Minimal coverings of completely reducible groups

By A. ABDOLLAHI (Isfahan) and S. M. JAFARIAN AMIRI (Zanjan)

Abstract

Let G be a group that is a set-theortic union of finitely many proper subgroups. Cohn defined $\sigma(G)$ to be the least integer m such that G is the union of m proper subgroups. Determining σ is an open problem for most non-solvable groups. In this paper we give a formula for $\sigma(G)$, where G is a completely reducible group.

1. Introduction and results

Let G be a group that is a set-theoretic union of finitely many proper subgroups and by a cover (or covering) of G we mean any finite set of proper subgroups whose set-theoretic union is the whole group G. Cohn [4] defined $\sigma(G)$ to be the least integer m (if it exists) such that G has a covering with m subgroups (we call any such covering minimal) and otherwise $\sigma(G)=\infty$. A result of Neumann [12] states that if G is a union of m proper subgroups, then the intersection of these subgroups is of finite index in G. It follows that in study of $\sigma(G)$, we may assume that G is finite. It is an easy exercise that $\sigma(G)$ can never be 2 , so $\sigma(G) \geq 3$. Groups that are the union of three proper subgroups, as $C_{2} \times C_{2}$ is for example, are investigated in papers [6], [7], [14]. Also groups G with $\sigma(G) \in\{3,4,5\}$ and $\sigma(G)=6$ are characterized in [4] and [1], respectively. However Tomkinson [15] proved that there is no group with $\sigma(G)=7$. Cohn [4] showed that for any prime power p^{a} there exists

Mathematics Subject Classification: 20D60.
Key words and phrases: covering groups by subgroups, completely reducible groups; simple groups.
This work was in part supported by a grant from the Center of Excellence for Mathematics, University of Isfahan. The research of the first author was in part supported by a grant from IPM (No. 85200032).
a solvable group G with $\sigma(G)=p^{a}+1$. In fact, Tomkinson [15] established that $\sigma(G)-1$ is always a prime power for solvable groups G. It is natural to ask what can be said about $\sigma(G)$ for non-solvable groups. Bryce, Fedri and Serena begun this project in [3], where they calculated $\sigma(G)$ for the linear groups $G \in\left\{P S L_{2}(q), P G L_{2}(q), S L_{2}(q), P G L_{2}(q)\right\}$. They obtained the formula $\frac{1}{2} q(q+1)$ for even prime powers $q \geq 4$ and the formula $\frac{1}{2} q(q+1)+1$ for odd prime powers $q \geq 5$. Moreover Lucido [10] studied this problem for the simple Suzuki groups and found that $\sigma(S z(q))=\frac{1}{2} q^{2}\left(q^{2}+1\right)$, where $q=2^{2 m+1}$. Maróti [11] gave exact or asymptotic formulas for $\sigma\left(\mathrm{Sym}_{n}\right)$ and $\sigma\left(\mathrm{Alt}_{n}\right)$. In particular, it is shown in [11] that if $n>1$ is odd, then $\sigma\left(\mathrm{Sym}_{n}\right)=2^{n-1}$ unless $n=9$ and $\sigma\left(\mathrm{Sym}_{n}\right) \leq 2^{n-2}$ if n is even. Also Maróti proved that if $n \neq 7,9$, then $\sigma\left(\mathrm{Alt}_{n}\right) \geq 2^{n-2}$ with equality if and only if n is even but not divisible by 4 . Holmes in [8] obtained $\sigma(S)$ for some sporadic simple groups S. See also [9] for some related results. Thus the situation for non-solvable groups seems to be totally different from solvable ones.

A group G is called completely reducible if it is a direct product of simple groups. In the sequel a completely reducible group will be called a CR-group. Note that in a CR-group, every normal subgroup is a direct factor (see [13, Theorem 3.3.12]). A CR-group is centerless if and only if it is a direct product of non-abelian simple groups. A finite group G contains a normal centerless CRsubgroup which contains all normal centerless CR-subgroups; this subgroup is called the centerless CR-radical of G. For more details concerning CR-groups, see [13, pp. 88-89]. In this paper we prove the following results.

Theorem 1.1. Let G be a finite group. If $G=A_{1} \times A_{2} \times \cdots \times A_{n}$, where A_{i} is a non-abelian simple group for each i, then $\sigma(G)=\min \left\{\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{n}\right)\right\}$.

Theorem 1.2. Let G be a finite $C R$-group. Then $\sigma(G)=\min \left\{\sigma(R), \sigma\left(\frac{G}{R}\right)\right\}$, where R is the centerless $C R$-radical of G.

2. Proofs

We begin with the following easy lemma.
Lemma 2.1. Let G be a finite non-cyclic group. If M is a maximal subgroup of G such that $\sigma(G)<\sigma(M)$, then either M is a normal subgroup of G or $|G: M| \leq \sigma(G)-1$.

