3.2

Energy-Efficient Physically Tagged Caches for
Embedded Processors with Virtual Memory -

Peter Petrov
University of Maryland at College Park
ECE Department
ppetrov@ece.umd.edu

ABSTRACT

In this paper we present a low-power tag organization for phys-
ically tagged caches in embedded processors with virtual mem-
ory support. An exceedingly small subset of tag bits is identified
for each application hot-spot so that only these tag bits are used
for cache access with no perfromance sacrifice as they provide
complete address resolution. The minimal subset of physical tag
bits, i.e. the compressed tag, is dynamically updated following the
changes in the physical address space of the application. Special
support from the operating system (OS) is introduced in order to
maintain the compressed tag during program execution. The com-
pressed tag is updated by the OS to match the current set of physical
memory pages allocated to the application. We have proposed effi-
cient algorithms that are incorporated within the memory allocator
and the dynamic linker in order to achieve dynamic update of the
compressed tags in the cases where the mapping between virtual
and physical addresses is modified; such cases include memory
allocation/deallocation and swapping physical pages on the sec-
ondary memory storage. The only hardware support needed within
the I/D-caches is the support for disabling bitlines of the tag arrays.
An extensive set of experimental results demonstrates the efficacy of
the proposed approach.

Categories and Subject Descriptors

B.3 [Hardware]: Memory structures; C.1 [Computer Systems
Organization]: Processor Architectures; C.3 [Computer Systems
Organization]: Special-Purpose and Application-Based Systems

General Terms

Algorithms, Design, Experimentation, Performance

1. INTRODUCTION

Power consumption has been recognized as one of the most im-
portant quality characteristics for a large number of ubiquitous dig-
ital systems. For a multitude of hand-held and wireless products,
such as laptop computers, personal organizers, and cellular phones,
to name just a few, power consumption has a direct impact on bat-
tery life, a quality parameter of utmost importance.

The memory subsystem is one of the most important compo-
nents of any modern processor design, greatly determining its per-

*This work is supported by NSF Grant 0082325.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2005, June 13-17, 2005, Anaheim, California, USA.

Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

17

Daniel Tracy, Alex Orailoglu
University of California at San Diego
CSE Department
dtracy,alex@cs.ucsd.edu

formance and usability. The cache subsystem is an important mi-
croarchitectural component serving to bridge the ever growing gap
between memory access time and processor execution speed. Both
tag and data arrays account for a significant part of the transistor
budget and hence the total power [1].

The tag arrays are used to store a certain number of the most sig-
nificant bits from the effective address in order to resolve data cache
conflicts. Typically, the tag field from the effective address consti-
tutes more than half of the entire address. The particular tag length
depends on the cache organization (associativity, number of cache
lines, and cache line size). Conceptually, the tags behave as keys
associated to certain memory regions and are used to distinguish
each of these memory regions in the cache. Given the general as-
sumption that the application can access arbitrary memory regions,
the whole tag field from the effective address needs to be stored in
the tag array and used for cache conflict identification.

Practically all of the modern high-performance processors sup-
port some type of paged virtual memory controlled by an OS in or-
der to facilitate efficient code and data relocation in support of pro-
cessor sharing by multiple processes. Furthermore, virtual memory
support enables the implementation of memory protection schemes,
which greatly increases system reliability. The processor gener-
ated addresses, referred to as virtual addresses, are translated to
real physical addresses before accessing the system memory. The
Translation Lookaside Buffer (TLB) is a cache-like structure re-
sponsible for the dynamic translation of virtual addresses generated
by the processor to physical addresses used to access the memory.
The mapping between virtual and physical addresses is typically
maintained by the OS and established by the OS loader, dynamic
linker and memory manager. TLB misses result in trapping into
the OS where the missed translation is retrieved from page tables
maintained by the kernel.

In order to avoid cache consistency issues, it is a common prac-
tice to employ physically tagged L1 data and instruction caches. In
the case of physically tagged caches no cache flushing is needed
during a context switch. At the same time physically tagged caches
preserve data consistency by eliminating the possibility of cache
synonyms, a situation where a shared data or code maps to distinct
cache locations for each process, thus introducing consistency haz-
ards and cache capacity underutilization. However, accessing phys-
ically tagged caches requires a TLB lookup to obtain the physical
tag. A single virtual address can be mapped to various physical ad-
dresses during program execution depending on the current phys-
ical location of the memory page. The physical location can vary
due to memory page replacement. Consequently, the physical tags
are unknown prior to executing the program but become available
only after loading and during program execution.

