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Minimal coverings of completely reducible groups

By A. ABDOLLAHI (Isfahan) and S. M. JAFARIAN AMIRI (Zanjan)

Abstract. Let G be a group that is a set-theortic union of finitely many proper

subgroups. Cohn defined σ(G) to be the least integer m such that G is the union of m

proper subgroups. Determining σ is an open problem for most non-solvable groups. In

this paper we give a formula for σ(G), where G is a completely reducible group.

1. Introduction and results

Let G be a group that is a set-theoretic union of finitely many proper sub-
groups and by a cover (or covering) of G we mean any finite set of proper
subgroups whose set-theoretic union is the whole group G. Cohn [4] defined
σ(G) to be the least integer m (if it exists) such that G has a covering with
m subgroups (we call any such covering minimal) and otherwise σ(G) = ∞.
A result of Neumann [12] states that if G is a union of m proper subgroups,
then the intersection of these subgroups is of finite index in G. It follows that
in study of σ(G), we may assume that G is finite. It is an easy exercise that
σ(G) can never be 2, so σ(G) ≥ 3. Groups that are the union of three proper
subgroups, as C2 × C2 is for example, are investigated in papers [6], [7], [14].
Also groups G with σ(G) ∈ {3, 4, 5} and σ(G) = 6 are characterized in [4]
and [1], respectively. However Tomkinson [15] proved that there is no group
with σ(G) = 7. Cohn [4] showed that for any prime power pa there exists
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a solvable group G with σ(G) = pa + 1. In fact, Tomkinson [15] established
that σ(G) − 1 is always a prime power for solvable groups G. It is natural
to ask what can be said about σ(G) for non-solvable groups. Bryce, Fedri

and Serena begun this project in [3], where they calculated σ(G) for the linear
groups G ∈ {

PSL2(q), PGL2(q), SL2(q), PGL2(q)
}
. They obtained the formula

1
2q(q + 1) for even prime powers q ≥ 4 and the formula 1

2q(q + 1) + 1 for odd
prime powers q ≥ 5. Moreover Lucido [10] studied this problem for the sim-
ple Suzuki groups and found that σ(Sz(q)) = 1

2q2(q2 + 1), where q = 22m+1.
Maróti [11] gave exact or asymptotic formulas for σ(Symn) and σ(Altn). In
particular, it is shown in [11] that if n > 1 is odd, then σ(Symn) = 2n−1 unless
n = 9 and σ(Symn) ≤ 2n−2 if n is even. Also Maróti proved that if n 6= 7, 9,
then σ(Altn) ≥ 2n−2 with equality if and only if n is even but not divisible by 4.
Holmes in [8] obtained σ(S) for some sporadic simple groups S. See also [9]
for some related results. Thus the situation for non-solvable groups seems to be
totally different from solvable ones.

A group G is called completely reducible if it is a direct product of simple
groups. In the sequel a completely reducible group will be called a CR-group.
Note that in a CR-group, every normal subgroup is a direct factor (see [13, The-
orem 3.3.12]). A CR-group is centerless if and only if it is a direct product of
non-abelian simple groups. A finite group G contains a normal centerless CR-
subgroup which contains all normal centerless CR-subgroups; this subgroup is
called the centerless CR-radical of G. For more details concerning CR-groups,
see [13, pp. 88–89]. In this paper we prove the following results.

Theorem 1.1. Let G be a finite group. If G = A1×A2×· · ·×An, where Ai

is a non-abelian simple group for each i, then σ(G) = min{σ(A1), . . . , σ(An)}.
Theorem 1.2. Let G be a finite CR-group. Then σ(G) = min

{
σ(R), σ

(
G
R

)}
,

where R is the centerless CR-radical of G.

2. Proofs

We begin with the following easy lemma.

Lemma 2.1. Let G be a finite non-cyclic group. If M is a maximal subgroup

of G such that σ(G) < σ(M), then either M is a normal subgroup of G or

|G : M | ≤ σ(G)− 1.

