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ABSTRACT
We give a new construction of pseudorandom generators
from any one-way function. The construction achieves bet-
ter parameters and is simpler than that given in the seminal
work of H̊astad, Impagliazzo, Levin, and Luby [SICOMP
’99]. The key to our construction is a new notion of next-
block pseudoentropy, which is inspired by the notion of “in-
accessible entropy” recently introduced in [Haitner, Rein-
gold, Vadhan, and Wee, STOC ’09]. An additional advan-
tage over previous constructions is that our pseudorandom
generators are parallelizable and invoke the one-way func-
tion in a non-adaptive manner. Using [Applebaum, Ishai,
and Kushilevitz, SICOMP ’06], this implies the existence of
pseudorandom generators in NC0 based on the existence of
one-way functions in NC1.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Theory

Keywords
One-way function, Pseudorandom generator, Pseudoentropy

1. INTRODUCTION
The result of H̊astad, Impagliazzo, Levin, and Luby [13]

that one-way functions imply pseudorandom generators is
one of the centerpieces of the foundations of cryptography
and the theory of pseudorandomness.
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From the perspective of cryptography, it shows that a very
powerful and useful cryptographic primitive (namely, pseu-
dorandom generators) can be constructed from the mini-
mal assumption for complexity-based cryptography (namely,
one-way functions). With this starting point, numerous
other cryptographic primitives can also be constructed from
one-way functions, such as private-key cryptography [5, 20],
bit-commitment schemes [21], zero-knowledge proofs for
NP [6], and identification schemes [3].

From the perspective of pseudorandomness, it provides
strong evidence that pseudorandom bits can be generated
very efficiently, with smaller computational resources than
the “distinguishers” to whom the bits should look random.
Such kinds of pseudorandom generators are needed, for ex-
ample, for hardness results in learning [26] and the natural
proofs barrier for circuit lower bounds [22]. Moreover, the
paper of H̊astad et al. introduced concepts and techniques
that now permeate the theory of pseudorandomness, such
as pseudoentropy and the Leftover Hash Lemma.

A drawback of the construction of H̊astad et al., however,
is that it is quite complicated. While it utilizes many elegant
ideas and notions, the final construction combines these in
a rather ad hoc and indirect fashion due to various tech-
nical issues. In addition to being less satisfactory from an
aesthetic and pedagogical perspective, the complexity of the
construction also has a significant impact on its efficiency.
Indeed, it is too inefficient to be implemented even for very
modest settings of parameters.

In the last few years, progress has been made on simplify-
ing the construction of H̊astad et al. [15] and improving its
efficiency [9]. These constructions, however, still retain the
overall structure of the H̊astad et al. construction, and thus
retain some of the complex and ad hoc elements.

In this paper, we present a significantly more direct and
efficient construction of pseudorandom generators from one-
way functions. The key to our construction is a new notion
of next-block pseudoentropy, which is inspired by the recently
introduced notion of “inaccessible entropy” [12].

1.1 The HILL Construction
Informally, a function f : {0, 1}n → {0, 1}n is a one-way

function (OWF) if it is easy to compute (in polynomial time)
and hard to invert even on random inputs. A polynomial-
time computable function G : {0, 1}n → {0, 1}m(n) is a pseu-
dorandom generator (PRG) if it is stretching (i.e., m(n) > n)
and its output distribution is pseudorandom (i.e., G(Un) is
computationally indistinguishable from Um(n)). The theo-
rem of H̊astad et al. relates these notions:
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Theorem 1.1. If there exists a one-way function, then
there exists a pseudorandom generator.

The key notion underlying their construction is the fol-
lowing generalization of pseudorandomness.

Definition 1.2 (pseudoentropy, informal). A
random variable X has pseudoentropy k if there exists a
random variable Y such that:

1. X is computationally indistinguishable from Y .

2. H(Y ) ≥ k, where H(·) denotes Shannon entropy.1

A pseudoentropy generator (PEG)2 is a polynomial-time

computable function G : {0, 1}n → {0, 1}m(n) such that
X = G(Un) has pseudoentropy H(G(Un)) + ∆(n) for some
∆(n) ≥ 1/ poly(n). We refer to ∆(n) as the entropy gap of
G.

