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Critical behavior of ac conductivity near the Anderson transition
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Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
(Received 28 June 1999

We investigate the dynamic scaling behavior of ac conductiw(ty) in three-dimensiona3D) unitary and
symplectic systems in addition to orthogonal one by means of large-scale simulations. It is demonstrated that
the ac conductivity near the Anderson transition behave (as) > w?(5=1/3) for all of the above systems.
Numerical calculations are performed by an efficient algorithm based on the forced oscillator Ity
which enables us to accurately treat large-scale quantum systems with less computational effort. The values of
the exponents$ are determined by the finite-time scaling method for the FO80163-182609)11943-X

I. INTRODUCTION ficiently compute the spectral density of states, eigenvalues,
and their eigenvectors of the systems described by very large
The scaling arguments of localizatidhhave stimulated matrices’® We have further developed a new scaling ap-
many works on both static and dynamic behavior of disorroach, utilizing the characteristics of the FOM, to determine
dered electron systems, especially on the Anderson transihe dynamical exponent of the ac conductivitfw) o w’
tion. The existence of this transition essentially depends onlyear the Anderson transition with high speed and
on the dimensionality and the symmetries of the systemsﬁCCUraCyl.7'21
Three-dimensional3D) systems generally show the Ander-  In this paper, we calculate the dynamical exponents in 3D
son transition as a function of the strength of disorder and thenitary and symplectic systems. For these systems different
Fermi energy, and their critical behavior are classified intodfrom orthogonal one, the Hamiltonian matrices become com-
three universality classes according to the basic symmetry dflex and/or posses spinor components so that it is not easy to
the Hamiltonian. The systems being invariant under spin rocalculate o(w) with conventional methods. Within our
tation in addition to time-reversal symmetry constitute theknowledge, the present work is the first numerical realization
orthogonal class, while the systems being invariant undeef the »* behavior ofo(w) in unitary and symplectic sys-
time reversal but having no spin-rotation symmetry belong tdems.
the symplectic class. The rest forms the unitary class charac- The outline of this paper is as follows. In Sec. Il, we
terized by the absence of time-reversal symmgétry. explain the model Hamiltonian and an efficient algorithm to
Many numerical works have contributed to reveal bothcompute linear response functions. Section Il presents the
the static and dynamic behavior of the transition through thdinite-time scaling method for the dynamical exponent of
investigations of localization lengflt, diffusion of wave o(w)xw’ and shows the calculated results for the 3D
packet£® and level statisticd®~*? Linear response func- Anderson model near the transition. Section IV describes the
tions also provide insight into the dynamic properties of thisscaling theory for the ac conductivity(w) that gives the
guantum phase transition. Calculations of linear response'® dependence close to the transition. We also discuss
functions for quantum systems normally require the evaluaabout thew dependence af(w) in the very lower frequency
tions ofall eigenvalues and corresponding eigenvectors. Theegion relevant to the anomalous diffusion exponentA
direct diagonalization techniques to calculate these quantitiesummary is given in this section.
remain limited to systems of modest size because their com-

puting time and memory space grows quite rapidly as the Il. METHOD
system sizel. become large. Especially, for 3D cases, the
conventional routine is not suitable for computing linear re- A. Model

sponse functions of large-scale quantum systems. For ex- We consider noninteracting electron systems on a simple
ample, the ac conductivity(w) in 3D systems near the cubic lattice with disordered potentials. The Hamiltonian of
transition was suggested to obey the power taw)=w®  the system is given by
by Wegnert? while this behavior for orthogonal system was
not numerically verified until the work by Lambrianides and o
Shore!* They have evaluated the Kubo-Greenwood H =§ Wi olio)iol +
formulat®® by directly calculating eigenvectors of the sys- '
tem with the diagnalization method, so the system sides wherei denotes the lattice site, amdthe spin, respectively.
(=L%) treated were very limitedl(=6—14), indicating the We set the lattice constant to be unity and only the nearest-
relevance of the finite-size effect. neighbor coupling is taken into account. The on-site poten-
Recently, we have developed a method to calculate linearals {W;} are assumed to be distributed independently, and
response functions for quantum systems described by larg#he distribution is taken to be uniform in the range
scale Hamiltonian matrice€.This algorithm is based on the [—W/2W/2]. In the orthogonal CaS&; 4:j,0' =Vy o IS
forced oscillator method=OM),*®*°which enables us to ef- real, while V; ,.; ,» is V exp(#;)J,,. in the unitary case