In this paper we introduce a methodology that dynamically com-
presses the effective tag length by exploiting application and sys-
tem information which is updated by the OS while executing the

program. A small subset of tag bits is identified to have a com-
plete resolution for the application memory set and only these tag
bits are read from the tag arrays and compared against when ac-
cessing the cache. All the previous approaches in tag compression
for low-power focus on statically allocated working sets, where the
data/code memory layout is statically known after compiling/linking
the application. These approaches are applicable only for virtually
tagged caches where the code or data layouts are statically known.
In this paper we focus on systems with virtual memory where the
caches are physically tagged. For such systems, the physical ad-
dress ranges of the code and data are not statically known and
are only available after loading the program and could change dur-
ing executing. The dynamic application information regarding the
physical location of both data and instruction memory pages is cap-
tured and exploited through the co-operation of reprogrammable
hardware support introduced within the TLB and the cache tag
arrays, together with efficient OS support to dynamically update
the effective tag size in situations where physical pages have been
added or removed from the application memory map.

Consequently, only an exceedingly small subset of tag bits is
read from the tag arrays and compared to the same subset of tag
bits from the address referenced by the processor. This subset of tag
bits is being either extended or reduced by the OS memory man-
ager in the, rather infrequent for embedded systems, events of dy-
namic memory allocation and deallocation. The hardware support
is programmable by software thus allowing the OS to dynamically
update the active tag size to be used when accessing the instruction
and data caches. By disabling the large number of unneeded tag
bits, significant power reductions in the caches are achieved with
practically no performance sacrifice.

The instruction and data on-chip caches have been long known as
one of the major culprits for the high power consumption of modern
high-end and embedded processors. They amount to 25% of the
total power for the Alpha 21164 [2] and 43% for the StrongARM-
110 [1]. This is mainly due to the fact that the data and tag arrays
are usually implemented as SRAM in order to allow for fast clocks.

In set-associative cache designs, a significant amount of power
is spent in accessing simultaneously all the cache ways. A phased
cache [3] has been proposed to alleviate the resulting power prob-
lem by accessing the tag arrays initially. Therefore, the phased
cache organization reduces power consumption, while paying the
price of an additional cycle in cache access time.

The previous work in low-power tag architectures [4] focuses on
virtually tagged caches and statically allocated data/code, where the
address ranges used to access the cache are statically known after
linking the application. In that work, the authors introduce static
analysis algorithms that are incorporated within the compiler/linker
in order to find the optimal reduced virtual tags for the given static
data set. In this paper we attack the considerably more challenging
problem of physically tagged caches and dynamic working sets.

2. VIRTUAL MEMORY AND CACHES

The presence of virtual memory introduces several options for
accessing L1 caches. As data and code reside in the actual physical
memory, the use of physical addresses to access the cache seems to
be the solution that would work naturally. Nonetheless, obtaining
the actual physical address from the virtual address generated by
the processor requires a page translation process. It is the responsi-
bility of the OS to allocate and map physical pages to virtual pages
and to maintain this correspondence. The TLB is a hardware cache
buffer storing the most recent virtual to physical translations. How-
ever, performing a TLB lookup prior to accessing the cache would
impose a significant delay to the cache access time.

18

\ Virtual Address \

\
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|

L1 Cache

)

VPN tag| PPN

TLB

Figure 1: Virtually-indexed and physically-tagged cache

Alternatively, using the virtual address only to access the cache
requires no overhead for virtual to physical translation. Unfortu-
nately, virtual caches introduce the synonym problem [5, 6]. This
problem appears when code or data is shared by multiple processes.
For such cases, it is possible that a shared physical page is mapped
to distinct virtual pages for each process. In this way, the same
data would be placed in multiple cache locations resulting in data
consistency problems as a process can modify the shared data in
one cache line while the remaining data copies remain with their
previous value.