That every pseudorandom generator G : {0, 1}n →
{0, 1}m(n) is a pseudoentropy generator can be seen by
taking Y = Um(n) and noting that H(Y ) = m(n), but
H(G(Un)) ≤ H(Un) = n. Pseudoentropy generators are
weaker in that Y may be very far from uniform, and may
even have H(Y ) < n (as long as H(G(Un)) is even smaller).

The construction of pseudorandom generators from one-
way functions proceeds roughly in the following steps:

OWF to PEG: Given a one-way function f :
{0, 1}n → {0, 1}n, H̊astad et al. define PEG(x, h, i) =
(f(x), h, h(x)1...i), where h is an appropriate hash
function and h(x)1...i denotes the first i bits of h(x).
PEG can be shown to be a pseudoentropy generator
with an entropy gap of roughly ∆ = log n/n — When-
ever i = log |f−1(x)| + Θ(logn) (which happens with
probability Θ(log n/n)) the first ≈ log |f−1(x)| bits of
h(x) extract all the entropy of x, and then we get
Θ(logn) bits of pseudoentropy by the Goldreich–Levin
Hardcore-Bit Theorem [4].

Converting Shannon Entropy to Min-Entropy and
Amplifying the Gap: Next, H̊astad et al. use
a direct product construction PEG′(x1, . . . , xt) =
(PEG(x1), . . . ,PEG(xt)) to convert pseudoentropy
into pseudo-min-entropy, and increase the entropy gap
to be ω(logn). This turns out to require taking roughly
t = (n/∆)2 copies.

Randomness Extraction: By hashing, H̊astad et al. ex-
tract pseudorandom bits from the pseudo-min-entropy
achieved so far. By also hashing the seed x to extract
any remaining entropy, they obtain a pseudorandom
generator. Specifically, they show that G(x, h1, h2) =
(h1, h2, h1(PEG′(x)), h2(x)) is a pseudorandom gener-
ator, if the output lengths of h1 and h2 are chosen
appropriately. The choice of output lengths depends
on the amount of min-entropy in the output of PEG′,

1The Shannon entropy of a random variable X is defined to
be E

x
R←X

[log(1/Pr[X = x])].
2H̊astad et al. [13] refer to such a generator as a false en-
tropy generator, and require that a pseudoentropy genera-
tor to have output pseudoentropy n + ∆(n), rather than
just H(G(Un)) + ∆(n). However, for the informal discussion
here, we prefer not to introduce the additional term “false
entropy”.

which in turn depends on the amount of entropy in the
output of PEG. Unfortunately, these quantities may
be infeasible to compute; this is handled by the next
step.

Enumeration: H̊astad et al. enumerate over all u =
O(n/∆) possible values k for the output entropy of
PEG (up to an accuracy of ∆/2), construct a pseu-
dorandom generator Gk for each, use composition to
make each Gk stretch its seed by a factor of greater
than u, and then take G(x1, . . . , xu) = G1(x1)⊕ · · · ⊕
Gu(xu) as their final pseudorandom generator.

The total seed length in this informal description is roughly
n · t ·u = O(n4/∆3) = O(n7). In fact, we have been cheating
a bit in order to present the construction in a more modular
way than in [13]. (The issues we ignored have to do with the
samplability of source Y in Definition 1.2.) The actual seed
length in the main construction presented in [13] is of O(n10)
(and the construction involves additional complications). A
construction of seed length O(n8) is outlined in [13], and has
been formalized and proven in [15].

Above we see three main sources of inefficiency in the
construction: (1) the entropy gap ∆ being fairly small, (2)
the conversion of Shannon entropy to min-entropy, and (3)
enumerating guesses for the output entropy of the initial
pseudoentropy generator. Haitner, Harnik, and Reingold
[9] show how to save a factor of n in the enumeration step
(by constructing a pseudoentropy generator in which more
is known about how the entropy is distributed) to obtain a
seed length of O(n7), but still all of the steps remain.

A further complication in the construction of H̊astad et al.
is that the reductions demonstrating the correctness of the
construction are much more complex for uniform adver-
saries. This aspect of the proof has recently been simpli-
fied and made much more modular via Holenstein’s uniform
hardcore lemma [14, 15].