E , Vi,a';j,o’|i0-><j0-,|1 (1)

oo

O
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with the Peierls phase fact@f; ;. In both cases, no spin flip ande;(w,0)=(j|w\o), where|w,) is the initial eigenvector
process is included. In the symplectic case, the hopping erbelonging to the eigenvalugw,, of the matrix{H;;}. We

ergy is described by have used in Eq.(6) the definition given bya{®\(t)
s = gj(wyo)e '
Vigi-kor=VIexp—ibo) ], ., k=xy,z (2 We introduce the resonance function defined by the sum

) ) _ ) of the squared amplitude;
whereo, are Pauli matrice$ We set the hopping amplitude

V the energy unit. .
E(w,wr0,0)=2 [af(0)]%. ®)
I
B. ac conductivity and resonance function

Direct diagona“zation for 3D systems requires huge ComSlibsutUtlng the solution of E(ﬁG) under the initial condition
puting time, especially when the matrix elements of thea{"(0)=0 into Eq.(8), one has
Hamiltonian have several degrees of freedom due to applied

magnetic fields or spin-orbit interaction. Without carrying N 2

out the direct diagonalization, we employ an efficient method E(w,0)0,1)= ; Z Figi (@))

based on the FOM to calculate the ac conductivity).'’

The characteristics of the method are its simplicity, speed, SIr?{(w\ — wyo— w)t/2}

memory efficiency, and wide applicability to general quan- X , 9

0 e — )2
tum systems. This method is based on solving the ‘Schro (0y—wy o~ )

dinger equation numerically under a periodic external forceWhere the contribution from the second term on the right

SO thatllt can be easily vectorlz_ed and parallelized for 'mplehand—side of Eq(6) is ignored, since we consider the case of
mentation in an array-processing modern supercomputer.

. ) zero temperaturéSee Ref. 1),
Let us conS|de_r th? system described by Eq, whose The eigenvectors contributing to the sumrin Eq. (9)
abbreviated form is given by

are those whose frequencies lie within abouf2#/t) of

wyot w, Wheret is the time interval. Taking a sufficient

H=Z Hij|i)<j|, (3) large time interval, only eigenmodes in a narrow band of
] frequencies on the scale @f,,+ » contribute to the sum in

and an electron stafd’(t)) is expanded as Eq. (9). Thus, we have

mt| Al?
|\If(t)>=z a;(t)]i), (4) E(w,wy0,1)= 2 [{w)] 3] @y0)|?8(w) — 0y~ ),
- 2h2 N
I
(10)
where the index represents both the site and the spin for
simplicity. where the following relation is used
For calculating the ac conductivity(w), we impose a
perturbationH’ to the system expressed by Ag
2 il (00)= Z-(@J]0y0). (11

J .
H'=— (A '“'+c.c), (5
2 The resonance function expressed by 8@d) can be re-
lated to the ac conductivity(w) as follows. The explicit

whered is the current operator arfg, is the amplitude of the form of o(w) is

external vector potential, respectively. c.c. indicates a com
plex conjugate.

