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Abstract—In this paper, we examine a networked multi-
agent system running the consensus protocol susceptible to mis-
information from its environment. The influenced dynamics are
modeled with leader-follower dynamics and the impact of the
foreign input is measured through the open loop H2 norm of the
network dynamics. To dampen the external disturbances a novel
decentralized edge reweighting method is proposed. The method
is composed of a decentralized conjugate gradient method
coupled with a decentralized online optimization algorithm.
The uncertainties of the effect of local rewiring and unknown
environmental influences are demonstrated to be well-suited to
the online regret framework. A simulation of the reweighting
method is discussed and shown to have a small regret.

1. INTRODUCTION

Consensus-type systems have become a popular area of
research presenting a method for distributed information-
sharing and controlled agreement for networked, multi-agent
systems. Motivating examples include multi-vehicle control,
formation control, swarming, and distributed estimation [1],
[2], [3], [4]. One attraction of consensus that for large scale
networks it that it can run anonymously, without individual
ID tagging of agents. The downside is that there is suscep-
tibility for agents to incorrectly identify agents and other
objects in the network. These can be viewed as disturbances
to the networked dynamics.

Control theory presents many mechanisms to reject or
dampen disturbances in a dynamic system. In general they
fall in two categories: active control such as dynamic feed-
back, and passive control such as structural damping. Typi-
cally in networked dynamics systems the network structure
is considered a passive element. If feedback is unavailable or
global network knowledge is insufficient to apply feedback,
adapting the topology may in fact act as an active system via
dynamic selection of interconnection (edge) weights. Further
this is often a favorable solution when global information
is limited and decisions are tentative. Edge reweighting is a
conservative response with algorithms like consensus able to
perform in the presence of variations in edge weights.

We consider a scenario where an agent i can communicate
with any other nearby agents j 6= i. This communication does
not implicitly involve knowing the location of the peer agents.
In the course of a mission, the agent might mistake an object
in the environment for a peer agent. The agent would know
there is a discrepancy in the data since it knows how many
peers it has, and how many objects it can see. It might want
to limit the spread of misinformation via network reweighting
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since its removal might render the network unconnected,
especially if other agents are also making the same decisions.

To model such a scenario we consider the agent’s false
positives as foreign input signals and use the leader-follower
dynamics [4] to model the system. The main tool for investi-
gating the susceptibility of these influenced subset of agents
is the open loop H2 norm of these leader-follower dynamics.
In particular, the open loop H2 norm for the network can
be employed as a measure to dynamically reweight the
interaction topology, reducing the effect of the foreign inputs
on the network. Increasing the open loop H2 norm tends to
increase the receptiveness of the system to control.

Designing and adapting topologies to optimize for certain
metrics has been addressed by several authors: Ghosh and
Boyd [5] aimed to maximize the second smallest eigenvalue
of the graph Laplacian; Zelazo and Mesbahi [6] examined
the minimization of the network’s H2 performance when
noise is applied to the interaction links in the network;
Wan et al. [7] considered maximizing the largest eigenvalue
of the graph Laplacian. All aforementioned authors used
centralized optimization techniques over weighted graphs.
Kim and Mesbahi [8] used fading functions to approximately
represent the on/off linkage relationship when searching
for the maximum second-smallest eigenvalue of the graph
Laplacian to increase the convergence properties of the
network dynamics. Wu and Wang [9] have approached the
same problem using genetic-algorithms. Intuitive methods
for network reconfiguration have been designed to improve
network resilience, for example, using thresholding methods
to decide when to alter the topology [10]. Chapman and
Mesbahi [11] proposed algorithms that performed local edge
swap over tree graphs with a game-theoretic analysis to
justify the algorithm’s performance.

Unique to the aforementioned methods we propose a fully
distributed reweighting method composed of two stages.

