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Research Highlights 

 A methodology for global sensitivity analysis of consequence models is presented 

using a statistical emulator 

 The methodology is demonstrated on the Phast consequence model for steady-state 

discharges of high-pressure carbon dioxide 

 Dispersion model input parameters that have a significant effect on the extent of the 

plume are identified 

 The study demonstrates that Bayesian analysis of model sensitivity can be conducted 

quickly and easily 

 There is the potential for this to become a routine part of consequence modelling 

 

Abstract 

A methodology is presented for global sensitivity analysis of consequence models used in 

process safety applications. It involves running a consequence model around a hundred times 

and using the results to construct a statistical emulator, which is essentially a sophisticated 

curve fit to the data. The emulator is then used to undertake the sensitivity analysis and 

identify which input parameters (e.g. operating temperature and pressure, wind speed) have a 
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significant effect on the chosen output (e.g. vapour cloud size). Performing the sensitivity 

analysis using the emulator rather than the consequence model itself leads to significant 

savings in computing time. 

 

To demonstrate the methodology, a global sensitivity analysis is performed on the Phast 

consequence model for discharge and dispersion. The scenarios studied consist of above-

ground, horizontal, steady-state discharges of dense-phase carbon dioxide (CO2), with orifices 

ranging in diameter from ½ to 2 inch and the liquid CO2 stagnation conditions maintained at 

between 100 and 150 bar. These scenarios are relevant in scale to leaks from large diameter 

above-ground pipes or vessels. 

 

Seven model input parameters are varied: the vessel temperature and pressure, orifice size, 

wind speed, humidity, ground surface roughness and height of the release. The input 

parameters that have a dominant effect on the dispersion distance of the CO2 cloud are 

identified, both in terms of their direct effect on the dispersion distance and their indirect 

effect, through interactions with other varying input parameters. 

 

The analysis, including the Phast simulations, runs on a standard office laptop computer in 

less than 30 minutes. Tests are performed to confirm that a hundred Phast runs are sufficient 

to produce an emulator with an acceptable degree of accuracy. Increasing the number of Phast 

runs is shown to have no effect on the conclusions of the sensitivity analysis. 

 

The study demonstrates that Bayesian analysis of model sensitivity can be conducted rapidly 

and easily on consequence models such as Phast. There is the potential for this to become a 

routine part of consequence modelling. 

 

Keywords 
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1. Introduction 
 
Consequence modelling is used in the process industries for many purposes, from plant design 

to risk assessment and incident investigation. In many applications, the inputs to the 

consequence model (e.g. operating temperature and pressure, wind speed) are either poorly 

defined or they feature a large degree of variability. It is important in these cases to know the 

effect of the range in input conditions on the model predictions. The results may be quite 

insensitive to certain inputs, but for some inputs a small difference may produce a critical 

change in the study outcome. With experience, modellers can often develop an understanding 

of the important factors in a given situation, but in complex multi-phase reacting flows this 

may be challenging, and model behaviour can sometimes be counter-intuitive.  

 

The purpose of a sensitivity analysis is primarily to determine which input parameters have a 

significant effect on the model outputs. Knowing which factors are important can be useful in 

driving model refinement and in producing more reliable predictions. For example, in the 

analysis of dense gas dispersion in the Buncefield Incident, Gant & Atkinson (2011) initially 

found that the model predictions were sensitive to the slope of the ground and the presence of 

obstacles. As a consequence, to refine their model they used detailed topographical data from 

a site survey to construct the final Computational Fluid Dynamics (CFD) geometry. This type 

of uncertainty that can be reduced through improved knowledge of the system is known as 

epistemic uncertainty. 
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Another type of uncertainty that cannot be reduced in this way, known as aleatoric 

uncertainty, arises from the inherent variability in the physical system or environment that is 

being modelled. For instance, in modelling atmospheric dispersion there is a natural 

uncertainty in the wind speed due to the random nature of atmospheric turbulence. To account 

for this, the wind speed may be expressed in terms of a probability distribution that represents 

the likelihood of the wind speed taking a particular value over time. In a risk assessment, 

where the objective is to determine the cumulative risk over a year, the results from multiple 

simulations for a range of wind speeds may be combined and weighted using this distribution 

to account for the range in likely values.  

 

In a sensitivity analysis, it is also beneficial to identify the inputs that have a negligible effect 

on the model output. This information can be used to limit the number of simulations required 

in a given study. For example, in a risk assessment involving a jet fire, if the ambient wind is 

demonstrated to have practically no effect on the thermal dose predictions, the risk assessment 

may not need to consider running multiple jet fire simulations for a range of different wind 

speeds, which may considerably reduce the total computing effort required. 

 

The issue of sensitivity and uncertainty in consequence modelling has long been appreciated, 

and a number of examples can be found in the literature (Khoudja, 1988; Jahn et al., 2008; 

Witlox et al., 2011; Carpentieri et al., 2012). Often the approach used in these studies to 

examine model sensitivity has consisted of selecting a baseline case and then varying one 

input parameter at a time, i.e. local sensitivity analysis. This choice has often been taken due 

to the limitations of computing time and the ease of interpreting the results.  

 

In recent years, a more rigorous approach to model sensitivity analysis has started to be 

applied to process safety applications, e.g. Brohus et al. (2007) and Pandya et al. (2012). In 

the latter study, a global sensitivity analysis was performed on the consequence model Phast 

(DNV, 2012), where multiple input parameters were varied at the same time in order to 

understand the interactions between the different inputs. The calculations involved running 

Monte-Carlo experiments on Phast directly, with sample sizes of 20,000 simulations and 

computing times of around 24 h, using several computers in parallel. 

