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Abstract. We propose an algorithm for determining optimal transition
paths between given configurations of systems consisting of many objects.
It is based on the Principle of Least Action and variational equations for
Freidlin–Wentzell action functionals in Gaussian networks set-up. We use
our method to construct a system controlling motion and redeployment
between unit’s formations. Another application of the algorithm allows a
realistic transformation between two sequences of character animations
in a virtual environment. The efficiency of the algorithm has been evalu-
ated in a simple sandbox environment implemented with the use of the
NVIDIA CUDA technology.
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1 Introduction

Simulations of moving groups of agents that preserve their motoric characteri-
zations play an important role across a broad spectrum of applications. Obser-
vation of biological systems initiated works on coordination among multiple
agents. In a pioneering work [15], a computer model was constructed for syn-
chronized animal motion observed for example in bird flocks or fish schools. It
is important to emphasize that motion of individual units was calculated only
on the basis of their local environment. In military applications [1], formations
allow for a more effective use of limited resources, such as sensors, by divi-
sion of the environment into portions so each formation’s member can focus
attention on an assigned segment while the rest is covered by the partners. This
mechanism is used for example by groups of fighter pilots to optimize the usage
of their radars and visual perception. Such an approach can also be applied to
spacecrafts in a deep space or in the Earth orbit, see survey papers [20, 21] for a
comprehensive description. We focus our attention on the problem of a recon-
figuration of formations. Our method can be used to reduce casualties from a
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hostile fire, to present less vulnerable targets or to evacuate from an exposed
area [22]. Other applications involve parking systems that smoothly drive cars
in and out from a parking lot. Finally, the entertainment industry may use our
algorithm in real-time computer strategies.

The character animation is undoubtedly an element of the computer graph-
ics, which is of a great importance for enjoyable computer games, credible CG
movies or medical visualizations. One of the most popular techniques for gener-
ating realistic motion in virtual environments is a skeletal animation technique
[4]. Skeletal systems are hierarchical in nature and provide the artist with a con-
trol of the character in an efficient manner. An animator can focus his attention
on the motion of a simplified structure (the skeleton) rather than manually alter
the geometry (character’s meshes) itself. For smooth animations it is crucial to
generate smooth transitions between system’s configurations. Such transitions
can be generated by mixing existing ones. One of the available methods is an
interpolation of motion data, which has been shown to be a powerful technique
if changes between interpolated classes meet predefined/given constraints [18].
The algorithm presented below attempts to address that drawback and provides
methodology to produce optimal transition paths between arbitrary configura-
tions.

One of the approaches to describe motion of systems of interacting particles
is based on a variational principle. It is assumed in classical mechanics that
the trajectory of a system between two points in the space minimizes the action
functional. Then by a variational calculus one obtains Euler-Lagrange equations
of motion. Reformulation of such an approach to the case of the space of curves
in a set-up well suited for our needs was presented in [8].

Here we use Gaussian networks. The term Gaussian network was introduced
in [19] and describes an extension of a Bayesian network [12] to continuous vari-
ables. Gaussian networks are widely used for decision making and inference. In
molecular biology they are used to describe protein dynamics [7]. Gaussian net-
works better characterize classes of behavior and provide better understanding
than the standard representations [19]. To describe time evolution of Gaussian
networks we use stochastic diffusion processes whose behavior is effectively
characterized by the large deviation theorem due to Freidlin and Wentzell [6].
The theory is based on the property that very unlikely events, when they oc-
cur, do so with a high probability by following the pathway that is the most
probable. Thus the rare events become in a sense predictable. The crucial role
in the theory plays an action functional whose minimization produces an ap-
proximation of the probability of rare events and enables the computation of
the maximum likelihood trajectory by which such an event occurs [8].

In Section 2, we outline the Principle of Least Action adapted to our needs
and present our algorithm to simulate smooth optimal transition paths. Appli-
cations, implementation, and a discussion are contained in following sections.
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2 Gaussian network

Gaussian networks [17] are systems which consist of a finite number of nodes
whose states are described by continuous variables (these might be positions of
certain objects as in our examples). A state of each node is subject to a stochastic
dynamics which can be decomposed into a deterministic drift and a stochastic
part of the diffusion type. Both the drift and the stochastic part depend on the
states of other variables (perhaps just neighboring ones in the spatial networks).
We may think about such a dynamics as a continuous limit of a collection of
random walks biased by states of other walkers.