In case the one-way function is secure against exponen-
tial running time (2Ω(n)) adversaries, Holenstein [15] showed
how to reduce the seed length to O(n4 · ω(logn)) (or O(n5)
to obtain a PRG with exponential security), which was then
improved by Haitner et al. [10] to O(n · ω(logn)) (or O(n2)
to obtain a PRG with exponential security).3

1.2 Our Approach
Our construction is based on a generalization of the no-

tion of a pseudoentropy generator. It is motivated by
the well-known fact that the pseudorandomness of a ran-
dom variable X is equivalent to each bit of X being in-
distinguishable from uniform given the previous ones [27].
That is, X = (X1, . . . , Xn) is computationally indistin-
guishable from Un = (Y1, . . . , Yn) if and only if for every i,
(X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable
from (X1, X2, . . . , Xi−1, Yi). It is thus natural to consider
what happens if we require not that Xi be pseudorandom
given the previous bits, but only that Xi has pseudoentropy
given the previous bits. More generally, we can allow the
Xi’s to be blocks instead of bits.

3In more detail, Holenstein’s construction generalizes [13]
for OWFs of “any hardness”, while Haitner et al. [10] take
a totally different route (based on the“randomized iterate”
of a function introduced by Goldreich et al. [7]) and obtain
constructions based on exponentially hard OWFs, as well as
on (unknown-)regular OWFs.
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Definition 1.3 (NBP, informal). A random vari-
able X = (X1, . . . , Xm) has next-block pseudoentropy k if
there exists a set of random variables Y = {Y1, . . . , Ym},
each jointly distributed with X, such that:

1. For every i, (X1, X2, . . . , Xi−1, Xi) is computationally
indistinguishable from (X1, X2, . . . , Xi−1, Yi).

2.
∑
i H(Yi|X1, . . . Xi−1) ≥ k.

A next-block pseudoentropy generator (NBPEG) is a
polynomial-time computable function G : {0, 1}n →
({0, 1}`)m such that (X1, . . . , Xm) = G(Un) has next-block
pseudoentropy H(G(Un))+∆(n), where again ∆(n) is called
the entropy gap.

That is, in total, the bits of X “look like” they have k bits
of entropy given the previous ones. Note that the case of 1
block (m = 1) amounts to the definition of a pseudoentropy
generator. Also note that, when m > 1, allowing Y to be
correlated with X in this definition is essential: for example
if all the blocks of X are always equal to each other (and
have noticeable entropy), then there is no way to define Y
that is independent of X and satisfies the first condition.

With this notion, our construction proceeds as follows.

OWF to NBPEG: Given a one-way function f , we de-
fine G(x, h) = (f(x), h, h(x)1, h(x)2, . . . , h(x)n), where
h : {0, 1}n → {0, 1}n is an appropriate hash function,
and h(x)i is the i’th bit of h(x). Notice that this is
the same as the construction of H̊astad et al., except
that we do not randomly truncate the output. At first,
this seems problematic; by revealing all of h(x), it be-
comes easy for an adversary to compute x, and thus the
pseudoentropy of output equals its real entropy (i.e.,
we have zero entropy gap). We show, however, that it
does indeed have next-block pseudoentropy n + logn,
which is even larger than the seed length of G. We
have gained in two ways here. First, the entropy gap
is now ∆ = logn instead of ∆ = logn/n. Second,
we know the total amount of entropy in the output
(though not the amount contributed by the individual
blocks). These two advantages improve the the com-
plexity and security of the rest of the construction.
Furthermore, the fact that the next-block pseudoen-
tropy is larger than the seed length simplifies the con-
struction, as we do not need to extract any additional
entropy from the seed.

Entropy Equalization: Here we use a technique from
[12] to convert our knowledge about the total entropy
(summed over all blocks) into knowledge about the
entropy in the individual blocks. We evaluate G on
u = O(n/∆) independent seeds and concatenate the

outputs, but randomly shifted by i
R← [n] coordinates.

This increases our seed length and our entropy by a
multiplicatives factor of approximately u, but now al-
most all the blocks have pseudoentropy at least the
average pseudoentropy of the blocks of G.