 

Despite these examples of global sensitivity analysis being applied to consequence models, 

such analyses have yet to become widely used by engineers in the chemical process safety 

industry. This has perhaps been due to the perception that such exercises are time-consuming 

and costly, and the fact that much of the literature describing sensitivity analysis is aimed at 

mathematicians rather than practising engineers. 

 

The aim of the present work is to demonstrate an approach to global sensitivity analysis that is 

easy to use and can be applied routinely to consequence modelling for process safety 

applications. The approach involves running a consequence model around a hundred times 

and then using the results to construct a statistical model (essentially a curve fit, or response 

surface). This statistical model is then used to undertake the sensitivity analysis and identify 

important input parameters. The statistical analysis is undertaken here using the Gaussian 

Emulation Machine (GEM) software produced by Marc Kennedy and colleagues at Sheffield 

University (Kennedy, 2005). This software is freely-available for non-commercial use, and 

features an easy-to-use Graphical User Interface (GUI) and good documentation.  

 

The process safety scenarios examined consist of horizontal, above-ground, steady-state 

discharges of high-pressure carbon dioxide (CO2). Consequence model predictions have been 

obtained using the discharge and dispersion models contained in the hazard assessment 

software package Phast (DNV, 2012). Seven key Phast model input parameters have been 

varied and the results analysed for main effects and interactions.  
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2. Methodology 

2.1. Phast 

 
Phast  is a hazard-assessment software package produced by DNV Software for modelling 

atmospheric releases of flammable or toxic chemicals (Witlox et al., 2008; Witlox, 2010). It 

includes methods for calculating discharge and dispersion, and toxic or flammable effects (see 

Figure 1). A principal component of Phast is the Unified Dispersion Model (UDM), which 

incorporates sub-models for two-phase jets, heavy and passive dispersion, droplet rainout and 

pool spreading/evaporation. The model can simulate both unpressurised and pressurised 

releases, time-dependent releases (steady-state, finite-duration, instantaneous or time-

varying), buoyancy effects (buoyant rising cloud, passive dispersion or heavy-gas-dispersion), 

complex thermodynamic behaviour (multiple-phase or reacting plumes), ground effects (soil 

or water, flat terrain with uniform surface roughness), and different atmospheric conditions 

(stable, neutral or unstable). 
 

 

 

 

Figure 1 Phast discharge and dispersion model 

 
Three key papers have been produced by DNV Software on CO2 release and dispersion 

modelling using Phast. In the first of these, Witlox et al. (2009) described an extension to 

PHAST version 6.53.1 to account for the effects of solid CO2. The modifications consisted 

principally of changing the way in which equilibrium conditions were calculated in the 

expansion of CO2 to atmospheric pressure, to ensure that below the triple point the fluid 

conditions followed the sublimation curve in the phase diagram. Furthermore, two-phase 

vapour/solid effects instead of vapour/liquid effects were included downstream of the orifice 

following depressurisation of CO2 to ambient pressure in the discharge and dispersion model. 

In the second paper, Witlox et al. (2011) reported the results of a sensitivity analysis for both 

liquid and supercritical CO2 releases from vessels and pipes with the revised PHAST version 

6.6 model. The sensitivity analysis was performed using a local “one-at-a-time” approach to 

model input variation, where each parameter was varied in turn whilst holding all other 

parameters fixed. In contrast, in the global sensitivity analysis presented here, all of the 

parameters have been varied simultaneously to calculate the effect of each parameter over the 

full range of other input parameters. In the third paper by Witlox et al. (2012), the results of a 

model validation study were published using measurements from a series of field-scale CO2 

tests originally commissioned by BP and Shell.  

 
In the present work, Phast version 6.7 has been used, details of which can be found in the 

papers of Witlox et al. (2009, 2011, 2012). The guidance provided in the Phast version 6.6 

release notes on the correct model configuration for CO2 releases has been followed. For the 
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expansion from stagnation to orifice conditions with no pipe attached to the vessel, the fluid at 

the orifice has been assumed to be in a meta-stable liquid state, while for the expansion from 

orifice to ambient pressure, conservation of mass, momentum and energy has been assumed 

(see Figure 1).   

 

Phast assumes that the two-phase flow in the jet is in homogeneous equilibrium, i.e. the solid 

CO2 particles are assumed to have the same temperature and velocity as the surrounding 

vapour. Both Witlox et al. (2012) and Dixon et al. (2012) have shown that this is a valid 

approximation for pressurized releases of CO2, for orifices up to 2 inches in diameter at least. 

Phast version 6.7 also assumes that the solid CO2 particles remain within the dispersing jet 

and do not deposit on the ground. This appears to be a reasonable approximation for 

unobstructed jet releases of dense-phase CO2, based on the results from the Shell and BP 

experiments.  

 

 

2.2. Overview of Test Cases 

 

The CO2 releases simulated here consist of above-ground, unconfined, horizontal, steady-state 

orifice discharges from vessels in atmospheric conditions of neutral (D-class) stability. The 

range of conditions modelled using Phast is given in Table 1. For simplicity, uniform 

probability distributions have been used for each variable. This means, for example, that any 

wind speed between 0.5 and 50 m/s has been considered equally likely. The implications of 

this approximation are discussed later. 