The first stage is the distributed estimation of the local
effect of the foreign signals, achieved via the formulation of a
distributed conjugate gradient method. In the 1950s, Hestens
and Stiefel [12] formulated the linear conjugate gradient
method as an iterative method to solve A−1b. An attraction of
this method is theoretical guaranteed convergence in less than
n iterations. In addition, it boasts small storage requirements.
In fact, only samples of the range space of A are required
rather than knowledge of the complete A. We show that, if A
encodes the network structure, this feature makes it possible
to form a distributed version of the algorithm with the aid of
two consensus updates per timestep.

The second stage is the implementation of a distributed
online algorithm to reweight the network. The appeal of
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the online method is that, irrespective of the changes in
the network unseen by a single agent, certain performance
guarantees can still be made. The proposed online regret
algorithm is a distributed version of a centralized algorithm
proposed by Hazan et al. [13]. The algorithm is similar to
gradient decent or incremental gradient methods surveyed
by Bertsekas [14]. The attraction of the proposed algorithm
is that it displays an O(log(T )) regret, meaning that on
average the algorithm performs as well as the best fixed
case solution with the benefit of hindsight. Related online
distributed optimization is the work by Yan et al. [15]
examining a strongly convex cost function decomposable
into smaller convex functions. Sundhar et al. [16] explored
a stochastic subgradient showing convergence to an optimal
solution with probability 1. Recently, Raginsky et al. [17]
focused on a network of agents performing a subgradient-
based sequential convex optimization scheme robust to the
network structure.

The novelty of our distributed online formulation is that,
unlike the aforementioned distributed algorithms, our cost
function is not decomposable. We derive a method to instead
decompose the gradient of the H2 norm with respect to the
edges. Consequently, it is this formulation that allows our
algorithm to be decentralized.

The paper is organized as follows. §2 contains the relevant
background pertaining to graphs and online optimization.
Consensus-based, leader-follower dynamics is described for
the network dynamics in §3 as well as the main dynamics per-
formance measure, the open loop H2 norm. The distributed
conjugate gradient method is then presented in §4 as well
as its counter-part, the distributed online gradient descent
method. The proposed method is applied and the performance
of the algorithm is examined in the regret framework. The
paper is concluded with a few remarks in §5.

2. BACKGROUND

A. Notation

This section provides the models that will be used in this
paper, including abbreviated descriptions of graphs and the
consensus protocol in both its traditional and leader-follower
settings. The following notation is used in this paper: ‖·‖2
denotes the 2-norm; tr(·) denotes the trace of a matrix;
|·| denotes the cardinality of a set; 1 denotes the column
vector of ones; I denotes the identity matrix. For a column
vector v ∈ Rp, vi or [v]i denotes the ith element of v. The
ijth element of matrix M is [M ]ij . The term ei denotes
the column vector which contains all zero entries except
[ei]i = 1. For matrices M,N ∈ Rn×n, N �M denotes that
M−N is positive semidefinite. The Hadamard product of two
matrices is denoted by ◦ where [M ◦N ]ij = [M ]ij · [N ]ij .

B. Graph

To represent the network topology, the communication
points in the network are denoted as nodes, and edges
are communication links between points. For a multi-agent
network, the nodes represent agents and the edges correspond
to inter-agent links, such as wireless communications or

relative sensors. It is assumed that all communication links
are bi-directional. These nodes and edges can therefore be
considered as forming an undirected graph.

Abstractly, an undirected graph G = (V,E,W ) is defined
by a node set V with cardinality n, the number of nodes in
the graph, and an ordered edge set E with cardinality m,
the number of edges in the graph and an ordered weight set
W , also represented by a diagonal matrix. The ordered edge
set is comprised of pairs of nodes, where nodes vi and vj
are adjacent if {vi, vj} ∈ E ⊆ [V ]

2, the set of two-element
subsets of V with each edge having weight wij ∈ W . The
neighborhood set N(i) of node i is composed of all agents
in V adjacent to vi. The ordering of the edge set is encoded
through the index mapping σ (·) such that l = σ (ij) if
and only if edge l connects nodes i and j. If clear, vectors
pertaining to the edges such as the edge weights will be
denoted as wij and wl, interchangeably. The weight matrix
W (G) is an m × m diagonal matrix with the weight of
edge l at position [W (G)]ll. The incidence matrix E(G) is a
n×m composed of columns aσ(ij) which encodes the edge
σ(ij) with aσ(ij) = ei−ej .1 The graph Laplacian is defined
as L(G) = E(G)W (G)E(G)T ∈ Rn×n. In expanded form,
L(G) =

∑
wijaija

T
ij .