In order to avoid increasing the cache access time and to facili-
tate the solution of the synonym problem, caches are typically in-
dexed with the virtual address and tagged with the physical ad-
dress. Such a cache access mechanism allows for the TLB lookup
to be overlapped with the cache index operation. Figure 1 shows
the architectural organization for virtually-indexed and physically-
tagged caches. The cache index is obtained from the virtual address
while the tag is obtained from the translated Physical Page Number
(PPN). If the cache index and the VPN do not overlap, no cache
synonyms are possible. In the case of overlapping VPN and cache
index, two basic approaches can be considered. One possibility,
adopted in the Alpha 21264 processor [7], is to access all possi-
ble cache lines corresponding to the overlapped bits. This solution
requires no OS or compiler involvement; nonetheless, it elevates
significantly cache power consumption. The alternative software-
only approach is to ensure that the overlapping VPN and cache
index bits remain identical for both virtual and physical addresses.
This is achieved with the page coloring approach [5] where the OS
places physical pages at locations for which the overlapping bits
are identical.

The dynamic tag compression methodology that we propose in
this paper targets the tag arrays of physically tagged L1 caches.
The effective physical tag size is drastically reduced with the active
help of the OS and the introduced hardware support.

3. TAG COMPRESSION

Depending on the cache organization, the tag contains a large
part of the most significant address bits. For instance, a fully asso-
ciative cache requires no index and other than the few least signifi-
cant bits that are used as a cache line index (usually 2 or 3 bits), the
entire remaining part of the address constitutes the tag part.

As physical addresses are ultimately used in accessing data or
code from the main memory, the fundamental purpose of the phys-
ical tags is to distinguish the memory regions that have distinct tags.
We refer to such memory regions with identical tags as O-tag re-
gions. Consequently, any set of unique identifiers assigned to each
such 0-tag region can be used instead of actual tags in identifying
whether there is a cache hit or miss.

Tags Reduced tags
0
01100110 xxxxxx10
Process | 01100111 Xxxxxx11
data set 01101000 xxxxxx00
01101001 xxxxxx01
2%

Address Space
Figure 2: Tag resolution

3.1 Distinguishing the tags

Depending on the number of associativity sets, the cache is in-
dexed with a few least significant bits from the address. The re-
maining part of the address is used as a tag when performing a
lookup within the selected associativity set. Using all of the re-
maining most significant bits of the address as tags is necessary
only under the assumption that the process code and data occupy
the entire physical address space. This assumption is far from true
in practically any system.

Figure 2 illustrates an example process with the data set occu-
pying a set of contiguous 0-tag regions, exhibiting 4 distinct tags.
One can immediately observe that the tags, shown on the right side
of the memory map, can be completely distinguished by their two
least significant bits only. The remaining most significant bits of
these tags are not essential in providing unique 0-tag region iden-
tification. Consequently, if the process is guaranteed to access this
data set only, only the two least significant tag bits need be uti-
lized as effective tags instead. As these two bits provide complete
tag resolution, the normal cache functionality is preserved and no
deviation from the usual hit/miss behavior is introduced.

While using only the two least significant tag bits to perform
tag lookup would have no performance implications, the net effect
on the cache power consumption is quite significant. Instead of
reading the entire tag from the tag arrays and comparing it to the
tag generated by the processor, only the two least significant bits
from the tag arrays are to be read and compared to the two least
significant bits of the processor provided tag. The power associated
to the remaining most significant bitlines, the corresponding sense
amplifiers, and the comparator cells is drastically reduced.

In order to maintain the consistency of the aforementioned power
optimization technique, for each process the cache architecture needs
to be aware of the number of the tag bits to be utilized as an effec-
tive tag. This can be easily accommodated by a software-controlled
register, which contains a bitmask value specifying the least signif-
icant tag bits to be used as tags. The value of this register is stored
as part of the process state during a context switch.

3.2 Minimal tags

Figure 2 has presented an example working set consisting of con-
secutive virtual pages with four distinct tags. Complete tag resolu-
tion can be accomplished through the utilization of the two least
significant bits. This effect is achieved since the four tags differ in
these two bit positions.