Substituting Eqs(3) and (5) into the Schrdinger equa- 27
tion for |W(t)) and applying the time-dependent first-order o(w)= wLd
perturbation theory by putting;(t) =a{®(t)+a{*)(t), one

> 2 Kon 3oy f(wy0)—flw))]
A0 M

has the linear differential equation with periodic external X 6(w)—wyo— ), (12
force,
wheref(w,) is the Fermi distribution function that becomes
dai(l)(t) a step function at zero temperature. The spin freedom is
T —2 Hijaj(l)(t) taken into account. Comparing Eq4.0) and (12), one has
j

the key equation relating the resonance function and the ac
f o ) conductivity as,
:_E(Fie—lwt+Fielwt)e—lw}\ot' (6)
WF

4
where the definitions are o(w)= e 2 E(oy0b), (13)

Ao = Ag where we have séf\,|=1 without loss of li dth
=S Doy CR=S 10 (7 ol= generality and the
: 2 h i¢i(@no) : ; h i#il@r)s (7) definition of the Fermi frequency iec=Eg/#.
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C. Time development the temporal Fourier transform of the response function or

We use thanodifiedEuler method to obtain the time de- calculating all of the intermediate state§(w,) relevant to
velopment of the first-order linear differential E@). This  the formula(12). o
method makes calculations very efficient and accurate. How- [N actual calculations, we have prepared the limited num-
ever, we cannot apply this method in the same way as usédf"s ©Of the initial eigenmodes;(w,o) within the rangewr
in Ref. 17 where the matrix elemenfts;;} and the external — @=@xo=w by original FOM, which enables us to calcu-
forces{F;} are real numbers due to the orthogonal symme-'ate, quite qccurately the selected eigenmode belonging to an
try, while these are complex for unitary and symplectic sys-2roitrary eigenfrequency.
tems. Here, we divide the functiaﬂl)(t) in Eq. (6) into the
real partx;(t) and imaginary ong;(t), and map each of the lll. FINITE-TIME SCALING APPROACH
first-order differential equations to treecondorder one as A. Scaling form of the resonance function
In this section, we present the finite-time scaling approach

d2x(T
'( )+2 Diy;(T)+ 2 Dfjx;(T) to determine the critical exponent of the ac conductivity
] ]

dT? o(w)*xw’ and the calculated results @ for unitary and
1 symplectic systems. This scaling approach is based on the
:_{FiRSin(QT)_ |:= cogOT)}, (14)  fact that the number of eigennmodes contributing to the sum
2 on\ in Eq. (9) depends on the resonance width of sinclike
and function 4x/t, which is inversely proportional to the time
intervalt for which the external force is applied.
d2y.(T) The explicit form of the resonance function is given by
5~ 2 Dix(M+ X Dlyy(T) Eq.(9) as
daT i ]
1
1 E(wyg,w,t)=— J h 2
We have definedQ = w,o+w+w, T=2Qt, and D Xsmz{(“’%_“’ko_“’)tlz} (18)
R 1

= w6+ H;j /i, respectively.Dj; and ij represent a real (wy— wyo— ®)?
and imaginary part oD;; . By adding the positive quantity , o )
f o= % @\ i, the minimum eigenvalues @, become al- vvh_ere the dﬁnsny of stateg w,) is introduced by the defi-
ways positive(See Ref. 20 for details The reason of the Nition =, =L [d(%w))p(w)). We assume that the ac con-
mapping to the second-order differential equations from th&uctivity 5obeys the power law close to the transition as
first-order one is that we use the modified Euler method ir? (@) > @°. Under this condition, Eq(18) should be, for a
order to obtain the time development of Eq) and(15) as ~ Sufficiently large time interval,

follows.
1 — 1 1 1 1 E 3 5t
We definev;(T)=dx;(T)/dT and discretize a tim& with (@r0,@,1) OCJ do, () — w,0)°8( 0y — @) g— ©) % ©°.
a stepr, we have t
_ We have used the fact tha{w,) is nearly constant in the
i(n+1)=x;(n)+v;(n+1)r, 16 Mo
X(n+1)=x(n)+vi(n+1) (16 band center. For the short time intervial the resonance
width in Eq.(18) become wider than the bandwidth and one
vi(n+1)=v;(n)— >, Di'jxj(n)—z Diy;(n) yields
i ]