  

The model output that is considered to be of primary importance is the distance from the 

orifice to a particular limiting concentration of CO2 (termed “dispersion distance” here). 

Initially, results are presented for a prescribed concentration limit of 6.9 % v/v, which for a 

steady exposure duration of 30 minutes corresponds to a Dangerous Toxic Load (DTL) of 1.5 

× 10
40

 ppm.min
N
 (with N = 8). This is the Specified Level of Toxicity (SLOT) for CO2 used 

by the UK Health and Safety Executive (HSE, 2012a). In Section 3, results are also reported 

for a range of other limiting CO2 concentrations.  

 

In steady-state atmospheric releases, the CO2 plume concentrations are not constant over time 

but instead naturally vary about the mean concentration due to turbulence. Any such 

variations are important in the case of CO2 since the DTL increases rapidly with concentration 

(to the power eight in HSE’s model). Gant and Kelsey (2012) highlighted that predictions of 

the hazard range would be non-conservative if turbulent concentration fluctuations were 

ignored. Care should therefore be exercised in interpreting the 6.9 % v/v contour used here as 

the distance to SLOT.  

 

  

Table 1 Parameters varied in Phast global sensitivity analysis 

 
Number Parameter Minimum Maximum 

1 Vessel temperature 5 C 30 C  

2 Vessel pressure 100 bar 150 bar 

3 Orifice diameter ½ inch (12.6 mm) 2 inch (50.8 mm) 

4 Wind speed 0.5 m/s 50 m/s 

5 Relative humidity 0 % 100 % 

6 Ground surface roughness 0.0001 m 1.0 m 

7 Release height above ground 0.5 m 3 m 
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2.3. Global Sensitivity Analysis 

 

To identify the important model input parameters that affect the predicted dispersion distance, 

the statistical analysis examines the variance in the model predictions. The variance is the 

averaged squared distance between the model predictions and the average value of the model 

predictions. An input parameter that has a large effect on the output will account for a large 

proportion of the output variance. The total output variance is calculated by varying all of the 

seven input parameters given in Table 1 over the full range of conditions. 

 

Two key parameters are used to identify which model inputs have a significant effect on the 

output: the main effect and total effect. The main (or first-order) effect of a given parameter 

“A” is the amount of variance that would be removed from the total output variance if the true 

value of A were known. The total effect, on the other hand, is the amount of variance that 

would remain unexplained if the values of all other parameters except A were known, and the 

variance was produced only by varying A. Formal mathematical definitions can be found in 

textbooks on sensitivity analysis, such as Saltelli et al. (2000). 

 

In practical terms, the main effect quantifies the influence of just one parameter varying on its 

own, and the total effect comprises the main effect plus any variance due to interactions 

between that parameter and all of the other input parameters varying at the same time. The 

total effect is therefore always equal to or greater than the main effect. If there is not much 

interaction between the input parameters, the sum of the main effects for each of the input 

parameters will be close to the total output variance. The extent to which an input parameter 

interacts with other inputs is indicated by the difference between its main and total effects. A 

parameter that has a total effect that is much larger than its main effect is interacting strongly 

with other parameters. 

 

The popularity of the main and total effects as a means of describing model sensitivity is 

largely due to the fact that these quantities are relatively easy to compute. Various methods 

have been developed for calculating them more efficiently than a typical brute force Monte-

Carlo approach (Janssen et al., 1994; Saltelli et al., 1999; Sobol’, 2001), although these still 

require many thousands of model evaluations. In principle, specific interaction variances can 

be calculated from numerical integration via Monte-Carlo sampling, but this requires sample 

sizes that are an order of magnitude larger than for the methods used to calculate just main 

and total effects variances. 

 

Whilst a variance-based sensitivity analysis summarises the importance of each input with 

respect to the variability in model output, it conveys no information about precisely how the 

output responds with respect to each input or group of interacting inputs. Summaries that 

quantify how (on average) the model output changes in response to changes in the values of 

the inputs, displayed graphically, are an important tool for understanding the underlying 

model behaviour, although these are not frequently reported in the literature due to the 

computing time involved. In the current study, this kind of analysis allows us to identify the 

conditions that give rise to the greatest dispersion distance. Such summaries are related to 

variance-based methods, which Oakley and O’Hagan (2004) calculated via Monte-Carlo 

sampling. 

 

2.4. Gaussian Emulation Machine (GEM) 

 

The global sensitivity analysis is conducted here using the Gaussian Emulation Machine 

(GEM) software (Kennedy, 2005). A useful introduction for non-specialists to the techniques 

employed by GEM is given in the paper by O’Hagan (2006), with further details provided by 

Oakley and O’Hagan (2004). 
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In essence, the emulator is a sophisticated curve-fit to a number of data points (known 

collectively as “training” data). In the present work, these data points are the dispersion 

distance results produced from a number of Phast simulations. Rather than just fitting a single 

line through these data points, the emulator fits a probability distribution, parameterised by a 

mean and standard deviation (Figure 2). The curve that passes through all of the data points 

represents the mean of the distribution. Between two neighbouring data points, there is some 

uncertainty in the output value due to interpolation and/or extrapolation errors. The emulator 

represents this uncertainty using the standard deviation of the probability distribution (i.e. the 

spread in possible values about the mean). At the data points, the emulator produces an output 

equal to the Phast results with zero uncertainty. Moving away from these points, the 

uncertainty gradually increases.  

 

The principal underlying assumption used to derive the emulator is that the output is a 

homogeneously smooth, continuous function of the input parameters.  The emulator is based 

upon a Gaussian Process (GP) regression model, which is specified in a Bayesian framework. 