Converting Shannon Entropy to Min-Entropy and
Amplifying the Gap: This works the same as in [13].
Again we take roughly t = O(n/∆)2 copies, but con-
catenate them within each block to obtain an m-block
generator G′. Now each of the m blocks is indistin-
guishable from having high min-entropy conditioned

on the previous ones. Thus what we have is computa-
tional analogue of a block source [2], which are random
sources in which each block has high min-entropy con-
ditioned on the previous ones.

Randomness Extraction: For this step, we use a known
method for block-source extraction [2, 28] and define
G(x, h) = (h, h(G′(x)1), . . . , h(G′(x)m)), where h is a
universal hash function. Since we know how much
pseudo-min-entropy is in each block, there is no dif-
ficulty in choosing the output length of h.

In total, our seed length is roughly O(n · u · t) = O(n4).
For the case of exponentially hard one-way functions, we
can obtain ∆ = Ω(n), and thus achieve seed O(n · ω(logn))
matching [10] (but, unlike [10], our construction uses non-
adaptive calls to the one-way function).

Note that our construction involves no “guessing” of en-
tropies, neither in the construction of the initial NBPEG G,
nor in an enumeration step at the end. While the entropy
equalization “costs” the same (namely u = O(n/∆)) as enu-
meration did, it is actually doing more for us. Enumera-
tion handled our lack of knowledge of a single entropy value
(for which there were only O(n/∆) choices), but here equal-
ization is handling lack of knowledge for approximately n
entropy values (one for each block), for which there are ex-
ponentially many choices. Moreover, enumeration required
composing the pseudorandom generators to increase their
stretch, resulting in a construction that is highly sequential
and makes adaptive use of the one-way function. Our pseu-
dorandom generators make nonadaptive use of the one-way
function and are parallelizable (e.g., in NC1), for getting
pseudorandom generators with small stretch. Using Apple-
baum et al. [1], this implies the existence of pseudorandom
generators in NC0 based on the existence of one-way func-
tions in NC1.

1.3 Relation to Inaccessible Entropy
The notion of next-block pseudoentropy generators was

inspired by the notion of inaccessible entropy generators in
[12]. These are generators G that also produce m blocks
(x1, . . . , xm) with the property that it is infeasible for an
adversary to generate a sequence of blocks (x1, . . . , xm) that
are consistent with the output of G in such a way that en-
tropy of the individual blocks xi is high (conditioned on the
state of the adversary after generating the previous blocks).
Thus, in a computational sense, the output of G has low en-
tropy. For this reason, the notions of next-block pseudoen-
tropy generators and inaccessible entropy generators seem
to be dual to each other.

The initial construction of an inaccessible entropy gener-
ator in [12] is G(x) = (f(x)1, . . . , f(x)n, x), which is very
similar to our construction of a next-block pseudoentropy
generator except that there is no hashing and the bits of
f(x) instead of h(x) are treated as separate blocks. This
initial step is followed by entropy equalization and gap am-
plification steps that are exactly the same as the one we
use (but analyzed with respect to dual notions). The final
hashing step there (to construct statistically hiding commit-
ment schemes) is more complex than ours and is necessarily
interactive.

Interestingly, the notion of inaccessible entropy generator
was introduced in an attempt to make the construction of
statistically hiding commitment schemes from one-way func-
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tions “as simple” as the construction of pseudorandom gen-
erators from one-way functions, via manipulating notions of
computational entropy. (The previous construction, from
[11], was extremely complex.) In return, that effort has now
inspired our simplifications and improvements to the con-
struction of pseudorandom generators.

1.4 Paper Organization
Notations and definitions used through this paper are

given in Section 2, where the new notion of a next-block
pseudoentropy generator is formally defined in Section 3. In
Section 4 we present our construction of next-block pseu-
doentropy generator from one-way functions, where in Sec-
tion 5 we show how to use next-block pseudoentropy gener-
ators to get a pseudorandom generator. Finally, in Section 6
we use the above reductions to prove the main result of this
paper.