Proof. Suppose that $M \notin G$. Then M has $|G: M|$ conjugates in G. There are maximal subgroups A_{i} of G for which $G=\cup_{i=1}^{\sigma(G)} A_{i}$ and $M=\cup_{i=1}^{\sigma(G)}\left(M \cap A_{i}\right)$.

Since $\sigma(G)<\sigma(M)$, then there exists $j \in\{1, \ldots, \sigma(G)\}$ such that $M=M \cap A_{j}$. Hence for every $x \in G$, there exist $i_{x} \in\{1, \ldots, \sigma(G)\}$ such that $M^{x}=A_{i_{x}}$. Therefore $|G: M| \leq \sigma(G)$. Now since $G \neq \cup_{g \in G} M^{g},|G: M| \leq \sigma(G)-1$.

The following result which will be useful in the sequel, is a generalization of Lemma 4 of [4]. Its proof is similar to that of Lemma 4 of [4] and we give it for the reader's convenience.

Proposition 2.2. Let G be a finite group such that $G=H \times K$ for two subgroups H and K of G. If every maximal subgroup of G contains either H or K, then $\sigma(G)=\min \{\sigma(H), \sigma(K)\}$.

Proof. Since every maximal subgroup M of G contains either H or K, M is equal to either $H_{0} \times K$ or $H \times K_{0}$, where H_{0} is maximal in H and K_{0} maximal in K. Thus we may assume that $G=\left(\cup_{i=1}^{p} H \times M_{i}\right) \bigcup\left(\cup_{j=1}^{q} M_{j} \times K\right)$, where $p+q=\sigma(G), p, q \geq 0$ and M_{i} is maximal in K and N_{j} is maximal in H. Now we claim that one of p and q must be zero.

Let $G_{1}=\cup_{i=1}^{p} H \times M_{i}$ and $G_{2}=\cup_{j=1}^{q} N_{j} \times K$. If $q \neq 0$, then $G_{1} \neq G$ and so there exists an element $a_{2} \in G \backslash G_{1}$. Therefore $a_{2} \notin M_{i}$ for all $i \in\{1, \ldots, p\}$ and so $a a_{2} \notin G_{1}$ for all $a \in H$. Hence $a a_{2} \in G_{2}$ for all $a \in H$. Thus $a a^{\prime} \in G_{2}$ for all $a \in H$ and $a^{\prime} \in K$. Hence $G_{2}=G$ and $p=0$.

Now if $p=0$, then $G=G_{2}=\left(\cup_{j=1}^{q} N_{j}\right) K$, whence $H=\cup_{j=1}^{q} N_{j}$. This implies that $\sigma(H) \leq \sigma(G)=q$. Similarly if $q=0$, then $\sigma(K) \leq p=\sigma(G)$. But $\sigma(G) \leq \min \{\sigma(H), \sigma(K)\}$ - see for example Lemma 2 in [4] - which gives the result.

Recall that a finite group G is said to be primitive if it has a maximal subgroup M such that the core of M in $G, M_{G}=\cap_{g \in G} M^{g}$ is trivial. In this situation we call M a stabilizer of G. We need the following trichotomy of R. BAER on primitive groups.

Theorem 2.3 (BAER [2]). Let G be a finite primitive group with a stabilizer M. Then exactly one of the following three statements holds:
(1) G has a unique minimal normal subgroup N, this subgroup N is self-centralizing (in particular, abelian), and N is complemented by M in G.
(2) G has a unique minimal normal subgroup N, this N is non-abelian, and N is supplemented by M in G.
(3) G has exactly two minimal normal subgroups N and N^{*}, and each of them is complemented by M in G. Also $C_{G}(N)=N^{*}, C_{G}\left(N^{*}\right)=N$ and $N \cong$ $N^{*} \cong N N^{*} \cap M$.

Remark 2.4 (see Example 15.3(3) in p. 54 of [5]). Let G be a finite group.
(1) If M is a maximal subgroup of G, then $\frac{G}{M_{G}}$ is a primitive group.
(2) If G is a non-abelian simple group, then $G \times G$ is a primitive group in which the diagonal subgroup $D=\{(g, g): g \in G\}$ is a stabilizer.
Lemma 2.5. Let H and K be non-abelian simple groups. If $G=H \times K$, then $\sigma(G)=\min \{\sigma(H), \sigma(K)\}$.