The GP is parameterised by a mean function, which represents prior beliefs about how the 

output varies as the inputs are varied, and a correlation function, which represents beliefs 

about the smoothness of the output with respect to the inputs. The mean function and 

correlation functions are expressed in terms of further ‘hyper-parameters’, which are 

determined using the training data as the prior is updated using Bayes theorem. Both the 

posterior mean and correlations can be written as the prior expression plus a weighted linear 

combination of the observations, with weights determined by the location in parameter space 

where a prediction is sought, see Oakley and O’Hagan (2004) for details. The posterior 

surface can be viewed as a distortion of the original parametric approximation to the surface, 

such that it smoothly interpolates the observed data and the uncertainty pinches at the design 

points (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Illustration of the emulator fit to training data points 
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GEM assumes a squared exponential form for the correlation function and constant or linear 

forms (with respect to each of the inputs) for the mean function. Whilst these impact upon the 

flexibility of the approach, the resulting posterior can be analytically integrated with respect 

to the joint probability density function of the inputs (for Gaussian and uniform inputs), and 

all sensitivity measures described earlier (Section 2.3) can be derived without the need for 

numerical methods. The result is a highly efficient method, with computing times of typically 

around a minute on a standard office laptop computer. In the present work, the computer used 

for the calculations was equipped with a 2.53GHz Intel Core2 Duo P8700 CPU with 4Gb of 

RAM. 

 

To specify the input conditions for the Phast simulations (i.e. the training data points), a 

maximin Latin hypercube algorithm is used. This is called from within the GEM software and 

the user simply needs to specify the ranges over which each of the input parameters are to be 

varied. The advantage of this sampling algorithm is that no values are repeated for each input 

so that if one or more of the input variables has no effect on the output, the training points 

provide greater coverage of the other input parameters.  

 

This effect is illustrated in Figure 3, which shows the sample space for three hypothetical 

input parameters: X, Y and Z, which are each assumed to take any value between 0 and 1. 

Figure 3a shows how the maximin Latin hypercube algorithm distributes 30 samples across 

this space. The algorithm varies all three inputs simultaneously, rather than picking a baseline 

set of input values and varying each input one-at-a-time.  

 

 

 

 
 

 

Figure 3 Maximin Latin hypercube sampling with 3 input parameters (X, Y and Z) and 30 

samples, showing how samples are distributed a.) across all input parameters b.) when input 

parameter Z has no effect on the output c.) when both Y and Z input parameters have no effect 

on the output. 

 

Points collapse 
onto X-Y plane 

Points collapse 
onto X-axis 

a.) b.) 

c.) 
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If input parameter Z has no effect on the model output, this means that all of the data points 

are in effect distributed across the plane of X and Y inputs, as shown in Figure 3b. None of the 

points lies on top of another and the points are fairly uniformly distributed across the plane, 

providing a good coverage of the range of input conditions. If both inputs Y and Z have no 

effect on the model output, the data points are effectively distributed along a single line in X 

(Figure 3c). The 30 samples are evenly distributed along this line, providing excellent 

coverage. 

 

Since the maximin Latin hypercube algorithm varies all input parameters simultaneously, 

there is no pre-defined step size that is used to increment each input parameter between its 

specified minimum and maximum values. Instead, the distance between sampled points is a 

function of the number of input variables, their range (between specified minimum and 

maximum values) and the number of samples taken. 

 

Often, in situations of practical interest, just one or two input parameters dominate the model 

predictions (Campolongo et al., 1999). As demonstrated by this simple example, the maximin 

Latin hypercube algorithm helps to maximise the coverage from a relatively small number of 

training data points. The uncertainty in the emulator predictions can be reduced by increasing 

the number of training data points, but in the present work it has been found using GEM that a 

hundred or so training points is sufficient to produce results with an acceptable level of 

accuracy. To obtain a similar level of accuracy using a standard “brute-force” Monte-Carlo 

method applied directly to Phast (without the emulator) would usually require many 

thousands of Phast runs, with much longer computing times, as demonstrated by Pandya et al. 

(2012).  

 

Consequence models such as Phast calculate the dispersion behaviour by solving numerically 

a set of ordinary differential equations, using a variable step size in order to obtain the 

solution within a user-specified convergence tolerance. This means that there exists a small 

degree of error in the results (within the convergence tolerance), such that if the dispersion 

distance were plotted against a range of input conditions, the curve would not be perfectly 

smooth but would exhibit a small degree of scatter. Similar behaviour would be expected for 

CFD models, due to the limitations of numerical convergence and the approaches typically 

used to discretise time and space.  

 

To avoid the emulator being forced to zigzag through every training data point, a small 

uncertainty bound can be introduced around each point during the emulator fitting process, 

using what is known in the statistical literature as a “nugget”. The size of this error is 

estimated from the variance in the training data, and it enables a smoother fit of the emulator 

to the training data. Justification for use of a nugget has been provided by Gramacy & Lee 

(2012) and Andrianakis et al. (2012). A nugget has been used in all of the results presented 

here and the effect of not using a nugget is examined briefly in Section 3.3.  