In the context of uniquely identifying the set of tags, the remain-
ing most significant bits, even though not identical for all the tags,
offer no further assistance, as the two least significant bits are per-
fectly capable of full resolution. One can notice that the two least
significant bits constitute an optimal solution in terms of the mini-
mality of the number of bits necessary to achieve complete tag res-
olution as two bits of information is the information theoretic mini-
mum for uniquely encoding a set of four elements. It is straightfor-

19

Tags Tags
0 0
P . 000100 Process 000100
dataset | Q00101 dataset | 200101
000110 000110
001001
011111 Process 001010
Process | 100000 dataset | 001011
data set 100001 001100
100010
2T 2L
Address Space Address Space

a) b)
Figure 3: Minimal tags

ward to observe that for any set of n consecutive tags, the [log, n]
least significant bits always provide complete resolution for that set
of tags as this group of bits would have a different value for the dis-
tinct tags. No conclusion can or need be drawn regarding the most
significant bits which can be identical or distinct. As the [log, n]
least significant tag bits uniquely identify the set of adjacent tags,
the particular values of the remaining bits are of no importance in
the process of accessing the cache.

Figure 3a shows an example of a working set that consists of
seven tags, shown on the right side. The salient difference in this
case is that not all the virtual pages are adjacent but that they are
rather separated into two groups, each containing consecutive pages.
Even though the address space occupied by these particular seven
tags contains 30 distinct tags, it is evident that only the three least
significant tag bits are necessary to provide complete resolution for
the working set tags.

Figure 3b illustrates a similar situation of a working set contain-
ing seven tags. However, in this case the virtual pages of the work-
ing set occupy distinct addresses. Even though there are only seven
distinct tags, it is not possible to utilize only the three least signif-
icant bits as effective tags. This is due to the fact that the first and
the last tags exhibit exactly the same three least significant bits. To
completely resolve this set of seven tags, four least significant bits
have to be used instead.

In general, for a given set of n distinct tags, the minimal number
k of least significant bits sufficient to provide complete tag reso-
lution depends on the size of the address range occupied by the
working set and the particular addresses within that space in which
the data set resides. It is evident that if the occupied address space
comprises of m distinct tags, the minimal required number k of
least significant tag bits with complete resolution can be in the in-
teger range of [[log, n], [log, m]]. The case of k = [log, m]
corresponds to the worst situation, where the entire address space
spanned by the data set needs to be distinguished in order to resolve
the set of tags.

3.3 Functional overview

It is a well known rule-of-thumb that programs spend 90% of
their execution time in 10% of their code. Usually most of the
program execution time is spent in a number of tight loops or func-
tions, generally referred to as “hot-spots”. For instance, a typical
multimedia application spends most of its execution time within a
set of heavily utilized DSP kernels. Each program hot-spot would
access only a limited number of 0-tag regions, thus providing am-
ple opportunities for applying the physical tag power optimization
as outlined in the previous subsections. Consequently, the proposed
approach is applied on the application hot-spots in order to achieve
significant physical tag reductions, while covering a large fraction
of the program execution.

To apply the proposed technique, application information regard-

ing its data/instruction physical working set, and more specifically
the minimal number of least significant bits of the physical tags
required for complete tag resolution, needs to be provided to the
cache. Physical addresses are not known prior to entering the hot-
spot as pages might have been replaced while executing another
hot-spot. Consequently, it is the responsibility of the OS to make
a decision regarding the minimal number of physical tag bits to be
used for cache access. This is achieved through the co-operation
between the TLB and the OS. Prior to entering a hot spot, a spe-
cial bit associated with each TLB entry is reset. This bit denotes
whether the page associated to that particular TLB entry has been
considered for identifying the compressed physical tag. The first
time a page is accessed, this bit would be reset and a trap to the
OS would be effected. At this point the OS would dynamically up-
date the number of least significant bits from the physical tags to
be used as actual tags and subsequently set the bit to indicate that
the page has been accommodated by the current compressed phys-
ical tags. This mechanism would enable the utilization of minimal
physical tags for each instance of the hot-spot depending on the
current memory requirements of the application.

Initially, the program’s hot-spots are identified by profiling while
the working set for all these hot-spots is identified after compiling
and linking the program. At this stage a special setup code is in-
serted prior to entering the hot-spot that includes an OS call inform-
ing the OS that a hot-spot is about to be entered.

As mentioned earlier, there are a number of circumstances that
result in an absence of information regarding the actual physical
tags prior to entering the hot-spots. Such situations include swap-
ping pages while executing another part of the program, page thrash-
ing while executing the hot-spot, dynamically allocating/deallocating
data, and dynamically linked libraries. Therefore, for such cases,
the OS would be responsible for adjusting the size of the minimal
physical tags when changes in the instruction and data working sets
occur. In order to accomplish this process, an efficient algorithm for
updating the minimal size of the physical tags is needed. This al-
gorithm would be integrated within the OS and executed whenever
a new page is placed in the system memory.