Proof. If $H \cong K$, then $G \cong H \times H$ is a primitive group with stabilizer diagonal subgroup $D=\{(h, h): h \in H\}$. We have $D \cong H$ and D is a maximal subgroup of G which is not normal in G. If $\sigma(G)<\sigma(H)=\sigma(D)$, then by Lemma 2.1, $|G: D| \leq \sigma(G)-1$. Since $|G: D|=|H|$, we have $|H|<\sigma(H)$ which is a contradiction. Thus $\sigma(G) \geq \sigma(H)$. Now the corollary to Lemma 2 of [4] completes the proof.

Thus we may assume that $H \not \approx K$. Then by Theorem $2.3 G$ is not a primitive group and so M_{G} is non-trivial for every maximal subgroup M of G. Therefore $M_{G}=H$ or $M_{G}=K$ and so $H \leq M$ or $K \leq M$. The proof is now complete by Proposition 2.2.

Proof of Theorem 1.1. We argue by induction on n. If $n=1$, then the result is clear and if $n=2$, then the result follows from Lemma 2.5. So we may assume that $n \geq 3$. If there exist distinct $i, j \in\{1, \ldots, n\}$ such that $A_{i} \cong A_{j}$ and $i<j$, then $G \cong G_{1}=N \times A_{i} \times A_{i}$, where

$$
N=\prod_{k \in\{1, \ldots, n\} \backslash\{i, j\}} A_{k}
$$

Now consider $M=N \times D$, where $D=\left\{(a, a): a \in A_{i}\right\}$ is the diagonal subgroup of $A_{i} \times A_{i}$. Then M is a maximal subgroup of G_{1} which is not normal in G_{1}, since $D \nsubseteq A_{i} \times A_{i}$. On the other hand, since $D \cong A_{i}$, by the induction hypothesis we have $\sigma(M)=\min \left\{\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{n}\right)\right\}$. It follows from the corollary to Lemma 2 of [4] that $\sigma\left(G_{1}\right) \leq \sigma(M)$. Now suppose, aiminig for a contradiction, that $\sigma\left(G_{1}\right)<$ $\sigma(M)$. Then Lemma 2.1 implies that $\left|G_{1}: M\right|<\sigma(G)$. Therefore $\sigma(G)>$ $\left|A_{i}\right|>\sigma\left(A_{i}\right)$, which is the contradiction we sought. Hence $\sigma(G)=\sigma(M)=$ $\min \left\{\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{n}\right)\right\}$.

Now assume that $A_{i} \not \equiv A_{j}$ for any two distinct $i, j \in\{1, \ldots, n\}$ and let $H=A_{1} \times A_{2} \times \cdots \times A_{n-1}$. We claim that every maximal subgroup S of G contains either H or A_{n}. If $A_{n} \nless S$, then $A_{n} \nless S_{G}$ and so $S_{G}=A_{i_{1}} \times \cdots \times A_{i_{k}}$, where $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n-1\}$. Since $\frac{G}{S_{G}}$ is a primitive group, Theorem 2.3 implies that $k=n-1$ and so $S_{G}=H \leq S$. The proof is now complete by Proposition 2.2 and induction hypothesis.

Proof of Theorem 1.2. Suppose that $G=A \times R$ such that A is an abelian CR-subgroup of G and R is the centerless $C R$-radical of G. We may assume that both A and R are non-trivial. We claim that every maximal subgroup M of G contains either A or R. If $A \not \leq M$, then $A \not \leq M_{G}$. Thus there exists a normal subgroup N of prime order such that $N \nsubseteq M_{G}$. Since $\frac{G}{M_{G}}$ is a primitive group and $\frac{N M_{G}}{M_{G}}$ is a minimal normal subgroup of $\frac{G}{M_{G}}$, it follows from Theorem 2.3 that $\frac{G}{M_{G}}$ contains a unique minimal normal abelian subgroup. If $R \not \leq M_{G}$, then there exists a non-abelian simple normal subgroup $S \leq R$ of G such that $S \not \leq M_{G}$. Thus $\frac{S M_{G}}{M_{G}}$ is a minimal normal subgroup of $\frac{G}{M_{G}}$, and so it is abelian, a contradiction. This implies that $R \leq M_{G} \leq M$. Now the proof follows from Proposition 2.2.

Proposition 2.6. Let H be a finite CR-group whose center is of odd order and let Sym_{n} be the symmetric group of degree $n \geq 5$. Then $\sigma\left(H \times \operatorname{Sym}_{n}\right)=$ $\min \left\{\sigma(H), \sigma\left(\operatorname{Sym}_{n}\right)\right\}$.