 

It is important to check that the emulator is constructed using a sufficient number of training 

data points in order to provide an accurate curve-fit to the underlying Phast model. To assess 

this, “cross-validation” tests are performed in which the emulator is fitted with one of the 

training data points left out. The emulator is then used to predict this missing training data 

point, and the emulator predictions are compared to the Phast predictions at that point. This 

process is repeated over all of the training data points, leaving each one out in turn, to obtain 

an overall picture of the emulator accuracy across the whole of the sample space. Further 

details on emulator validation can be found in the work of Bastos and O’Hagan (2008). The 

whole process of cross-validation is made easy in GEM and simply requires the user to tick a 

check-box and analyse the results. Results from cross-validation tests are reported in Section 

3.4. 
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2.5. Interfacing Models and Analysis Procedure 

 
There are several steps involved in performing the sensitivity analysis of Phast using GEM. 

Firstly, the input parameters for the hundred Phast model runs are defined, using the maximin 

Latin hypercube algorithm in GEM. A short MATLAB script (MathWorks, 2011) is then used 

to take the text file produced by GEM and use this to modify a template Phast text-input 

(*.PSU) file to create a hundred separate Phast input files. The Phast simulations are then run 

in batch mode, typically taking a few seconds each. The text output (*.OUT) files from Phast 

are then post-processed using another MATLAB script to extract the desired output (in this 

case, the dispersion distance) and this data is written to another text output file. Finally, the 

input and output files are imported into GEM, which constructs the emulator and runs the 

sensitivity analysis in typically around a minute. If the results produced by GEM show that 

there are some interactions between model input parameters, it is straightforward to select 

those parameters to examine for joint effects using the GEM GUI, and then re-run the 

analysis.  

 

The whole sensitivity analysis (including the Phast runs) typically requires less than 30 

minutes of computing time on a standard office laptop computer. The most time-consuming 

aspect of the study, which may require a few days effort, is to write the MATLAB scripts to 

process the data and interface GEM and Phast. However, these scripts only need to be written 

once. 
 

3. Results 

3.1. Baseline Global Sensitivity Analysis 

 

Sample dispersion predictions from Phast for three different orifice sizes are shown in Figure 

4. These show that the horizontal jet with initial height of 1 m above the ground does not 

touch down for the smallest ½-inch orifice, but does so with the larger 1- and 2-inch orifices. 

For the larger diameter releases, the jet extends further into the ambient environment and, in 

doing so, the width of the jet expands due to entrainment of fresh air. The flow within the 

concentration contours shown is dominated by high-momentum jet behaviour rather than 

gravity slumping. Across the full range of conditions given in Table 1, the dispersion 

distances ranged from 12 m to 110 m, with a mean of 40 m and total variance of 393 m
2
. 

 

The contribution from each of the model input parameters to the total output variance is 

shown in Figure 5 in the form of a “Lowry plot”. These results were produced from GEM 

using a sample size of a hundred Phast runs, where the output parameter used in the 

sensitivity analysis was the dispersion distance to 6.9 % v/v CO2. The vertical bars in Figure 5 

show the main and total effect for each parameter, ranked in order of main effect importance, 

whilst the lower and upper bounds of the curve show the cumulative sum of the main and 

total effects, respectively. The analysis shows that more than 70 % of the variance in the Phast 

results is due to the orifice diameter (Parameter 3 in Table 1). The second highest contribution 

comes from the release height above the ground. The remaining factors (or combinations of 

factors) account for less than 12 % of the total output variance. 

 

The effect on the mean dispersion distance due to changes in the orifice diameter and the 

release height is shown in Figure 6. The dispersion distance increases with the orifice 

diameter, roughly proportional to the mass release rate (i.e. orifice diameter squared). In 

contrast, the dispersion distance decreases with the release height, due to the reduced air 

entrainment when the jet is closer to the ground. The error bars in these graphs show the 

uncertainty in the emulator predictions to two standard deviations either side of the mean (i.e. 
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a confidence interval of 95 %). The uncertainty increases towards the minima and maxima of 

the range of input values, since the emulator relies upon fewer training data points near these 

locations. 

 

The size of the total effect relative to the main effect in Figure 5 indicates that there is some 

interaction between the orifice diameter and release height inputs. The interplay between 

these inputs is shown in Figure 7 in the form of a three-dimensional plot of the dispersion 

distance. The results show that for large orifices, the release height has a significant effect on 

the dispersion distance, but for smaller orifices the release height has practically no effect. 

This trend matches the flow behaviour shown in Figure 4, where the CO2 jet did not touch 

down with the smallest ½-inch diameter orifice.  

 

A notable finding from the sensitivity analysis is that the vessel pressure has little effect on 

the dispersion distance. At first, this may seem surprising, since an increase in pressure from 

100 barg to 150 barg leads to an increase of around 20 % in mass release rate of CO2. 

However, this increase in mass flow rate is also associated with an increase in the release 

velocity, which enhances the entrainment of fresh air into the jet. This additional dilution 

balances the increase in mass flow rate so that, overall, the dispersion distance is little 

affected. A similar effect is observed in subsonic gas jets, for details see Webber et al. (2011). 

 

One of the benefits of GEM is that it produces the results shown in Figures 6 and 7, which 

provide a useful visual description of how the model responds to changes in the input 

variables. Similar results could not be produced using the Extended Fourier Amplitude 

Sensitivity Test (EFAST) global sensitivity analysis method employed used by Pandya et al. 

(2012), which calculates solely the main and total effects. In principle, Pandya et al. (2012) 

could have used direct Monte-Carlo sampling of Phast to produce similar graphs to those 

shown in Figures 6 and 7. To reproduce the Figure 6a would involve fixing the orifice 

diameter at a particular value and then sampling over the remaining six variable input 

parameters and then averaging over these results. The same process would be repeated for a 

range of different orifice diameters to produce the curve with its associated error bounds.  