E(wyg,w,t)
—_—C

-5
+%{FiRsin(Qn7-)—Fi' cogQnn)}, (17 t v (19

i i From these two extreme cases, the scaling form of the reso-
where the integen represents the number of time step. Thepance function, or equivalently, of the ac conductivity be-
time development of the imaginary payt(t) can be ob- comes,

tained as well. It should be noted that the second term on the
right-hand side of Eq(16) depends on the number+1 of o(w,t)xt °G(wt), (20)
time steps, namely, defined by thetardedfinite-difference

form, which is different from the standard Euler method de-where the asymptotic form d&(z) should be

fined by theadvancedone as used for Eq17). This choice

in Eq. (16) makes calculations, by taking the time step z°, z>1

satisfying the condition, nm.x7<<2, very efficient and accu- G(9)= const. O<z<1. (2D
rate, as discovered by Williams and Malfs. ’

We have described in this section the method of computWe have demonstrated the efficiency of the finite-time scal-
ing the ac conductivity for systems described by large-scaling approach to determine the critical exponent of the ac
Hamiltonian matrices. We emphasize that this algorithm eneonductivity o(w) > w? at the Anderson transition for an or-
ables us to directly calculate conductivity without making thogonal system with high accuraty.
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FIG. 1. Calculated results @f(w) for the 3D(a) unitary and(b) (b) y4
symplectic systems for various time intervalThe system size is
taken ad.=30. FIG. 2. The scaling functioG(z) introduced in Eq(20) for (a)
unitary and(b) symplectic systems. The estimated values of dy-
B. Results for unitary and symplectic systems namical exponents aré=0.34+0.02 for unitary case, and

In order to discuss the dynamic properties in the vicinity = 9-34+0-01 for symplectic case.

of the Anderson transition, we set the disorder strenyth 5
=W,=17.9(Ref. 23 for the unitary case, assuming uniform (@)= & L2ds L L, (22
magnetic fields to be parallel to tledirection, and a mag- h & &)

netic flux penetrating throughay plane unit cell is set to . -
P 9 ghxy p his hypothesis is based on the fact that there are three

be 0.2 times the flux quantum. For the symplectic case, w th I h terizing th N v th |
set#= /6 in EQ.(2), andW is set to the critical valu&V. ength scales characterizing the system, namely, thé correla-
tion length ¢, the system sizé, and a characteristic length

=19.01? The Fermi energ\Er is fixed to the band center. . X ;
Actual simulations have been performed for systems WitH‘w i L, means the distance an e!ectron difiuses in the system
gd_urlng one cycle of an applied field,

30x 30x 30 lattice sites for both cases. In each case, avera
ing over 20 independent realization of random potentials has D(w)
been performed. L = /7“"
Figure 1 presents the calculated resultsr-¢é{) for both ¢ w
cases taking various time interva+ /2~ 2007. The corre-
sponding resonance widths become/#=0.02~8.0 in units
of V=1. We see from Fig. 1 that the calculated results fol-
low the »'® behavior with increasing time intervalover
two orders of magnitude on frequency. Figure 2 shows th
scaling functionG(z) defined in Eq(20). The most likely fit
is determined by? statistic, and the confident intervals for a(w)och,d—[D
fitting parameters were estimated from the bootstrap proce- (@)
dure. The calculated results of the exponentsis0.34  where the thermodynamic limit.(— ) is taken. Noting that

*=0.02 for unitary case and=0.34+0.01 for symplectic 4(w) andD(w) are related via the Einstein relatien )
case, respectively. These values agree well with the predic= e?;(E-)D(w), one obtains

tion of the scaling theory for the ac conductivity ).

(23

where D(w) is the frequency-dependent diffusion
coefficient?® When the system is very close to the transition
point andL ,<¢, L, becomes the only relevant length and
eO'((u) scales like

(d—2)/2
] : (24)

o(w)xpd=2)d, (25)

This form has been predicted by Wegh&For d=3, Eq.
The scaling hypothesis for the ac conductivityw) for  (25) is reduced to the power law(w)>w? which agrees
the finite system sizé is expressed 4% with our results.