C. Online Convex Optimization

Online convex optimization is formulated as a game where,
at each time t, a player selects a point xt in a convex set P ,
referred to as an action. After the player has committed to
the action a convex function ft(·) is revealed to the player
at which point a penalty of ft(xt) is paid by the player.
The objective of this game is to minimize the accumulative
penalty. Regret is a common measure for the performance of
this highly uncertain online system. Regret is defined as the
difference between the cost of the sequence of actions taken
by the player and the performance of the best single action x∗

taken at every time step if the sequence {ft(·)} is known a
priori. Hence, the regret of an algorithm with action sequence
{xt} is RT =

∑T
t=1 (ft(xt)− ft(x∗)) . The objective of a

good online algorithm is to achieve a guaranteed low regret;
Specifically, one that guarantees a sublinear RT or RT /T →
0. The reasoning is that when RT /T → 0, “on average”
the algorithm performs as well as the best fixed action in
hindsight.

3. MODEL AND MEASURE

A. Consensus Dynamics

A common objective for networked systems is to reach
agreement on one or more of their states. For example,
agreement on position achieves rendezvous or, if agreeing
on a virtual position, formations can be acquired with known
position offsets from the virtual position. Velocity agreement
is another attractive property for formation maintenance. For
distributed surveillance, bearing agreement is often desired.

1The assignment where aσ(ij) = ej − ei, can also be applied.
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If agreement is required over a network of agents without
all-to-all communications, a distributed approach is neces-
sary. A protocol which is particularly adept at distributed
agreement is the consensus protocol, which is now detailed.

Consider xi(t) ∈ R to be the i-th node’s state at time t on
which agreement is required for all nodes. The continuous-
time consensus dynamics is defined over the graph G =
(V,E) as

ẋi(t) =
∑

{vi,vj}∈E

(xj(t)− xi(t)) . (3.1)

Thus, only the relative state of node i’s neighbors is required
to perform an update to node i. The collective dynamics over
states x(t) ∈ Rn is represented as ẋ(t) = −L(G)x(t), with
L(G) being the graph Laplacian matrix of the underlying
interaction topology, described in §2-B. For a connected
graph G the network dynamics will converge to an agreement
on the state, i.e., x1(t) = x2(t) = · · · = xn(t) = α, for some
constant α, from all initial conditions [1].

B. Leader-Follower Consensus Dynamics
One of the advantages of the consensus dynamics is that

the additional agents can seamlessly integrate into the dy-
namics by entering the communication range of the network.
The detriment is that incorrect identification of an agent
adds an unwanted signal into the network. Subsequently,
an agent incorrectly “follows” this unwanted signal. The
dynamics governing this foreign signal takes the form of the
popular leader-follower consensus dynamics [4], where the
incorrectly identified agent plays the role of a leader, and the
native agents in the network as followers.

To form the leader-follower consensus dynamics, the net-
work graph G = (V,E) is extended to incorporate the
foreign agents/signals into the graph. This is accomplished
by considering the foreign agent set R = (F,R, ER), where
F is the f element foreign node set and ER ⊆ F ×R is the
set of false edges attached to the network at the r element
native node set R. It is assumed that a foreign agent fj ∈ F is
mis-observed at position uj(t) ∈ R by only one native agent.
Further, one native agent mistakes at most one foreign agent
at a time.2 The resulting leader-follower consensus system
now assumes the form,

ẋi(t) =
∑

{vi,vj}∈E

(xj(t)− xi(t)) +
∑

{ri,fj}∈ER

(uj(t)− xi(t))

with the full dynamics

ẋ(t) = A(G,R)x(t) +B(R)u(t), (3.2)

where B(R) ∈ Rn×r with [B(R)]ij = 1 when {ri, fj} ∈ ER
and [B(R)]ij = 0 otherwise, and

A(G,R) = −(L(G) +
∑
i∈R

eie
T
i ) ∈ Rn×n, (3.3)

The matrix A (G,R) in (3.3) is the Dirichlet matrix, or
grounded Laplacian [18], [19]. In the following discussion,
only connected graphs are considered for which A (G,R) is
always negative definite.