We proceed by giving a more detailed explanation of the required
OS and compiler involvement; subsequently, we outline the algo-
rithmic support required by the compiler and the OS. On a cache
lookup, only the least significant physical tag bits are read from the
tag arrays and compared against the physical tag of the address be-
ing looked up. Note that when a new cache line is allocated, the
entire physical tag is stored into the tag array. This allows for the
size of the reduced physical tags to be changed dynamically.

3.4 Compiler and OS support

The proposed technique can be divided into two major phases.
The first phase occurs while building the program executable code.
During this phase, the application characteristics regarding its hot-
spot regions are identified. A special setup code is inserted prior to
entering the hot-spot. This setup code contains a system call that
registers within the OS that a hot-spot is to be executed. Thereupon,
the OS marks all the pages in the TLB as not being as of yet referred
to by the application hot-spot. This is achieved by resetting the
extra status bit, the Referred (R) bit, that we have introduced to
each TLB entry. This special bit serves as an identification as to
whether the physical page has been accessed already by the hot-
spot and thus has been considered in determining the actual size of
the compressed physical tags.

As the code or data physical addresses accessed by each hot-
spot can possibly change for the different instances of the hot-spot,
the number of reduced physical tag bits needs to be updated in such

20

cases. This is achieved in the second phase of the proposed method-
ology during the execution of the program. This task of dynami-
cally compressing the tags as new physical pages are being allo-
cated to the application is handled by the OS. There are two cases
when this support is invoked. The first case is when a physical
page is being accessed for the first time within the hot-spot. This
is indicated by the R status bit in the TLB entry being reset. Such
a situation would trigger a trap into the OS, and the physical tags
associated to the address range of the physical page will be con-
sidered for recomputing the actual tag size of the compressed tags.
Note that this can also lead to having the compressed tag size un-
modified in the cases where the currently identified least significant
bits still provide a full tag resolution. The second case is when the
OS is placing or removing a page into the physical memory. This
can happen in the case of a page fault or when a new data is be-
ing allocated. In this case, the memory manager would invoke the
routines for updating the compressed tag size after performing the
page placement and/or page removal from the physical memory.

3.5 Algorithmic overview

The problem of identifying the minimal tag bits for complete
tag resolution can be formally specified in the following way. The
working set of the process, which consists of ¢ groups of adjacent 0-
tag regions, can be specified as a set of integer pairs (.S;, L;), for all
1<i<t. Each pair represents a group of adjacent virtual pages, with
the first integer S; corresponding to the first tag of the group and
L; denoting the number of distinct tags for that group. Within this
formal specification of the problem, finding the minimal number
k of least significant tag bits with complete resolution maps to the
problem of finding the minimal k such that the integer intervals
[S: mod 2%, S; mod 2 + L;], for all 1<i<t are non-overlapping.
The value of k is exactly the number of least significant tag bits that
provide complete tag resolution.

The algorithm starts by assigning & = [log, n], where n is the
total number of distinct tags, and performs a check for the afore-
mentioned non-overlapping property. The overlap check can be
implemented quite efficiently since the modulo operations can be
implemented as simply masking all but the k least significant bits
and performing the comparisons. If the set of intervals is overlap-
ping, the algorithm increments k and performs the same overlap
check with the new value of k. The timing complexity of the over-
lap check operations is O(¢ log(t)), where t is the number of
groups with adjacent tags. The efficiency in terms of computa-
tional order, coupled with the practical restriction that the number
of groups typically encountered does not exceed 10, results in an
algorithm whose online performance makes it quite suitable for dy-
namic tag compression as it in no way impacts overall performance.

As the instruction or data working set can change during pro-
gram run-time, OS support is needed in order to update the current
minimal k with respect to the newly added or removed group of vir-
tual pages. In this case, an algorithm is required, which when given
a data or instruction working set and its corresponding reduced tags
identifies whether the size of these tags needs to be increased.