 

Using direct Monte Carlo sampling in this way is less efficient than EFAST and it would 

probably require an order of magnitude larger sample sizes in order to produce results with 

acceptable confidence intervals. In their original work, Pandya et al. (2012) used a sample 

size of 20,000 and ran their analysis on multiple computers to obtain results within around 

24 h. This suggests that reproducing results such as Figure 6a would require prolonged 

computing times. The advantage of GEM in this respect is that the integration over the six 

variable input parameters for Figure 6a is performed analytically, making the process 

computationally very efficient. As a consequence, graphs like those shown in Figures 6 and 7 

can be produced in a matter of minutes.  
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Figure 4 Sample output from Phast showing the plumes produced by orifice diameters: ½ 

inch (top), 1 inch (middle) and 2 inch (bottom). Contours shown are at 6.9, 10, 20 and 

30 % v/v CO2. 

 

 

 

Figure 5 “Lowry” plot showing main and total effects for Phast model input parameters given 

in Table 1 
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Figure 6 Mean dispersion distance predicted by GEM as a function of a) orifice diameter, and 

b) release height; error bars show 95% confidence interval 

 

 

 

Figure 7 Joint effects resulting from varying the orifice diameter and release height 

simultaneously 
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3.2. Effect of the Wind Speed 

 

Another important finding from the sensitivity analysis shown in Figure 5 is that the ambient 

wind speed has very little effect on the dispersion distance, despite the sensitivity analysis 

being based on a wide range of wind speeds: from 0.5 m/s to 50 m/s. This result appears to be 

due to the dispersion behaviour of the CO2 cloud above a concentration of 6.9 % v/v CO2 

being dominated by the initial momentum of the pressurised jet, rather than the ambient 

conditions. The Richardson number throughout this high-concentration part of the jet was 

well below a value of one, indicating that the flow was dominated by momentum rather than 

gravitational effects.  

 

If a lower CO2 concentration is used to define the edge of the cloud than 6.9 % v/v CO2, the 

cloud extends further into the ambient environment and its velocity decreases. The wind 

speed then has a more significant effect. This is demonstrated in Figure 8, which shows the 

calculated main effects of the orifice size, release height and wind speed inputs for CO2 

clouds that are defined using a range of different concentrations, from 0.1 % to 6.9 % v/v 

CO2. As the concentration defining the edge of the cloud is reduced, the flow behaviour is 

increasingly dominated by far-field passive dispersion. The results show that below a 

concentration of 1 % v/v, the effect of the release height decreases whilst the effect of the 

wind speed increases relative to the orifice size. If the edge of the cloud is defined using a low 

concentration of 0.1 % v/v CO2, the wind speed is responsible for more than 50 % of the 

variance in the dispersion distance predictions.  

 

There are two facts that should be borne in mind when interpreting the results shown in 

Figure 8. Firstly, the graph shows the main effects in terms of their contribution to the total 

output variance. This variance increases markedly as the concentration that is used to define 

the edge of the cloud decreases (and the CO2 cloud generally becomes larger). Although in 

relative terms the main effect of the orifice diameter decreases as the concentration is 

decreased from 6.9 % to 0.1 % v/v CO2, in absolute terms it actually increases. 

 

Secondly, these main effects have been calculated using uniform probability distributions for 

the input variables, i.e. assuming that any wind speed between 0.5 and 50 m/s is equally 

likely. From a risk assessment perspective, wind speeds of between 1 m/s and 15 m/s are 

typically considered to be far more likely than those less than 1 m/s or greater than 15 m/s. If 

a more realistic distribution of wind speed were used in the sensitivity analysis, the wind 

speed would probably be less dominant. In order to undertake such analyses, meteorological 

data could be obtained from the Met Office for sites in the UK (http://www.metoffice.gov.uk, 

accessed 20.08.2012). Further guidance on realistic probability distributions for wind speeds 

was given by Ro and Hunt (2007). 

 

 

 

http://www.metoffice.gov.uk/
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Figure 8 Main effects for the orifice diameter, release height and wind speed as a function of 

the CO2 concentration used to define the dispersion distance. 

 

 

3.3. Effect of Numerical Code Error 

 
It was mentioned earlier that a “nugget” was used in the emulator to account for any model 

error. This in effect introduces a small uncertainty bound around each of the training data 

points so that the emulator is not forced to pass through each of the training data points, which 

therefore produces a smoother fit to the data. The size of the nugget is calculated 

automatically by GEM based on the variance in the output. Omitting the nugget leads to a 

decrease in the uncertainty in the emulator predictions (the error bars in Figure 6), with the 

average standard deviation falling from 1.2 m to 0.7 m. Similar behaviour was observed 

previously by Gramacy and Lee (2012).  

 

Results from the cross-validation tests show that the predictive accuracy of the emulator is 

improved with the nugget. Only 80 % of the emulator’s mean predictions of the dispersion 

distance are within 4 m of that predicted by Phast without the nugget (Figure 9), compared to 

93 % with the nugget.  

 

The overall effect of the nugget on the predicted main and total effects is fairly minor. 

Irrespective of whether or not the nugget is used, the same basic findings are obtained, i.e. the 

primary and secondary factors controlling the dispersion distance are still the orifice diameter 

and the release height (Figure 10). Use of the nugget had practically no effect on the 

computing time needed for the sensitivity analysis. 
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Figure 9 Cross-validation results using the emulator without the nugget 

 

 
 

Figure 10 Main and total effects using the emulator with and without the nugget 

 

 

 

3.4. Effect of the Sample Size 
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emulator is used in this way, the uncertainty in the model predictions can be significant. 