In Fig. 1(a), a simple Gaussian network is presented. Arrows describe in-
fluence of neighboring nodes on a stochastic dynamics of a given node. More
formally, interactions between nodes are contained in the function µ and the
matrix Σ in Eq. (1) below. In Fig.1(b) we can observe transitions between stable
space configurations of a Gaussian network.

1 2 3

4 5

(a) Gaussian Network (b) Transition

Fig. 1. (a) A schematic representation of nodes in a Gaussian network. (b) Without noise
the system would stay in a stable configuration. With noise the system may leave the
domain of attraction and can experience rare transitions between stable configurations.

Letψ(t) is the configuration of the system at time t. For a Gaussian network
with n nodes it is a column vector in Rn which evolves according to

ψ(t+ ∆t) = ψ(t) + µ(ψ(t))∆t+
√
εΣ∆W(t), (1)

where:

– µ is called an instantaneous drift. We will assume that µ(ψ) = Bψ, for a
given n× nmatrix B.

– ∆W(t) are independent normal random variables with the zero mean and
the variance equal to ∆t. and Σ is a n × n matrix which can introduce
correlations between stochastic parts of time evolution of different nodes in
Eq. (1). We can think about Σ∆W(t) as the source of a noise.

– ε is called the instantaneous variance.
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In continuous time, Eq.(1) can be written as the Ito stochastic differential

equation

dψ(t) = Bψ(t)dt+
√
εΣdW(t) (2)

We introduce a local steering contribution ẇ as

ẇ = ψ̇− Bψ

where by a dot we denote a derivative with respect to time t.
In the discrete case, ∆w =

√
εΣ∆W. Hence w(t) is called the full ”error” or

the fluctuation (deviation) of our system. During the minimization process, the
value of

√
ε can be omitted (set to 1).

We propose the following Lagrange function which defines our system:

L(ψ, ψ̇) :=
1

2

(

ψ̇− Bψ
)′
A−1

(

ψ̇− Bψ
)

,

where by an apostrophe we denote a transpose of a vector or a matrix and
A := ΣΣ

′

The Principle of Least Action – of fundamental use for our applications –
indicates that the system moves along the path which minimizes the action
functional on the time interval [0, T ]:

S(ψ) :=

∫T

0

L(ψ(t), ψ̇(t))dt (3)

Our construction is based on the Freidlin-Wentzell theorem [6] on large
deviations in stochastic processes which roughly states that the probability of the

trajectory ψ̄which deviates from the optimal one is proportional to exp(−S(ψ̄)

ε
).

To minimize the action functional we use the Euler-Lagrange differential
equation (for the Lagrange function of a system of interacting particles we
obtain in this way the Newton equations of motion),

δL

δψ
−
d

dt

(

δL

δψ̇

)

= 0. (4)

For a symmetric matrix B one obtains

δL

δψ
= −

(

BA−1ẇ(t)
)

d

dt

(

δL

δψ̇

)

=
(

A−1ẅ(t)
)

and hence we get

ẅ(t) = −ABA−1ẇ(t) (5)

We solve Eq. (2) as a system of linear ordinary differential equations along a
fixed stochastic trajectory and get
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ψ(T) = exp(TB)ψ(0) +

[
∫T

0

exp((T − s)B)ẇ(s)ds

]

We know that ẇ(s) = exp((−ABA−1)s)ẇ(0), so

ψ(T) = exp(TB)ψ(0) +

[
∫T

0

exp((T − s)B)exp(−sABA−1)ds

]

ẇ(0)

For the uncorrelated noise (Σ = 1) we can write:

ψ(T) = exp(TB)ψ(0) +

[
∫T

0

exp((T − 2s)B))ds

]

ẇ(0)

= exp(TB)ψ(0) + exp(TB)

[
∫T

0

exp(−2sB)ds

]

ẇ(0)

= exp(TB)ψ(0) +
1

2
exp(TB)B−1 [1 − exp(−2TB)] ẇ(0)

From the above we get the initial steering configuration

ẇ(0) = 2B [1 − exp(−2TB)]−1
[exp(−TB)ψ(T) −ψ(0)] (6)

The following procedure lies at the heart of the algorithm. The starting
configuration ψ(0) and matrix Bmust be given.