Formally, this problem can be described in the following way.
Given a set of integer pairs (S;, L;), 1<i<t, an integer k, such that
the set of integer intervals [\S; mod 2% S; mod 2% + L;], 1<i<tis
non-overlapping, and an additional integer pair (S¢4+1, Lt+1), de-
termine the amount by which the value of k£ should be increased, if
at all, so that the new set of integer intervals [S; mod 2k ,Simod ok 4
L;],1<i<(t+1) is non-overlapping. The first step of the algorithm
is to find out whether the current value of k still makes the new set
of integer intervals non-overlapping and if not, what the previous
intervals that overlap with the newly introduced one are. This step

can be performed in linear time, O(¢) in the number of intervals,
by simply traversing them and checking for overlap by extracting
the k least significant bits for each interval and performing the two
comparisons. If no previous interval that overlaps with the new one
exists, then the current value of k provides a complete tag resolu-
tion. If there exists a subset of intervals that overlap with the new
interval, the algorithm needs to consider only them in trying to find
by how much to increase the value of k. This value is being incre-
mented iteratively until there is no longer an overlap between the
affected integer intervals. Correctness is preserved through consid-
eration of the initially overlapped intervals only since it is impos-
sible to introduce a new overlap when increasing k if there was no
overlap in the first place. This algorithm is integrated within the
dynamic linker and the memory manager and executed when a new
portion of memory is mapped to the address space of the program.

A somewhat converse algorithm is required in the case of data
deallocation by the memory manager. Of course, it is possible sim-
ply to ignore this case, as deallocating data and removing pages can
only decrease the set of tags associated to the program hot-spots
and thus introduces no conflicts with the currently selected mini-
mal tag. Nonetheless, it is possible that in the face of a diminishing
set of tags, the value of k£ can be decremented while still achieving
full tag resolution. In this case, the algorithm has to proceed with
performing the overlap check procedure for the new set of intervals
after removing the interval corresponding to the deallocated data.
The value of k in the process is repeatedly decremented until a con-
flict occurs. In this way the minimal number of & least significant
tag bits is identified and updated for all the affected hot-spots.

4. HARDWARE SUPPORT

Since the tag power optimization technique we propose effec-
tively compresses and eliminates most of the tag bits, the only re-
quired hardware support from the cache is to have tag arrays with
bit positions that can be disabled/gated. In this way only the tag
bits selected to be used as an effective tag would be read from the
tag arrays, while the remaining bit positions will remain inactive
and disabled. As the number of least significant tag bits depends
on the program and even on the particular hot-spot, we require that
the hardware support allows software control upon which particular
tag bit positions can be disabled.

A typical implementation for cache structures employs tag and
data arrays implemented as SRAM arrays. It is possible that these
SRAM arrays are split into multiple banks in order to optimize the
access time. There are also variations as of to how the horizontal
and vertical lines are organized, however, the general principle of
operation is similar. An address decoder selects a row within the
array commonly referred to as a wordline. The wordline selects the
memory cells within that array row. When performing a memory
access, all the vertical lines corresponding to the bit positions and
referred to as bitlines are precharged in order to detect the voltage
level in the selected row; the cell content is determined accord-
ing to what voltage level the bitline goes to. Since discharging of
long bitlines exhibiting high capacitance can be quite a slow oper-
ation, sense amplifiers are normally used at the end of each bitline
in order to quickly determine a voltage level change. Charging and
discharging the SRAM bitlines coupled with the sense amplifier
circuitry for voltage level change detection are the major contribu-
tors to the SRAM power consumption [8]. An alternative approach
for a highly associative cache structure is the use of a Content Ad-
dressable Memory (CAM) to implement each associativity set of
the tag arrays. Nonetheless, the underlying circuit techniques are
similar to the ones used for SRAM-based arrays; hence, we outline
the hardware support for SRAM based cache organizations.

21

Disabling a bit position from the tag directly translates to dis-
abling the precharge of its corresponding bitline and consequently
the associated activity of its sense amplifier circuitry. Gating the
bitline can be trivially achieved through a simple AND circuitry in
order to block the activity on the bitline. A special register, called
the Bitline Enable (BE) register, is introduced as a part of the spe-
cialized hardware support. The BE register is software accessible
and contains a bitmap value that determines which bitlines are to
be disabled. Each bit in the BE register maps to a bitline in the tag
arrays. Through the BE register, the OS and the application assert
software control over the disabling of bitlines in the tag arrays.