IV. SUMMARY AND DISCUSSION
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One can give other interpretation for, as A. In the present work, we have calculated the ac conductiv-
1 ity o(w) for the energy range ¥6<#% ©=<160Q\ sinceA is
L,={p(E )ﬁw}l’d=L<ﬁ—w) (26) about 6.4 104 in the present systeni. & 30). In addition,
@ F A ' it should be noted that the resonance widthg4have been

. . . set more twenty times larger thak to remove finite size
whereA is the mean level spacing of the systdm, is thus effects. In order to gain insight into the value @f one

equivalent to the size of a fictitious system with the mean, - id sethw and 4/t comparable ta\ because the dis-
level spacingi w. Strictly speaking, length scales defined by

Eqs.(23) and(26) are different only by a factog* 8, where creteness of energy level due to the finite size effect becomes

. . . relevant. In such a condition the direct diagonalization is
g* is the dimensionless conductance at the transffid?ro- 9

vided that the lenati. . is onlv relevant. namelv. shorter suitable to calculater(w,L) for small systems, while it is
thanL. the ener 9 ‘F] Id by lar rth‘ n th % N lev Ievident that the algorithm we used in this paper is powerful
spaacin’gAe energyiw should be larger than the mean leve for calculatingo(w,L) for large-scale systems.

Let us consider the wave-number-dependent ac condugc- We mention about the numerical work by Branaesl
o ) . . %n the anomalous diffusion exponentin 3D orthogonal
tivity o(q,w) in order to discuss the behavior in the lower system. They have calculated the function defined by
frequency region. In the lower frequency region, wh&ie '
is smaller tham\,o(w) is expected to show a different be- , q ) )
havior related to the anomalous diffusion exponentThe Z(EE ):f dX|We(x)|*| W (X)] (31

general conductivity(q,) is given by for eigenstates with energy and E’ within the regionA

D(q, o) <hw=|E—E’'|<300, and demonstrated the power law
o(q,w)x 5 ’ 5 (270 Z(w)*xw~ "9 They have used the Lanczos method to di-
1+{g°D(q,w)/ w} rectly diagonalize the systein=40 and the estimated value

whereD (g, w) is the generalized diffusion coefficiefftThe 7~ 1.5 is close to that of other works on the fractal dimen-
scaling form ofD(q,w) near the Anderson transition pre- Sion of the wave functioD,(=d— 7). According to

sented by Chalkeet al?’ is expressed as their results, the crossover frequenoy separating the two
regions expressed by Eq®5) and(30) is equal to 30Q or
D(q,w)*q? %f(x) : x=(qL,)9 (28)  larger, namely,wc~0.2 for the system sizé& =30. Thus,

o(w) is expected to behave like w!® in the regionw
=<0.2 forL =230, but we could not observe such a behavior in
our calculated results. There has been no work on the quan-
titative determination of the frequenay in 3D system so it
x@=d/d. v <q will be presented elsewhere in near future.
’ (29 To summarize, we have calculatedw) near the Ander-
son transition in 3D unitary and symplectic systems and the
The exponent; implies the strong fluctuation of the ampli- dynamical exponenir(w)*w® has been determined by the
tudes of wave functions near the transition. finite-time scaling approach based on the FOM. The esti-
ForqL,<1 whereD(q,w) depends only», the conduc- Mated values clearly také=1/3 for both systems as well as
tivity behaves in the same way as in E®5). While for ~ the case for orthogonal one, which agree with the prediction
qL,>1 where the wave length 1/q is smaller thari_,,, the ~ from the scaling argument.
conductivity shows an anomalous behavior as

where the system size and the correlation lengtl§ are
assumed to be larger thdn, and 14. The asymptotic be-
havior of the functionf(x) is

FO x~ 74 x>1.
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