2This assumption can be easily relaxed to multiple foreign agents.

C. Disturbance Rejection using the Open Loop H2 Norm

A measure of the effect that an input, represented by the
matrix B, on a state dynamics ẋ(t) = Ax(t) +Bu(t) is the
open loop H2 norm of the system ‖G(s)‖2 where the full-
state output state-space realization is G(s) = (sI −A)−1B.
The metric represents the amplification of the mapping of
inputs to the full state outputs, i.e., y(s) = x(s) = G(s)u(s).
More precisely, y (s) is the energy of the system at the
states from the unit impulse input u(t) when x(0) = 0.
Consequently, in general, decreasing ‖G(s)‖2 has the effect
of dampening disturbances in the system inputs through the
matrix B.

A convenient method of parameterizing the norm ‖G(s)‖2
is using the trace of the controllability gramian defined as
P (A,B) :=

´∞
0
eAτBBT eA

T τdτ. From this relationship,
when A is negative definite,

‖G(s)‖22 = tr(
ˆ ∞
0

eAτBBT eA
T τdτ)

= tr(
ˆ ∞
0

BBT eA
T τeAτdτ)

= tr(BBT
ˆ ∞
0

e2Aτdτ)

= −1

2
tr(BTA−1B). (3.4)

From these observations, in general, inputs perturb the
outputs more effectively as ‖G(s)‖2 increases. With this in
mind, the focus of this work is to minimize ‖G(s)‖22.

The H2 norm of the system also has attractive graph theo-
retic properties linked through the concept of the effective
resistance of the graph discussed in [11]. A consequence
of this connection is that the weights on the edges can
be considered as conductances in an equivalent electrical
network realization of the graph [18]. Since the effective
resistance always decreases with increasing conductances,
‖G(s)‖22 will decrease or remain constant with any increase
in edge weights. This useful property leads to the following
section on the reweighting of edges to decrease ‖G(s)‖2.

4. DISTRIBUTED ONLINE TOPOLOGY DESIGN

As many networked systems, such as UAV swarms, require
only non-physical interconnections for their coordinated be-
havior, they have the advantage that their inter-vehicle coordi-
nation graph can be reweighted. This observation leads to an
online method for improving network manageability, namely
via a judicious topology reweighting. The goal is to adapt
the network topology distributively and with only minimum
local knowledge of the network topology so as to improve
disturbance rejection. The metric for “good rejection” used
in the following analysis is the open loop H2 norm of the
network dynamics, described in §3-C.

The challenge of dynamic distributed reweighting is that
agents are unable to coordinate with non-neighboring agents.
Consequently, local edge reweightings in light of other
agent’s reweights can be detrimental. Furthermore, by the
time information pertaining to the topological effects of a
foreign agent has been received, the foreign agent may no
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longer be present. Therefore, the online regret framework
is ideal to address this problem. The changing dynamic
structure manifests itself as a time-varying graph Gt with
a corresponding time varying L(Gt). In turn, varying foreign
agents appear as a changing foreign agent set Rt. Therefore
the state model (3.2) is

ẋ(t) = Atx(t) +Btu(t), (4.1)

where At = A(Gt,Rt) and Bt = B(Rt). The matrix At can
be represented as

At = −
∑

(i,j)∈E

wijaija
T
ij −

∑
i∈R

eie
T
i , (4.2)

which is invertible for all positive weights so long as R is
nonempty and G = (V,E, I) is connected.