2. PRELIMINARIES

2.1 Random Variables
Let X and Y be random variables taking values in a dis-

crete universe U . We adopt the convention that when the
same random variable appears multiple times in an expres-
sion, all occurrences refer to the same instantiation. For
example, Pr[X = X] is 1. The support of a random variable
X is Supp(X) := {x : Pr[X = x] > 0}. We write ∆(X,Y )
to denote the statistical difference (a.k.a. variation distance)
between X and Y , i.e.

∆(X,Y ) = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If ∆(X,Y ) ≤ ε (respectively, ∆(X,Y ) > ε), we say that X
and Y are ε-close (resp., ε-far).

2.2 Entropy Measures
We will refer to several measures of entropy in this work.

The relation and motivation of these measures is best un-
derstood by considering a notion that we will refer to as the
sample-entropy: For a random variable X and x ∈ Supp(X),
we define the sample-entropy of x with respect to X to be
the quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness”
or “surprise” in the specific sample x, assuming that x has
been generated according to X. Using this notion, we can
define the Shannon entropy H(X) and min-entropy H∞(X)
as follows:

H(X) := E
x

R←X
[HX(x)]

H∞(X) := min
x∈Supp(X)

HX(x)

Flattening Shannon Entropy..
It is well-known that the Shannon entropy of a random

variable can be converted to min-entropy (up to small statis-
tical distance) by taking independent copies of this variable.

Lemma 2.1. 1. Let X be a random variable taking val-
ues in a universe U , let t ∈ N, and let ε > 0. Then

with probability at least 1− ε− 2−Ω(t) over x
R←Xt,

|HXt(x)− t ·H(X)| ≤ O(
√
t · log(1/ε) · log(|U| · t)).

2. Let X,Y be jointly distributed random variables where
X takes values in a universe U , let t ∈ N, and let
ε > 0. Then with probability at least 1 − ε − 2−Ω(t)

over (x, y)
R← (Xt, Y t) := (X,Y )t, we have that∣∣HXt|Y t(x|y)− t ·H(X|Y )

∣∣ ≤ O(
√
t · log(1/ε)·log(|U|·

t)).

We omit the proof from this version.

2.3 One-way Functions

Definition 2.2. Let f : {0, 1}n 7→ {0, 1}m be a
polynomial-time computable function, where n is a security
parameter and m = m(n). For T = T (n) and ε = ε(n),
we say that f is a (T, ε)-one-way function if for every prob-
abilistic algorithm A running in time T and all sufficiently
large n, we have:

Pr[A(Y ) ∈ f−1(Y )] ≤ ε,

where the probability is taken over Y = f(Un) and the coin
tosses of A. We say that f is a one-way function if it is a
(p(n), 1/p(n))-one-way function for every polynomial p.

2.4 Pseudorandom Generators

Definition 2.3. Let X be a random variable, depending
on a security parameter n, and taking values in {0, 1}m, for
m = m(n). For T = T (n) and ε = ε(n), we say that X is
(T, ε)-pseudorandom if for every probabilistic distinguisher
D running in time T and all sufficiently large n, we have:

|Pr[D(X) = 1]− Pr[D(Um) = 1]| ≤ ε.

A polynomial-time computable function G : {0, 1}n 7→
{0, 1}m with m = m(n) > n is a (T, ε)-pseudorandom gen-
erator if G(Un) is (T, ε)-pseudorandom.

We say that X is pseudorandom if it is (p(n), 1/p(n))-
pseudorandom for every polynomial p. Similarly, G is a
pseudorandom generator G if G(Un) is pseudorandom.

3. NEXT-BLOCK PSEUDOENTROPY
In this section we formally define the new notion of next-

block pseudoentropy, for the cases of both Shannon entropy
and min-entropy. The definitions will differ from the infor-
mal definition given in the introduction (Definition 1.3) in
the following two ways, both of which are important for the
treatment of uniform adversaries:

• We will require indistinguishability even against algo-
rithms that have an oracle for sampling from the joint
distribution (X,Yi). (This enables us to show, using a
hybrid argument, that pseudoentropy increases when
we taking many independent copies of X. In the case
of nonuniform adversaries, no oracle for sampling from
(X,Yi) is needed, as the samples can be nonuniformly
hardwired into the adversary.)

• In order to achieve the first item, we will allow the
random variables Yi to depend on the distinguisher.