Proof. Suppose that M 5 G. Then M has |G : M | conjugates in G. There
are maximal subgroups Ai of G for which G = ∪σ(G)

i=1 Ai and M = ∪σ(G)
i=1 (M ∩Ai).
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Since σ(G) < σ(M), then there exists j ∈ {1, . . . , σ(G)} such that M = M ∩Aj .
Hence for every x ∈ G, there exist ix ∈ {1, . . . , σ(G)} such that Mx = Aix .
Therefore |G : M | ≤ σ(G). Now since G 6= ∪g∈GMg, |G : M | ≤ σ(G)− 1. ¤

The following result which will be useful in the sequel, is a generalization of
Lemma 4 of [4]. Its proof is similar to that of Lemma 4 of [4] and we give it for
the reader’s convenience.

Proposition 2.2. Let G be a finite group such that G = H × K for two

subgroups H and K of G. If every maximal subgroup of G contains either H

or K, then σ(G) = min{σ(H), σ(K)}.
Proof. Since every maximal subgroup M of G contains either H or K, M

is equal to either H0×K or H×K0, where H0 is maximal in H and K0 maximal
in K. Thus we may assume that G = (∪p

i=1H × Mi)
⋃

(∪q
j=1Mj × K), where

p + q = σ(G), p, q ≥ 0 and Mi is maximal in K and Nj is maximal in H. Now
we claim that one of p and q must be zero.

Let G1 = ∪p
i=1H ×Mi and G2 = ∪q

j=1Nj ×K. If q 6= 0, then G1 6= G and so
there exists an element a2 ∈ G\G1. Therefore a2 /∈ Mi for alli ∈ {1, . . . , p} and
so aa2 /∈ G1 for all a ∈ H. Hence aa2 ∈ G2 for all a ∈ H. Thus aa′ ∈ G2 for all
a ∈ H and a′ ∈ K. Hence G2 = G and p = 0.

Now if p = 0, then G = G2 = (∪q
j=1Nj)K, whence H = ∪q

j=1Nj . This
implies that σ(H) ≤ σ(G) = q. Similarly if q = 0, then σ(K) ≤ p = σ(G). But
σ(G) ≤ min{σ(H), σ(K)} − see for example Lemma 2 in [4] − which gives the
result. ¤

Recall that a finite group G is said to be primitive if it has a maximal sub-
group M such that the core of M in G, MG = ∩g∈GMg is trivial. In this situation
we call M a stabilizer of G. We need the following trichotomy of R. Baer on
primitive groups.

Theorem 2.3 (Baer [2]). Let G be a finite primitive group with a stabi-

lizer M . Then exactly one of the following three statements holds:

(1) G has a unique minimal normal subgroup N , this subgroup N is self-central-

izing (in particular, abelian), and N is complemented by M in G.

(2) G has a unique minimal normal subgroup N , this N is non-abelian, and N

is supplemented by M in G.

(3) G has exactly two minimal normal subgroups N and N∗, and each of them

is complemented by M in G. Also CG(N) = N∗, CG(N∗) = N and N ∼=
N∗ ∼= NN∗ ∩M .
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Remark 2.4 (see Example 15.3(3) in p. 54 of [5]). Let G be a finite group.

(1) If M is a maximal subgroup of G, then G
MG

is a primitive group.

(2) If G is a non-abelian simple group, then G×G is a primitive group in which
the diagonal subgroup D = {(g, g) : g ∈ G} is a stabilizer.

Lemma 2.5. Let H and K be non-abelian simple groups. If G = H ×K,

then σ(G) = min{σ(H), σ(K)}.
Proof. If H ∼= K, then G ∼= H × H is a primitive group with stabilizer

diagonal subgroup D = {(h, h) : h ∈ H}. We have D ∼= H and D is a maximal
subgroup of G which is not normal in G. If σ(G) < σ(H) = σ(D), then by
Lemma 2.1, |G : D| ≤ σ(G)− 1. Since |G : D| = |H|, we have |H| < σ(H) which
is a contradiction. Thus σ(G) ≥ σ(H). Now the corollary to Lemma 2 of [4]
completes the proof.

Thus we may assume that H � K. Then by Theorem 2.3 G is not a primitive
group and so MG is non-trivial for every maximal subgroup M of G. Therefore
MG = H or MG = K and so H ≤ M or K ≤ M . The proof is now complete by
Proposition 2.2. ¤

Proof of Theorem 1.1. We argue by induction on n. If n = 1, then the
result is clear and if n = 2, then the result follows from Lemma 2.5. So we may
assume that n ≥ 3. If there exist distinct i, j ∈ {1, . . . , n} such that Ai

∼= Aj and
i < j, then G ∼= G1 = N ×Ai ×Ai, where

N =
∏

k∈{1,...,n}\{i,j}
Ak.