Thus, our metric of interest becomes ‖G(s)‖22 =
− 1

2 tr
(
BTt A

−1
t Bt

)
. The unconstrained minimization of

‖G(s)‖2 will increase the weights on the network arbitrarily.
In addition, large edge weights can have adverse effects on
the network responsiveness. Consequently, we consider the
following minimization so as to balance good rejection with
the penalization of overly large weights,

ft(W ) = −1

2
tr
(
BTt A

−1
t Bt

)
+

1

2
h1TWTW1,

where constant h > 0 and W is the diagonal weight
matrix. The arbitrary removal of weights is also unwanted
as the graph can be rendered disconnected. Therefore no
edges can be reduced below some positive vector qσ(ij), i.e.,
wij ≥ qσ(ij). Additional constraints relating to maximum
edge deviations can also be considered. These constraints
are specified via vector uσ(ij) ∈ Rm such that wij ≤ uσ(ij),
leading to the optimization problem

minft(W ) (4.3)
s.t. qσ(ij) ≤ wij ≤ uσ(ij).

A convex constraint set denoted by P is defined via these
linear constraints. The analysis of the derivative and hessian
of the metric ‖G(s)‖22 with respect to the edge weights is
relegated to the Appendix, with Proposition 1 proving its
convexity via a positive semi-definite hessian. Hence noting
that 1TWTW1 =

∑
w2
ij = 0 if and only if wij = 0 for

all (i, j) ∈ E, then ft(W ) is a strictly convex function with
hessian ∇2ft(W ) � hI .

We proceed to provide a decentralized version of the
conjugate gradient method to form ∇‖G(s)‖22 distributively.
The gradient is then applied to a distributed formulation of
online gradient descent leading to a logarithmic regret bound
for problem (4.3).

A. Local Gradient via Distributed Conjugate Gradient
Necessary to the distributed gradient descent algorithm is

the local evaluation of the gradient of ft(W ) with respect to
a weight wij . Examining the derivative result in Proposition
1 for ys := A(G,R)−1es for all s ∈ R then

∂ ‖G(s)‖22
∂wij

= −1

2

∑
s∈R

(
ysi − ysj

)2
.

Consequently, if every agent i has access to ysi for all s ∈ R
then neighboring agents i and j can negotiate and calculate
the gradient with respect to the edge connecting them.

To this end we propose a distributed form of the linear
conjugate gradient method that for each run s, provides ysi
to each agent i. The centralized version of the conjugate
gradient method solves A−1b, where A ∈ Rn×n and b ∈ Rn.
For A = A(G,R) and b = ep, the method can be used to
find ys. An attraction of the algorithm is that updates only
require b and the evaluation of Ay for a given y ∈ Rn. For
the case where A is encoded in the graph structure, this is
ideal whereby if each agent i only has knowledge of yi then
[Ay]i can be calculated by agent i simply by querying its
neighbors. Specifically, [A(G,R)y]i =

∑
j∈N(i) wijyj .

Our distributed conjugate gradient is featured in Algorithm
1, with timesteps indicated by k. The estimate y, residues r
and conjugate p are the main components of the algorithm
updates in lines 11, 12, and 15, respectively. Our method
takes the same form as the traditional conjugate gradient with
the exception of two agreement variables p̃ and r̃ required per
timestep, shown in lines 9 and 13, respectively. These are of
the form 1

n

∑
i∈V r

2
i and 1

n

∑
pibi, respectively, and so can

be calculated distributively using a traditional information-
based consensus model (3.1). Termination occurs when the
average residue r̃ falls below a small threshold value ε, which
for our application is chosen as ε = 1e− 6. Convergence is
typically fast with theoretical guarantees to converge in less
than n steps.

Interestingly, the convergence rates are strongly tied to the
spectrum of A, and for our application the eigenvalues of
G. If the eigenvalues are clustered then the algorithm tends
to be more performant. Networks that exhibit this trait are
regular graphs and, in general, graphs with many symmetries
[20]. In practice the n step guarantee is not always met due
to rounding errors and for our case errors in the consensus
updates. There are a myriad of techniques to combat this;
we found a restart criteria when r̃ increased significantly
to be effective and easy to coordinate through the network.
For more details on the intricacies of the conjugate gradient
method we invite the reader to examine the manuscript [21]
by Nocedal and Wright.