The only modification to the TLB is the introduction of an ad-
ditional status bit, the Referred (R) bit, which is associated to each
TLB entry. The R bit, as mentioned in Section 3.3, signifies whether
the page has been already accessed by the application hot-spot.

S. EXPERIMENTAL RESULTS

As virtual memory effects are challenging to faithfully simulate
through traditional architectural simulation, a specialized frame-
work has been constructed in order to provide a quantitative anal-
ysis of the proposed technique. The framework that we have built
provides modeling of logically indexed, physically-tagged caches,
a finite memory system with paging behavior, and a traditional
clock-based page replacement algorithm. The framework was com-
bined with the SimpleScalar [9] simulator in order to execute vari-
ous multimedia kernels. The programs chosen are part of the Medi-
abench set [10] of benchmarks, and represent frequently used and
important consumer multimedia algorithms, consisting of opera-
tions necessary to handle modern compressed sound, image, and
video formats. The algorithms presented in this work were applied
to test the effective tag compression technology in the context of
a real system. The compression efficiency for each kernel and the
effect of paging upon the efficiency was observed.

In order to precisely evaluate the achieved power saving, the data
cache tag subsystem was implemented and simulated in SPICE,
version 3f5. The tag array, including the gating logic circuitry,
was designed in TSMC 0.25u CMOS process operating at 2.5V
as traditional SRAM blocks of 64, 128, 256 and 512 wordlines,
and 18-21 bitlines, corresponding to various cache organizations
that were analyzed. Each bit-line is composed of the precharge
unit, the SRAM cell and the sense amp. Precharge is implemented
with three CMOS type-n transistors, while a traditional six transis-
tor SRAM cell is utilized. Detailed power savings for compressed
tags for each kernel can be seen in the subsequent tables.

The baseline cache architecture consists of 512 sets of 8-byte
blocks organized in 4 associativity ways. The physical page size is
4K, a typical value for many virtual memory systems. It is impor-
tant to note that associativity does not affect the energy reduction
percentage, the ratio of tag bit comparisons being identical for each
associativity level, but power savings increase in absolute value as
associativity increases.

The following tests were run with varying amounts of physical
memory available to the kernels: first with sufficient memory to
prevent paging as shown in Figure 4, then with only ninety percent
of the required memory for each kernel, and subsequently with only
eighty percent; the latter two cases causing page faults to relocate
code and data. These two cases are represented in Figures 5, and
6, respectively. Each table shows the energy reduction in the tag
arrays. The tag power is typically a large fraction of the total cache
power, for instance, it was reported to be 54% of total cache power
in [11]. The tag contribution is even larger for low-power and high-
associativity cache organizations.

The amount of paging incurred for each benchmark depends

| || I-cache | D-cache |

adpcm 94.9% 89.6%
epic 70.0% 58.9%
g721 75.0% 80.0%
gsm 80.6% 89.1%
jpeg 65.8% 60.5%
mp3 77.1% 69.2%

mpeg2 67.0% 40.9%

Figure 4: Power savings with sufficient memory
| || I-cache | D-cache | Page Faults |
adpcm 94.9% 89.6% 2
epic 70.4% 58.7% 31
g721 75.0% 75.0% 5
gsm 77.0% 84.1% 14
jpeg 65.8% 56.6% 14
mp3 77.2% 69.1% 13
mpeg2 66.9% 40.1% 27

Figure 5: Power savings with 90% memory requirements

upon how much of the working set of each hot-spot can be con-
tained in the memory space given. The number of page faults are
given to correlate with the effect on compression behavior. The
gradual reduction in the available physical memory enables one to
observe the effect of page swapping on the effectiveness of the dy-
namic tag compression algorithm. As expected, when there is a
small amount of paging, the tag compression algorithm efficiently
identifies the minimal number of tag bits with results similar to the
case of no page swapping. The small deviations are only due to
the differences in page locations when the OS brings in and out
pages. In the only case where a significant amount of page swap-
ping occurs, the mpeg2 benchmark with memory at 80% of its re-
quirements, it can be observed that the dynamic tag compression
algorithm achieves better results compared to the base case. This
can be easily explained by the fact that in any instance of the pro-
gram execution much smaller data/code working sets are allocated
in the physical memory, while a large number of pages have been
swapped out to the secondary storage. Evidently, working with a
smaller number of 0-tag regions results in fewer physical tag bits
needed for cache access.