1. Set the timer t := 0.
2. If we do not initialize the ’force’ transition to a new configuration, then

(a) Use the rules given by Eq. 1 with ε = 1 and Σ = 1
(b) Set t := t+ ∆t.

3. If we initialize the ’force’ transition to a new configuration and provide
matrix B1, then
(a) Compute initial steering configuration for a given transition time T ,

given by Eq. 6 and denote it as ẇ(t).
(b) Set local timer t1 := 0.
(c) Compute the new configuration

ψ(t+ ∆t) = ψ(t) + (Bψ(t) + ẇ(t))∆t

(d) Update the local steering contribution

ẇ(t+ ∆t) = ẇ(t) − (Bẇ(t))∆t

(e) Set t1 := t1 + ∆t

(f) Update global timer t := t + ∆t and, if t1 < T , return to 3c else set
B := B1 and terminate the transition stage.

4. Return to 2
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3 Formation redeployment

Similarly to [20] we define a formation as a set of more than one unit, whose
dynamic states are coupled through a common control law. That is, the members
of the set must

– Track a desired state relative to a non–empty subset of other members
– The tracking control law must depend at least upon the state of this subset

at the minimum.

The second point ensures that the motion of a unit is controlled not only with
use of its individual state (position, velocity, etc.), but also is affected by the
state of other units. Orbit correction algorithm of the GPS satellites only require
position and velocity of an individual satellite thus they do not satisfy the second
requirement. Several formations for a set of units are considered:

(a) square 7→ circle (b) wedge 7→ line

Fig. 2. Screenshots from the sample application. In (a) 225 units transit from the square
formation to the circle formation. The current position of an agent is represented by a
tank and the distance covered is denoted with a white trace. Similarly in (b) a transition
occurs from wedge to line configuration.

– line - where the units move in a row
– double line - where the units move in a two parallel rows
– square - where the units are regularly distributed inside a square
– circle - where the units move on the edge of a circle
– V - where the units move in a ”V” shape
– wedge - where the units move in a reverse ”V” shape

Fig. 3 shows a schematic description of the formations i.e. every unit is rep-
resented by a dot and is connected to its spatial neighbours by edges which
illustrate neighbour influence on the node state. The configuration is described
as a position of each unit on the plane.

More formally the formation is represented by a Gaussian network with
units as nodes and presented connections as arcs. For each pair of connected
nodes x and y a pair of vectors is given:
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(a) Line (b) Double Line (c) Square

(d) Wedge (e) V (f) Circle

Fig. 3. Relationship between nodes in defined formations. Simple formations, such as
line or double line, require only a connection between the nearest nodes. In more complex
structures we have to extend the number of arcs. In circle formation each node is con-
nected to the adjacent nodes and to their neighbors. Formations V and wedge require an
additional connection to the nodes on the opposite branch.

– vx→y

– vy→x = −vx→y

For movement of the group of agents let N(x) denote the number of neigh-
bors of node x, v the velocity of the entire formation and α ∈ [0, 1] represents
the impact of the neighbors on node position then state of x in time t + ∆t is
defined as follow

ψ(x)(t+ ∆t) = ψ(x)(t) (1 − α∆t) +−→v ∆t+ α∆t
[

1

N(x)

∑

y∼x

(

ψ(y)(t) +−→v y→x
)

]

(7)
More precisely, the matrix B can be constructed in the following way:

1. Add an artificial node e ≡ 1 to the Gaussian network.
2. Set the coefficients as follow

– Bxx = −α

– Bxy =

{ α
N(x)

if y ∼ x

0 if y / x
– Bxe = v+ α

N(x)