Figure 1(a) shows the residue for a sample run of the
distributed conjugate gradient method on a 20 node graph
with 4 foreign agents. The restart condition was triggered at
k = 7 due to the increase in the value of r̃. The algorithm
converged with ε = 1e− 10 in only 10 timesteps, much less
than the theoretical n = 20.

B. Online Algorithm

Given the online nature of problem (4.3) whereby a
member of the arbitrary sequence of strictly convex functions
{ft(W )} arrives at each timestep, an online convex algorithm
is a natural choice. We present a distributed version of the
online gradient descent algorithm formulated by Hazan et al.
[13]. The algorithm is a variation of the traditional gradient
descent algorithm and has a run time O(n) per iteration. The
distributed version of the algorithm is presented for our cost
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Algorithm 1: Distributed Conjugate Gradient Method
1 Given yi[0] for each node i ∈ V
2 Initialize:
3 k = 0
4 ri[0] =

∑
j∈N(i) aijxj [0]− bi

5 pi[0] = −ri[0]
6 r̃i[0]← Consensus on r2i ≈ 1

n
rTi ri

7 while |r̃i[k]| > ε do
8 bi[k] =

∑
j∈N(i) aijpj [k]

9 p̃i[k]← Consensus on pibi ≈ 1
n
pTi Api

10 αi =
r̃i[k]
p̃i[k]

11 yi[k + 1] = yi[k] + αipi[k]
12 ri[k + 1] = ri[k] + αibi[k]
13 r̃i[k + 1]← Consensus on (ri)

2 ≈ 1
n
rTi ri

14 βi =
r̃i[k+1]
r̃i[k]

15 pi[k + 1] = βipi[k]− ri[k + 1]
16 k = k + 1
17 end

function ft(W ) in Algorithm 2. At each time step k+1 the
local gradient gij [k] (line 4) of edge wij at time step k is
revealed to agents i, j which perform a gradient descent step
in line 5. As the step may be infeasible, a projection

∏
P(·)

corrects the step by projecting to the closest point on the
constraint set P under the 2-norm. For the linear constraints
in problem (4.3) this can be accomplished distributively and
cheaply. An attraction of this algorithm is that Hazan et al.
[13] proved that if step size is chosen as η[k] = 1

hk the
regret is RT ≤ O (log(T )), i.e., “on average” the algorithm
performs as well as the best fixed strategy in hindsight.

Algorithm 2: Distributed Online Gradient Descent
1 Given convex set P ⊂ Rn and some wij [1] ∈ P ,
∀ {vi, vj} ∈ E

2 Initialize:
3 k = 1
4 foreach {vi, vj} ∈ E do
5 gij [k] = − 1

2

∑
s∈R

(
ysi [k]− ysj [k]

)2
+ hwij [k]

6 wij [k + 1] =
∏

P (wij [k]− η[k]gij [k])
7 k = k + 1

Here,
∏

P(z) = argminx∈P ‖x− z‖2.
8 end

The distributed gradient descent algorithm coupled with
the distributed conjugate gradient method was applied to
a random 50 node graph. Foreign agents at time-varying
locations were detected by the agents marked with large
circles. The edge weights were initialized uniformly as 0.25
and constrained such that ql = 0.05 and ul = 1 for all edges
in E. The resultant graph after each gradient descent step
is depicted in Figure 2. The first three timesteps depict the
algorithm’s response to a static foreign agent location. The
notable characteristic, over these images, is the increasing of
edge weight on those edges close to the foreign agents. This
aligns with the conductance analog mentioned in §3-C, where
additional conductance is added to edges in the neighborhood
of the foreign agents. These edges are those most likely to
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10
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Figure 1. (a) Average residue per timestep of the conjugate gradient method
on a 20 node graph. (b) Regret over time of Algorithm 2.

dampen the effect of the foreign agents’ signal.
The time evolution of all the figures provides insight into

the inner working of the online regret framework. Once a
foreign agent location is revealed the algorithm is penalized
for the absence of heavily weighted edges in its vicinity for
example at timesteps t = 0 and 3, respectively. The algorithm
recovers by timesteps t = 2 and 4, respectively. This process
also provides the algorithm with a memory of the foreign
agent’s location notable from the residue edge weights from
previous heavily weighted edges as seen at timestep t = 4.