Similar issues arise for treating uniform adversaries with
standard pseudoentropy.
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Definition 3.1. (next-block (Shannon) pseudoentropy)
Let X be a random variable taking values in Um, where X,
U , and m may all depend on a security parameter n. For
T = T (n), k = k(n) and ε = ε(n), we say that X has (T, ε)
next-block pseudoentropy k if for every oracle-aided distin-
guisher D(·) of running time at most T , there exists a set of
random variables {Y1, . . . , Ym} over U such that:

1.
∑m
i=1 H(Yi | X1, . . . , Xi−1) ≥ k, and

2.

E
i
R←[m]

[Pr[DOX,Y (X1, . . . , Xi) = 1]

− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]] ≤ L · ε,

where OX,Y (i), for i ∈ [m], samples according to the
joint distribution (X,Yi), and L = L(n) is a bound
on number of calls made by D to OX,Y (including the
challenge itself).

We say that X has next-block pseudoentropy k, if it has
(p(n), 1/p(n))-next-block pseudoentropy k for every polyno-
mial p. We say that every block of X has (T, ε)-next-block
pseudoentropy α = α(n), if condition (1) above is replaced
with H(Yi | X1,...,i−1) ≥ α for every i ∈ [m].

Note that we have omitted absolute values in the indistin-
guishability condition above (and below). This is purely for
technical convenience, as D can use O((m/ε)2) random sam-
ples from its oracle to test whether the (signed) advantages
inside the expectation are positive or negative to within an
accuracy of ±ε/2m and negate itself for some values of i in
order to ensure a positive advantage of at least Lε/2.

Definition 3.2. (next-block pseudo-min-entropy) Let X
be a random variable taking values in Um, where X, U , and
m may all depend on a security parameter n. For T = T (n),
α = α(n), and ε = ε(n), we say that every block of X has
(T, ε)-next-block pseudo-min-entropy α, if for every oracle-

aided distinguisher D(·) running in time at most T (n), there
exists a set of random variables {Y1, . . . , Ym} over U such
that:

1. H∞(Yi | X1,...,i−1) ≥ α, and

2.

E
i
R←[m]

[Pr[DOX,Y (X1, . . . , Xi) = 1]

− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1] ≤ L · ε,

where OX,Y and L is as in Definition 3.1.

We say that every block of X has next-block pseudo-min-
entropy α, if every block of X has (p(n), 1/p(n))-next-block
pseudo-min-entropy α, for every polynomial p.

Unless explicitly stated otherwise, in the following sections
we view a distribution over {0, 1}t as a t-block distribution.
When we refer to the next-block pseudoentropy properties of
a function G : {0, 1}n → {0, 1}m, these refer to the random
variable G(Un).

4. ONE-WAY FUNCTIONS TO NEXT-
BLOCK PSEUDOENTROPY GENERA-
TOR

This section will show how to construct a next-block
pseudoentropy generator Gnb

f out of a one-way function
f : {0, 1}n 7→ {0, 1}n.

Theorem 4.1. (Next-block pseudoentropy generator from
one-way functions) Let n be a security parameter and f :
{0, 1}n 7→ {0, 1}n be a polynomial-time computable function.
Then there exists a polynomial-time computable generator
Gnb : {0, 1}d 7→ {0, 1}m, with d = d(n) ∈ O(n) and m =
m(n) ∈ O(n), such that the following holds:

Security: Assume that f is a (T, ε) one-way function for
some T = T (n) and ε = ε(n). Then for any poly(n)-

time computable value of ε′ = ε′(n) > 2−n/4, Gnb has

(T · (ε′/n)O(1), ε′)-next-block-pseudoentropy k = d +
log(1/ε)− c logn, where c is a universal constant.

Complexity: Gnb is computable in NC1 with one oracle
call to f .

When f is a standard one-way function, we can take T =

1/ε = nc
′

for an arbitrarily large constant c′ and set ε′ =

1/nγc
′

for a small universal constant γ, to deduce that Gnb

has (nΩ(c′), 1/nΩ(c′))-next-block pseudoentropy k = d+(c′−
c) logn. In particular, Gnb has next-block pseudoentropy
k = d+ logn.