Errors are largest for points located close to the vertices of the parameter space. For this 

reason, even for very large samples sizes, the emulator accuracy in the cross-validation tests 

may not reach 100 %. The cross-validation tests may therefore be viewed as a severe test of 

the emulator. 

 

Increasing the sample size from 100 to 400 leads to a reduction in the emulator variance in the 

main effect predictions (i.e. a reduction in the size of the error bars in Figure 6). The average 

standard deviation in these results decreases from 1.2 m to 0.4 m when the number of samples 

is increased from 100 to 400. 

 

A comparison of the main and total effects using 100 and 400 Phast runs shows that 

increasing the number of samples has a negligible effect on the results of the variance-based 

sensitivity analysis (Figure 12).  

 

In terms of the computing time required by GEM to construct the emulator and run the 

sensitivity analysis, using 100 samples took around 1 minute, compared to 29 minutes with 

400 samples (excluding the time needed for the additional Phast runs). This rapid increase in 

computing time with sample size is probably due to the part of the GEM calculation process 

that involves inverting an n-by-n matrix (where n is the sample size). 

 

Overall, the use of 100 samples in the present study was considered to provide an acceptable 

degree of accuracy. Increasing the number of samples did not affect the conclusions from the 

sensitivity analysis. 

 

 

 
   

Figure 11 Cross-validation results using: a.) 100 samples; b.) 400 samples 
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Figure 12 Main and total effects using 100 and 400 samples 

 

3.5. Effect of Fixing the Orifice Diameter 

 

In risk assessments, one or more generic orifice sizes are typically used to model releases 

from vessels and pipelines, rather than varying the orifice size continuously over a range of 

values (HSE, 2012b). For each discrete orifice size, it may therefore be of interest to 

understand the effect of varying the remaining input parameters, i.e. the vessel temperature 

and pressure, wind speed, humidity, ground surface roughness and release height. A similar 

situation may arise in certain design studies or incident investigations, where the orifice 

dimension may be fixed due to external factors. 

 

Figure 13 shows the results from a global sensitivity analysis in which the orifice diameter 
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varied over their given ranges. The results have been produced from 100 Phast runs using a 

nugget, and the dispersion distance has been defined using a concentration of 6.9 % v/v CO2. 

As expected, the release height, which had the second-largest main effect in the previous 

sensitivity analysis (see Figure 5), is now the dominant input parameter. Its main effect is 

responsible for nearly 80 % of the total output variance. The total output variance with six 
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2
 to only 33 m

2
). In absolute terms, the release height is 

therefore responsible for a similar output variance to before. The three leading input 

parameters that most affect the dispersion distance are now the release height, vessel 

temperature and wind speed, ranked in order of importance according to their main effects. 

Tests were performed using 400 instead of 100 Phast model runs to train the emulator, which 

produced identical conclusions to those shown in Figure 13. 

 

The main and total effects shown in Figure 13 indicate that there is an interaction between the 

release height and wind speed input parameters. The joint effects from varying these two 
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heights the jet remains elevated for longer with increasing wind speed, and this leads to 

increasing air entrainment and smaller dispersion distances. 

 

The balance of all the effects that produces the flow behaviour shown in Figure 14 is complex 

and not easily understood without an in-depth knowledge of the underlying modelled physics. 

The results provide a good demonstration of how global sensitivity analysis can provide a 

useful insight into the underlying model behaviour. 

 

 

 
 

Figure 13 “Lowry” plot showing main and total effects for Phast model input parameters 

given in Table 1, with a fixed orifice diameter of 1 inch  

 
 

Figure 14 Joint effects resulting from varying the wind speed and release height 

simultaneously, with a fixed orifice diameter of 1 inch 
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3.6. Limitations of Gaussian Emulators for Sensitivity Analysis 

 

One of the assumptions implicit in using an emulator is that the output is a homogeneously 

smooth, continuous function of the input parameters. Consequently, it is not generally 

recommended to use an emulator with input parameters that are switches or variables that take 

binary on/off values.  

 

In the present work, the dispersions simulations were all performed with an atmosphere that 

was neutrally stable (D-class). Further tests were performed with eight input parameters 

instead of seven, where the eighth parameter represented the atmospheric stability varying 

between neutral D-class and stable F-class. To do this, the same maximin Latin hypercube 

algorithm was used to construct a hundred samples, but with an additional eighth input 

parameter varying from zero to one. If the eighth parameter had a value less than a half then 

the Phast simulations used D-class stability, and otherwise they used F-class. The results from 

this emulator showed significant variance in the predicted main effects, demonstrating that the 

atmospheric stability had a non-negligible effect on the model predictions. However, due to 

the limitations of the emulator fit, it was not possible to quantify reliably the magnitude of the 

atmospheric stability effect relative to that of the other input parameters (orifice size, release 

height etc.).  