The best static graph for this foreign agent evolution was
calculated over 200 iterations. The resultant regret is depicted
in Figure 1(b) emphasizing the performance agreement with
the O(log(T )) bound found by Hazan et al. [13].

5. CONCLUSION

The paper presents a distributed method for the reweight-
ing of network edges so as to dampen the inputs of external
signals. The open loop H2 norm was presented as a metric
to quantify the network’s susceptibility to such signals.
The reweighting algorithm involved the formulation of a
distributed conjugate gradient method and a distributed online
gradient descent method. The work presents a first foray into
the realm of online topology design approaches with proven
small regret. The online approach forms an attractive frame-
work to highly uncertain optimization problems. Our future
research aims to explore the application of the distributed
online approach to the myriad of highly uncertain networked
system problems.

APPENDIX

Proposition 1. The derivative with respect to wij and Hes-
sian of ‖G(s)‖22 from dynamics (4.1) are

∂ ‖G(s)‖22
∂wij

= −1

2

∑
p∈R

([
A−1t ep

]
i
−
[
A−1t ep

]
j

)2
and ∇2 ‖G(s)‖22 = −ETA−1t BtB

T
t A
−T
t E ◦ ETA−1t E,

which is positive semidefinite.

Proof: From (3.4), the H2 norm squared is

‖G(s)‖22 = −1

2
tr
(
BTA−1B

)
= −1

2

∑
p∈R

eTpA
−1ep = −

1

2

∑
p∈R

gp,
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2. Distributed reweighting with a variable foreign node attachment set R, denoted with large circles.

where gp(A) = eTpA
−1ep. Further,

∂gp (A)

∂wij
= tr

[(
∂gp(A)

∂A

)T
∂A

∂w ij

]
= tr

[(
−A−T epeTpA−T

)T (−aijaTij)]
= tr

[
A−1epe

T
pA
−1aija

T
ij

]
= tr

[(
aTijA

−1ep
) (
eTpA

−1aij
)]

=
(
aTijA

−1ep
)2

=
([
A−1ep

]
i
−
[
A−1ep

]
j

)2
.

Hence,

∂ ‖G(s)‖22
∂wij

= −1

2

∑
p∈R

([
A−1ep

]
i
−
[
A−1ep

]
j

)2
.

Examining the hessian of gp,

∂g2p (A)

∂wijwkl
=

∂

∂wkl

(
aTijA

−1ep
)2

= tr[
∂
((
aTijA

−1ep
)2)

∂A

T

∂A

∂w kl
]

= tr[
(
2aTijA

−1ep
(
A−Taije

T
pA
−T ))T aklaTkl]

= 2aTijA
−1eptr[A−1epaTijA

−1akla
T
kl]

= 2
(
aTijA

−1ep
) (
aTklA

−1ep
) (
aTijA

−1akl
)

= 2
(
aTijA

−1epe
T
pA
−1akl

) (
aTijA

−1akl
)

= 2
[
ETA−1epe

T
pA
−TE

]
(σ(ij),σ(kl))

·
[
ETA−1E

]
(σ(ij),σ(kl))

.

Consequently, ∇2gp = 2ETA−1epe
T
pA
−TE◦ETA−1E, and

so

∇2 ‖G(s)‖22 = −ETA−1BBTA−TE ◦ ETA−1E.

As ETA−1BBTA−TE =
(
BTA−TE

)T (
BTA−TE

)
< 0

and A is negative definite then −ETA−1E < 0. Finally, the
Hadamard product exhibits the property that the Hadamard
product of two positive semi-definite matrices is positive
semi-definite [22] and so the result follows.
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