∑

y∼x vx→y,

The construction of matrixBwas a crucial point in this paragraph and allows for
straightforward use of Eq. (1) and Eq. (6) for the simulation. In Fig. 4 the traveled
paths are presented by agents during transitions between given formations. As
we can see, optimal paths are not the shortest ones. It is expected behavior
because the algorithm does not minimize the length of the paths, but rather looks
for most probable ones (see Fig. 2). Using shortest paths is highly dissuaded from



D
RA

FTFig. 4. On the left we see a transition of 25 units from V formation to double line. On the
right 121 tanks redeploy from circle to wedge configuration.

use due to observed phenomenon in military, where all movements incidents
during changes of formation were mainly caused by obtaining the shortest
practical route [22].

4 Transitions between animations

The main purpose of this section is to apply the technique developed in Para-
graph 2 to solving the problem of finding optimal transition path between
animations. First we have to translate the motion capture date into terms of a
Gaussian network. The resulted network should reproduce smoother version
of the given motion. Coefficients of the matrix B will be learnt with the use of a
regression method. It turn out that the task is non–trivial and first we have to
define hierarchical dependencies in the motion data.

The motion capture data3 grants us with a structure of bones S and set of
motions M. S is the skeleton of an animated character that is typically defined
as a hierarchy of segments. The skeleton consists of a root segment, that is on the
top in the hierarchy and does not have any ancestors. Each other segment poses
a parent segment and may have one or more children. Segments represent bones
and include their properties such as their length, direction, degrees of freedom,
local coordinate system, etc. Character motion Mi, with respect to the skeleton
S, is defined as a doubletMi := (Ri,Ai), whereRi is the position of the skeleton’s
root segment for each frame, Ai is a sequence of orientation of each segment
that is Ai = {ati,k; t = 0, . . . , T ;k = 0, . . . , ‖S‖} so particularly ati,k represents an
orientation of kth bone during frame t for an ith animation. Current character
configuration is defined as the orientation of each bone in the local coordinate
system. Using the technique of skeletal animation [4], we can simulate defined
motion.

Coefficients of the Gaussian network can be learnt with the use of a linear
regression method [5]. For each segmentk the regression model can be described

3 The data used in this project was obtained from http://www.mocap.cs.cmu.edu. The
database was created with funding from NSF EIA-0196217.
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by the dependent vector at+1

i,k and a set of regressors {ati,1, . . . ,ati,‖S‖}. Results

of that straightforward method produced very unstable animations i.e. motion
of a character becomes unreliable. Another approach of using multiple linear
regression [5] with regressors defined by hierarchical structure of the skeleton
suffered similar drawbacks. We were also unable to manually define correct
relations in given skeletons. It appears that intuitive dependencies between
human bones are misleading. For example, the position of head was the best
described by configuration of: right femur, right tibia, right foot and left wrist.
Resulting motion did not reproduce correctly given motion and was highly
unstable.

To find proper relations in a given motion we decided to use one of the
optimization techniques. The number of possible DAGs (Direct Acyclic Graphs)
as a function of the number of nodes, G(n), is given by the following recursive
function [16]

G(1) = 1,G(n) =
n
∑

k=1

(−1)k+1

(

n

k

)

2k(n−k)G(n− k) (8)

Let us enumerate some values of functionGG(2) = 3,G(4) = 543,G(5) = 29281,
G(10) = 4.2 × 1018, G(100) = 1.1 × 101631. Testing all possible DAG pat-
terns is computationally unfeasible because the number of DAGs grows super-
exponentially [12]. In our implementation we have used simulated annealing
method [11] to search in possible DAG space. For a given skeleton S and ani-
mation that consists of F frames the energy function has the following form:

E(Mi) =
1

F‖S‖

F
∑

f=1

‖S‖
∑

b=1

‖cfi,b − sfi,b‖2, (9)

where cfi,b is a configuration of bone b on the ith animation at frame t obtained

from motion capture data, sfi,b has similar meaning, but is computed by simu-
lation of the Gaussian network. In other words we compute mean square error
between positions of bones given by motion capture data in each frame and
their configuration computed with presented method.