 

For this particular issue of atmospheric stability, the limitation of the emulator could in 

principle be overcome by specifying the atmospheric stability via the Monin-Obukhov length, 

rather than the Pasquill-Gifford stability class. The Monin-Obukhov length can be varied 

continuously between neutral and stable conditions, which avoids the sudden jump between 

D- and F-class states. Unfortunately, Phast version 6.7 does not allow users to specify the 

Monin-Obukhov length directly, despite the fact that the software internally converts the 

Pasquill-Gifford stability class selected by the user into a Monin-Obukhov length, although 

this may be possible in future software releases. Other dispersion models, such as ADMS 

(CERC, 2012), allow users to specify the Monin-Obukhov length directly. A further 

complication of undertaking a sensitivity analysis on the atmospheric stability is that the 

range of observed wind speeds is different for neutral and stable conditions, and it may 

therefore be simpler to undertake two separate sensitivity analyses for D- and F-class stability 

classes. 

 

For other model inputs that are switches, such as the choice of whether an indoor or outdoor 

release is modelled, it is possible to follow a similar approach to that described above to 

determine whether or not the model input has any effect on the output. However, it is not 

possible to be precise about the main and total effects of this input as compared to other 

smoothly varying inputs. So-called “treed” Gaussian emulators have been developed which 

branch and, in effect, fit two different emulators to data that exhibit an abrupt step change 

(Gramacy & Lee, 2008). Although these emulators provide an improved fit to the data, they 

are similarly unable to calculate directly the main and total effects values.  

 

Calculating these quantities for input parameters that are switches can be achieved using 

Monte-Carlo sampling, as demonstrated by Pandya et al. (2012), who analysed the effect of 

using either constant or power-law atmospheric wind profiles on the dispersion of three toxic 

chemicals. To decrease the computing time for this analysis, one potential solution would be 

to fit a treed emulator to the training data and then use Monte-Carlo sampling of the emulator 

to calculate the main and total effects. Alternatively, a much simpler way to understand the 

effect of a switch could be to undertake a similar analysis to that presented in Section 3.1 for 

each value of the switch, and then to plot the average effect of the input parameters on the 

output (as in Figure 6) with multiple lines for each switch value.  
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At present, GEM allows the use of input distributions that are either all uniform or all 

Gaussian. Gaussian distributions could be used to account for the higher likelihood of inputs 

taking their mean values than their minimum or maximum values. However, GEM does not 

allow the user to specify a mixture of uniform and Gaussian input distributions, nor is it 

recommended to try and approximate a log-normal distribution by taking the anti-log of the 

log-normal input distribution to turn it into a Gaussian distribution that can be used by GEM. 

Using this approach would produce variances that will differ from variance calculated from a 

true log-normal distribution. It is also not recommended to use a Gaussian input distribution 

with an artificially large variance for one or more of the input variables in order to produce a 

nearly uniform probability distribution between the minimum and maximum values. The 

methodology presented by Oakley and O’Hagan (2004) has more flexibility in terms of input 

distributions. However, direct coding of this requires considerable technical expertise. 

 

To overcome the limitation of either all uniform or all Gaussian input distributions, one 

partial solution would be to create a response surface from GEM, but then rather than 

calculate the main effects analytically through GEM, to instead calculate these separately by 

Monte-Carlo sampling the emulator (applying the relevant distributions of the model inputs). 

This could provide significant savings in computing time compared to sampling the 

underlying consequence model directly. Advice on running the emulator independently of 

GEM is provided with the GEM download (Kennedy, 2005). 

 

Finally, GEM has limits on the maximum number of input variables and samples. A 

maximum of 30 input variables and 400 samples can be used in any one analysis. If it is 

necessary to consider a larger number of input parameters, a two-stage approach could be 

taken (Campolongo, Tarantola, & Saltelli, 1999). In the first stage, a screening technique 

(Morris, 1991) could be used to identify those input parameters of low importance. In the 

second stage, these unimportant inputs could be fixed at central values, and the more 

important parameters studied using the techniques described in this paper. 

 

 

4. Conclusions 
 
A global sensitivity analysis has been performed on Phast using an emulator to identify the 

important factors affecting the dispersion distance in steady-state horizontal releases of CO2 

over flat terrain. The parameters varied include the CO2 vessel temperature and pressure, 

orifice size, wind speed, humidity, surface roughness and height of the release. The output 

parameter of interest has initially been taken as the distance from the release point to a CO2 

concentration of 6.9 % v/v. The results have shown that for the range of conditions tested, the 

orifice diameter has a far greater impact than any of the other parameters varied. The second-

largest effect was from the release height, with a lower release height producing a plume that 

extends further, due to the reduction in air entrainment.  

 

When the dispersion distance output was defined differently, using a lower limiting value of 

the CO2 concentration, the results showed that the dominant input parameters change and the 

effect of the ambient wind speed becomes more important. Tests on the sample size used to 

construct the emulator indicated that a hundred Phast runs were sufficient to provide an 

acceptable degree of accuracy. 

 

The global sensitivity analysis of Phast typically required less than 30 minutes of computing 

time on a standard office laptop computer. This includes the time necessary for the hundred 

Phast runs and the statistical analysis. Due to the speed and ease of implementation, similar 

analyses could readily be incorporated into industrial design studies, risk assessments and 

incident investigations at little extra cost. There are significant benefits to be gained from 
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such analyses in terms of identifying the important physical processes in complex flows, and 

in narrowing the scope of further simulations or experimental measurements. These methods 

are therefore likely to become widely used in the process industry in the coming years. 

 

In the present work, uniform probability distributions were applied for each of the input 

variables. For example, any wind speed was considered equally likely, within the range of 

conditions modelled. In future work, techniques for uncertainty analysis will be tested which 

apply realistic probabilities for wind speed, atmospheric stability etc. based on meteorological 

data. Further extensions to this work may also consider model calibration, using experimental 

datasets. 
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