Proof. By hypothesis and Proposition 2.2, it is enough to show that every maximal subgroup M of $G=H \times \operatorname{Sym}_{n}$ contains either H or Sym_{n}. If $H \nless M$, then $H \nless M_{G}$ and so, as H is a CR-group, there exists a (non-abelian or abelian) simple normal subgroup S contained in H such that $S \nless M_{G}$. Therefore $S \cap$ $M_{G}=1$ and $\frac{S M_{G}}{M_{G}} \cong S$ is a (simple) minimal normal subgroup of $\frac{G}{M_{G}}$. Also $M_{G} \cap \operatorname{Sym}_{n}=1, \mathrm{Alt}_{n}$ or Sym_{n}.
We dismiss the first two of these possibilities.
(1) If $M_{G} \cap \operatorname{Sym}_{n}=1$, then $\operatorname{Sym}_{n} \cong \frac{M_{G} \operatorname{Sym}_{n}}{M_{G}} \unlhd \frac{G}{M_{G}}$. Since Alt ${ }_{n} \unlhd \operatorname{Sym}_{n}, \bar{K}=$ $\frac{M_{G} \text { Alt }_{n}}{M_{G}}$ is a minimal normal subgroup of $\bar{G}=\frac{G}{M_{G}}$. Now we claim that $\bar{K} \neq \frac{S M_{G}}{M_{G}}$; if $X=\operatorname{Alt}_{n} M_{G}=S M_{G}$ and each product is direct. Now $C_{X}\left(M_{G}\right)=Z\left(M_{G}\right) \mathrm{Alt}_{n}=Z\left(M_{G}\right) S$ so $C_{X}\left(M_{G}\right)^{\prime}=\mathrm{Alt}_{n}=S^{\prime} \leq H$, a contradiction. Since $\frac{G}{M_{G}}$ is primitive, Theorem 2.3 implies that $C_{\bar{G}}\left(\frac{S M_{G}}{M_{G}}\right)=\bar{K}$. Thus $\operatorname{Sym}_{n} \cong \frac{M_{G} \operatorname{Sym}_{n}}{M_{G}} \leq \bar{K} \cong \operatorname{Alt}_{n}$, which is a contradiction.
(2) In this case $M_{G} \cap \operatorname{Sym}_{n}=\operatorname{Alt}_{n}$ and so $\frac{M_{G} \operatorname{Sym}_{n}}{M_{G}}$ is a normal subgroup of order 2, therefore central in the primitive group $\frac{G}{M_{G}}$. Thus by Theorem 2.3, $\frac{G}{M_{G}} \cong C_{2}$. Since $S \cong \frac{M_{G} S}{M_{G}} \leq \frac{G}{M_{G}}$, we have that $S \cong C_{2}$ and so the center of H is of even order, contradicting the hypothesis.

Hence $M_{G} \cap \operatorname{Sym}_{n}=\operatorname{Sym}_{n} \leq M_{G} \leq M$. This completes the proof.

Acknowledgment. The authors are grateful to the referee for valuable suggestions.

172 A. Abdollahi and S. M. Jafarian Amiri : Minimal coverings of completely...

References

[1] A. Abdollahi, M. J. Ataei, S. M. Jafarian Amiri and A. Mohammadi Hassanabadi, Groups with a maximal irredundant 6-cover, Comm. Algebra 33 (1990), 3225-3238.
[2] R. BaER, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115-187.
[3] R. A. Bryce, V. Fedri and L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60 (1999), 227-238.
[4] J. H. E. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.
[5] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin, New York, 1992.
[6] M. Bruckheimer, A. C. Bryan and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly 77 (1970), 52-57.
[7] S. Haber and A. Rosenfeld, Groups as unions of proper subgroups, Amer. Math. Monthly 66 (1956), 491-494.
[8] P. E. Holmes, Subgroup coverings of some sporadic simple groups, J. Combin. Theory Ser. A 113 (2006), 1204-1213.
[9] P. E. Holmes and A. Maróti, Sets of elements that generate a linear or a sporadic simple group pairwise, Preprint.
[10] M. S. Lucido, On the covers of finite groups, Vol. 305, London Mathematical Society Lecture Note Series (Groups St. Andrews, Vol. II, 2001), Cambridge University Press, Cambridge, 2003, 395-399.
[11] A. Maróti, Covering the symmetric group with proper subgroups, J. Comb. Theory Ser. A 110 (2005), 97-111.
[12] B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-242.
[13] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1995.
[14] G. Scorza, I gruppi che possono pensarsi come somma di tre loro sottogruppi, Boll. Un. Mat. Ital. 5 (1926), 216-218.
[15] M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189-198.

```
ALIREZA ABDOLLAHI
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ISFAHAN
ISFAHAN 81746-73441
IRAN
AND
INSTITUTE FOR STUDIES IN THEORETICAL
PHYSICS AND MATHEMATICS (IPM)
E-mail: a.abdollahi@math.ui.ac.ir
URL: http://www.dr-abdollahi.ir
S. M. JAFARIAN AMIRI
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
ZANJAN UNIVERSITY
ZANJAN
IRAN
E-mail: sm_jaf@yahoo.ca
```