Additional tests, shown subsequently in Figure 7, evince that as
cache size increases, the effectiveness of our methodology also in-
creases. These tests were performed with a cache configuration of
2048 sets, 4-way associativity, and 16-byte blocks, for a total cache
size of 128K, yielding a base tag size of 17 bits for addresses and
cache lines. Despite the decrease in tag size and thus a decrease in
the potential tag bit comparisons for the case of an uncompressed
cache, the cache size increase results in more pages fitting within
a single 0-tag region, allowing the allocation of multiple pages be-
fore requiring additional tag bits to differentiate each region. It can
be seen that frequently no increase in the compressed tag size is
suffered in the case of multiple page allocations.

6. CONCLUSIONS

In this paper, we have presented a methodology for low-power
physically tagged instruction and data caches. The proposed tech-
nique dynamically identifies the minimal number of least signifi-
cant tag bits that would be sufficient for complete tag resolution.
Only the selected few tag bits would be read from the physical tag
arrays and used as effective tags, thus resulting in significant power
savings. An efficient OS algorithmic support is introduced to dy-

22

| || I-cache | D-cache | Page Faults

adpcm 94.9% 84.6% 5
epic 70.2% 62.2% 43
2721 75.0% 75.0% 6
gsm 80.6% 89.1% 16
jpeg 62.9% 56.5% 21
mp3 78.6% 65.9% 23
mpeg2 64.5% 55.4% 352

Figure 6: Power savings at 80% of memory requirements

| | T-cache | D-cache

adpcm 99.9% 99.5%
epic 82.4% 72.8%
2721 88.2% 88.2%
gsm 94.2% 93.0%
jpeg 73.1% 71.0%
mp3 85.1% 79.2%

mpeg2 || 76.4% 63.4%

Figure 7: Power savings with sufficient memory: No Paging

namically determine the compressed tags in the face of changing
physical working set. While the power consumption of the caches
is thus drastically reduced, there is no impact on the miss rate and
no additional hardware on the critical path of accessing the cache
is introduced. The cost-effective and software-controlled hardware
support enables the application of the proposed methodology to
practically any high-performance embedded processor.

7. REFERENCES

[1] J. Montanaro et al., “A 160Mhz, 32b 0.5W CMOS RISC Mi-
croprocessor”, in IEEE ISCC, pp. 214-229, February 1996.
J. Edmondson et al., “Internal organization of the Alpha
21164, a 300MHz 64-bit Quad-issue CMOS RISC Micropro-
cessor”, Digital Technical Journal, vol. 7, n. 1, pp. 119-135,
1995.

A. Hasegawa et al, “Sh3: high code density, low power”, in
IEEE Micro, pp. 11-19, 1995.

P. Petrov and A. Orailoglu, “Power Efficient Embedded Pro-
cessor IP’s through Application-Specific Tag Compression in
Data Caches”, in DATE, pp. 1065-1071, March 2002.

M. Cekleov and M. Dubois, “Virtual-address caches. Part
1: problems and solutions in uniprocessors”, IEEE Micro,
vol. 17, n. 5, pp. 64-71, September 1997.

J. Kim, S. Min, S. Jeon, B. Ahn, D. Jeong and C. Kim,
“U-cache: a cost-effective solution to synonym problem”, in
HPCA, pp. 243-252, January 1995.

R. Kessler, “The Alpha 21264 Microprocessor”, IEEE Micro,
vol. 19, n. 1, pp. 24-36, March/April 1999.

N. Bellas, I. Hajj and C. Polychronopoulos, “A detailed,
transistor-level energy model for SRAM-based caches”, in IS-
CAS, pp. 198-201, June 1999.

T. Austin, E. Larson and D. Ernst, “SimpleScalar: An in-
frastructure for computer system modeling”, IEEE Computer,
vol. 35, n. 2, pp. 59-67, February 2002.

C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Medi-
aBench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems”, in 30th MICRO, pp. 330—
335, December 1997.

E. Witchel and K. Asanovic, “The span cache: software
controlled tag checks and cache line size”, in Workshop on
Complexity-Effective Design, 28th ISCA, June 2001.

(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

(10]

[11]