Now consider M = N ×D, where D = {(a, a) : a ∈ Ai} is the diagonal subgroup
of Ai×Ai. Then M is a maximal subgroup of G1 which is not normal in G1, since
D 5 Ai × Ai. On the other hand, since D ∼= Ai, by the induction hypothesis we
have σ(M) = min{σ(A1), . . . , σ(An)}. It follows from the corollary to Lemma 2 of
[4] that σ(G1) ≤ σ(M). Now suppose, aiminig for a contradiction, that σ(G1) <

σ(M). Then Lemma 2.1 implies that |G1 : M | < σ(G). Therefore σ(G) >

|Ai| > σ(Ai), which is the contradiction we sought. Hence σ(G) = σ(M) =
min{σ(A1), . . . , σ(An)}.

Now assume that Ai � Aj for any two distinct i, j ∈ {1, . . . , n} and let
H = A1 × A2 × · · · × An−1. We claim that every maximal subgroup S of G

contains either H or An. If An ≮ S, then An ≮ SG and so SG = Ai1 × · · · ×Aik
,

where {i1, . . . , ik} ⊆ {1, . . . , n − 1}. Since G
SG

is a primitive group, Theorem 2.3
implies that k = n − 1 and so SG = H ≤ S. The proof is now complete by
Proposition 2.2 and induction hypothesis. ¤
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Proof of Theorem 1.2. Suppose that G = A×R such that A is an abelian
CR-subgroup of G and R is the centerless CR-radical of G. We may assume that
both A and R are non-trivial. We claim that every maximal subgroup M of G

contains either A or R. If A � M , then A � MG. Thus there exists a normal
subgroup N of prime order such that N � MG. Since G

MG
is a primitive group

and NMG

MG
is a minimal normal subgroup of G

MG
, it follows from Theorem 2.3 that

G
MG

contains a unique minimal normal abelian subgroup. If R �MG, then there
exists a non-abelian simple normal subgroup S ≤ R of G such that S �MG. Thus
SMG

MG
is a minimal normal subgroup of G

MG
, and so it is abelian, a contradiction.

This implies that R ≤ MG ≤ M . Now the proof follows from Proposition 2.2. ¤

Proposition 2.6. Let H be a finite CR-group whose center is of odd order

and let Symn be the symmetric group of degree n ≥ 5. Then σ(H × Symn) =
min{σ(H), σ(Symn)}.

Proof. By hypothesis and Proposition 2.2, it is enough to show that every
maximal subgroup M of G = H × Symn contains either H or Symn. If H ≮M ,
then H ≮MG and so, as H is a CR-group, there exists a (non-abelian or abelian)
simple normal subgroup S contained in H such that S ≮ MG. Therefore S ∩
MG = 1 and SMG

MG

∼= S is a (simple) minimal normal subgroup of G
MG

. Also
MG ∩ Symn = 1, Altn or Symn.
We dismiss the first two of these possibilities.

(1) If MG ∩ Symn = 1, then Symn
∼= MG Symn

MG
E G

MG
. Since Altn E Symn, K =

MG Altn

MG
is a minimal normal subgroup of G = G

MG
. Now we claim that

K 6= SMG

MG
; if X = Altn MG = SMG and each product is direct. Now

CX(MG) = Z(MG)Altn = Z(MG)S so CX(MG)′ = Altn = S′ ≤ H, a con-
tradiction. Since G

MG
is primitive, Theorem 2.3 implies that CG(SMG

MG
) = K.

Thus Symn
∼= MG Symn

MG
≤ K ∼= Altn, which is a contradiction.

(2) In this case MG ∩ Symn = Altn and so MG Symn

MG
is a normal subgroup of

order 2, therefore central in the primitive group G
MG

. Thus by Theorem 2.3,
G

MG

∼= C2. Since S ∼= MGS
MG

≤ G
MG

, we have that S ∼= C2 and so the center of
H is of even order, contradicting the hypothesis.

Hence MG ∩ Symn = Symn ≤ MG ≤ M . This completes the proof. ¤
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