In addition, we impose the following requirements:

– Coefficients in matrix B are bound by constant br.
– The mean square error computed for the entire skeleton should not exceed

some (large) constant sb.

The purpose of these conditions is to ensure the numerical stability of the
algorithm. During simulations, we set br = 103 and sb = 1012. The applied
simulated annealing algorithm would eventually converge to the target bones
hierarchy (see Image 5(a)).

After applying described scheme to the motion we obtain matrix B. The
animation obtained from the simulation of the Gaussian network looks very
similar to the original motion. The main difference is that the new animation
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Fig. 5. Screenshots from the sandbox. In (a) we can see that orientation of the head is best
described by orientation of: right femur, right tibia, right foot and left wrist, (b) presents
transition from walking to jumping animation.

is more smooth. To maintain the motion in large time horizon we add small
noise to the simulation [2], without that, the motion gradually fades away (it
converges to the steady state). At any moment, the animation of a motion can
be interrupted and by use of the method from Par. 2, even for a nonsymmetric
matrix B, smoothly transformed to a selected frame of another motion (Fig.
5(b)).

5 Implementation

The programme has been implemented in language D [3]. Some matrix opera-
tions incorporate LAPACK, BLAS and CUBLAS [14] subroutines. All test runs
were executed on a machine with Intel Core 2 Q9300 2.50 GHz CPU, 4GB RAM
and NVIDIA GTX 480. The application is single threaded, so it is applicable to
the core of only one processor. All computations were performed with double
precision arithmetic.

The mean square error (MSE) between the target configuration and a simu-
lated one can be controlled by adjusting the step size. For the transition time set
on 2.0 and step size on 0.002 the observed value of MSE was lower than 0.0001.

An efficient computation of a matrix exponential plays a crucial role in
the presented method. Numerous methods for computing eA were developed.
The straightforward one, which uses Euler series, is inefficient even in the
scalar case. The survey [13] presented a wide variety of methods and pointed
the most powerful ones. Today, due to evolution in computer hardware and
highly optimized BLAS subroutines the most cogent technique is the scaling and
squaring method combined with Padé approximants [9]. The sequential version
of that algorithm has been implemented. To parallelize the computation of the
matrix exponential we use NVIDIA CUBLAS library [10, 14] and substitute
serial matrix operations with parallel ones.

In Table 1 we can see dependencies between the number of simulated objects
(tanks) and the time required for a single step and a transition. As we can see,
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Table 1. Step and transition times.

quantity step (ms) CPU (ms) GPU (ms) speedup

25 0.04 1.7 40 0.07

100 0.6 24 109 0.22

169 1.6 75 193 0.38

225 3.1 172 275 0.63

400 9 680 637 1.07

625 22 2200 1470 1.50

900 49 12000 3480 3.45

1225 89 54000 6890 7.84

1600 155 253000 12400 17.57

2025 240 785000 26200 29.96

a single step can be computed very fast. The most consuming part during w0

calculation is matrix exponential. GPU accelerated version is up to 30 times
faster than the sequential one. An analysis of parallel profiler output shows that
time is mainly (up to 70%) spent on matrix multiplications (dgemm). Transfers
of the data from host to device (CPU → GPU) and vice versa take up to 30%
of the time. The rest of the time is consumed on memory allocations and other
matrix operations. We should emphasize that computations are performed for
x, y and z coordinates independently.

6 Conclusions

The algorithm for determining optimal transition paths was presented. For the
evaluation purpose two applications have been successfully implemented. The
problem of the formation redeployment was solved by our algorithm and pro-
duced enjoyable results. The resulting group dynamics is highly complex and
a great care must be taken when such an environment is simulated. The other
tested application was devoted to transitions between animations. The problem
was more complicated due to the need of representing the motion in terms of
Gaussian networks. The obtained animations were satisfying for the viewer.
Simulations on the GPU were also performed and provided a significant gain
in the runtime, but only in the large enough networks. Future enhancements
may include hierarchical grouping of Gaussian nodes before transitions which
would significantly improve a computation time. Another option is to optimize
the transition time rather than to use the given one.
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