, with

the link dimensions OAOB540 cm, OAA517.5 cm, AB520 cm,
and OBB538 cm ~consistent with the dimensions of Figs.
through 7!. Note that linear dimensions can be presented with
units because they can be scaled uniformly to any conven
scale@12#. For convenience, the metric length of centimeters w
be used in this section. The location of coupler point C is speci
by the distance AC512.5 cm and the angle/BAC575 deg. For
convenience, the design position is specified by the angleu2
570 deg.

Following the purely graphical technique presented in Sec.
the location of the center of curvature of the path traced by po
C ~in the design position! is as shown in Fig. 9. The importan
observation is that no measurements are required in finding
result. If the radius of curvature of the path traced by point C~i.e.,
the radius of the osculating circle! is required then the distanc

Fig. 8 Center of curvature of the path trajectory point C
NOVEMBER 2004, Vol. 126 Õ 1003
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OCC can be measured from the scaled drawing. For this exam
the radius of curvature of the point trajectory is measured
OCC58.74 cm.

The Euler-Savary equation states that the radius of curvatur
the path traced by the coupler point C can be written as

OCC5
~PC!2

JCC
(6)

where JC is an inflection point of the coupler link, see Fig. 9. T
locate this inflection point it is standard practice to first draw
inflection circle for the coupler link. Recall that the inflectio
circle is defined as the locus of points in the coupler link that
instantaneously traveling on straight lines or the locus of point
the coupler link that have no normal acceleration; i.e., inflect
points. The inflection circle can be drawn by locating the infle
tion points JA and JB that correspond to points A and B, respe
tively, in the coupler link. These two inflection points are obtain
from the Euler-Savary equation; i.e.,

JAA5
~PA!2

OAA
and JBB5

~PB!2

OBB
(7)

From a scaled drawing of the linkage, the measured distance
PA523.90 cm and PB58.70 cm. Substituting these values, a
the specified link dimensions, into Eqs.~7! gives JAA532.64 cm
and JBB51.99 cm. Since pole P and the inflection points JA and JB
lie on the circumference of the inflection circle then the circle c
be drawn, see Fig. 9. The center of the inflection circle is deno
as O and the inflection pole is denoted as J. The diameter o
inflection circle is measured as PJ563.27 cm. The pole tangen
and pole normal are also shown in the figure. The pole tange
inclined at 133.33 deg to the line passing through the ground
OAOB.

The intersection of the line connecting pole P to coupler poin
with the inflection circle gives the inflection point JC. The dis-
tances from P to C and from JC to C are measured and the resu
are PC519.51 cm and JCC543.54 cm, respectively. These me
surements are then substituted into Eq.~6! to give the location of
the center of curvature of the path traced by point C on the p
normal; i.e., OCC58.74 cm. The distance from the pole to th
center of curvature is POC5PC1COC528.25 cm. Alternatively,
the Euler-Savary equation can be written as

Fig. 9 Inflection circle and center of curvature of trajectory of
point C
1004 Õ Vol. 126, NOVEMBER 2004
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(8)

Substituting the measured values into this equation gives the s
result; namely, POC528.25 cm. Therefore, the analytical resul
obtained in this section are in complete agreement with the pu
graphical technique that is presented in Sec. 2.

4 Concluding Remarks
This paper presents a graphical technique to locate the cent

curvature of the path traced by an arbitrary point fixed in t
coupler link of a planar four-bar linkage. The feature of this tec
nique is that a virtual link is used to connect the coupler point
the ground link. The virtual link is valid up to, and including, th
second-order properties of motion of the coupler link. The virtu
link is coincident with the path normal of the coupler point a
the length of the link is the distance between the coupler point
the center of curvature of the path traced by this point. The te
nique presented in this paper is purely graphical; i.e., no analyt
equations or measurements are required. Another advantage i
the technique requires few geometric constructions and it is
necessary to draw the inflection circle for the coupler link.

A previous paper@12# investigated the curvature of the pa
traced by coupler point Q of the single flier eight-bar linka
shown in Fig. 10. The graphical technique used the equiva
four-bar linkage defined by ground link 1 (ONOM), virtual link 15
(OMM), coupler link 8 ~MQN!, and virtual link 18 (NON) as
shown in Fig. 11~a!. The coupler pins M and N are defined as t
points of intersection of link 6 with links 5 and 7~or the links
extended!, respectively. The paper showed that the centers of c
vature OM and ON can be obtained in a straightforward manner
using the concept of virtual links and equivalent four-bar linkag
Finally, the location of the center of curvature of the trajectory
point Q was obtained from the pole P18, the inflection circle
~specified by inflection points JM and JN) and the Euler-Savary
equation, see Fig. 11~b!. This paper, however, now makes it po
sible to perform this final step without finding inflection point
drawing the inflection circle, using analytical equations, or ma

Fig. 10 Single flier eight-bar linkage
Transactions of the ASME
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ing measurements of lengths and angles. For purposes of illu
tion, the figure shows the path of point Q over a considera
distance away from the design position.

The authors are of the opinion that the graphical ideas propo
in this paper will prove especially helpful when used in conjun
tion with parametric computer aided design software such asPRO/

ENGINEER, SOLIDWORKS, and SOLID EDGE. These commercially
available packages have powerful integrated numeric solvers
function behind easy to use and well-developed interfaces.
engineer can quickly and easily create kinematic figures and
termine the properties of a linkage~for example, the locations o
instant centers and the radius of curvature of a point traject!

Fig. 11 „a… Equivalent four-bar linkage for the coupler link, „b…
inflection circle and osculating circle for the coupler link
Journal of Mechanical Design
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using geometric constructions. These figures can be create
make use of the parametric solvers so that they will be update
the design is iterated as part of the design process. This techn
is an alternative to writing analytical code and will provide th
engineer with geometric insight without having to formulate no
linear equations. The proliferation of the computer aided des
packages makes this a viable educational and industrial tool.

The graphical techniques, developed in this paper, will be u
in a future research activity to create a graphical program that u
parametric constraints. The goal is to make the program be ea
adapted to investigate the path curvature of a coupler point tra
tory of any planar, single-degree-of-freedom linkage. The resea
will extend the graphical kinematic computer programming
path curvature to the kinematic synthesis of the planar four-
linkage and the Stephenson and the Watt six-bar linkages.
authors also believe that the work presented in this paper ca
extended to include the higher-order properties of motion of
coupler link. For example, the concept of a virtual link shou
provide important insight into the third-order properties of moti
of a coupler link and afford a purely graphical technique to dr
the well-known cubic of stationary curvature@6,9#.
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