Our construction employs a family of hash functions Q =
{Qn = {q : {0, 1}n 7→ {0, 1}n}}. We will shortly discuss the
properties needed from Q. Given an appropriate family Q,
we can define Gnb

f quite easily:

Construction 4.2. On security parameter n, define
the algorithm Gnb on domain {0, 1}n × Qn, for Qn =
{q : {0, 1}n 7→ {0, 1}n}, and oracle f : {0, 1}n → {0, 1}n as
follows:

Gnb
f (s, q) := (f(s), q, q(s)1, . . . , q(s)n),

where s is n bits long and q(s)i denotes the ith bit of q(s).
(Note that we abuse notation and write q for both the func-
tion and its description.)

The following properties regarding the efficiency of Gnb
f

are immediate:

Lemma 4.3. If Q is in NC1 then Gnb
f is in NC1 with

one oracle call to f . If the description length of Qn is O(n)

then the input length of Gnb
(·) is linear in its first argument

(as |q| = O(|s|). Finally, Gnb
f invokes f exactly once (and

thus is non-adaptive with respect to f).

Indeed, we will define Q that is both efficient and has a short
description. The main requirement from Q, however, has to
do with ensuring that Gnb

f is a next-block pseudoentropy
generator. Let us start by presenting the following strategy
showing that the entropy gap (i.e., k− d) for ε = 1/nΩ(logn)

is at least logn. Let Df (y) := log |{x ∈ {0, 1}n : f(x) = y}|
and let S be uniformly distributed over {0, 1}n. Then the
distribution of S conditioned on y = f(S) still hasDf (y) bits
of entropy. We would likeQ to extract these bits and in addi-
tion to extract logn bits of pseudoentropy. More concretely,
we ask that the first Df (y) + logn bits of q(S) are pseudo-
random even given y = f(S) and q (to simplify notation,
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we will ignore round-off errors and treat Df (y) as an inte-
ger). Given such a Q, we are essentially done (at least when
considering non-uniform security4). Consider the distribu-
tions X = Gnb

f (S,Q) and the distribution (Y1, . . . , Yn) :=
(f(S), Q,R1, . . . Rk, Q(S)K+1, . . . , Q(S)n), where S and Q
are uniformly distributed, K := Df (f(S)) + logn and the
Ri’s are uniformly random bits. By the above discussion, X
and Y (more formally, X and {Yi}) are next-block indistin-
guishable. In addition, we have:

m∑
i=1

H(Yi | X1,...,i−1)

≥ H(f(S)) + H(Q) + H(R1, . . . , RK |f(S))

= H(f(S)) + H(Q) + E[Df (f(S)) + logn]

= n+ log |Qn|+ logn.

and therefore Gnb
f is indeed a next-block pseudoentropy

generator.
The first remaining challenge is to construct such a fam-

ily Q. As we will discuss shortly, it is easy to obtain all
the above properties with hash functions that have descrip-
tion length n2. For better efficiency, we will settle on Q with
slightly weaker properties (where the pseudorandom bits ex-
tracted by q ∈ Q will be pseudorandom up to advantage 1/n
rather than an arbitrary inverse polynomial advantage). An
additional challenge is achieving next-block pseudoentropy
in the (more standard) uniform setting. The difficulty is
that we need X and Y to be next-block indistinguishable
even given oracles that sample these distributions. While
X is efficiently samplable (and thus an oracle that samples
X is easy to implement), Y may not be (as Df (y) may be
hard to compute). To overcome this difficulty we employ
Holenstein’s Uniform Hardcore Lemma [14]. Employing the
Hardcore Lemma also closes the gap between the properties
of Q we obtain and the stronger properties in the discussion
above (actually, we even achieve a stronger guarantee, where
the entropy gap is roughly log(1/ε)).

4.1 The family Q and unpredictability
A family Q with the above properties, but with descrip-

tion length n2, is easy to come by. Simply define q(s) to be
As, where A is a uniformly chosen n×n matrix over GF(2).
For a random y = f(S), the Leftover Hash Lemma [19]
yields that the first Df (y)− c logn bits of Q(S) are statisti-

cally close to uniform up to statistical distance 1/nΩ(c). An
additional (c+1) · logn bits are pseudorandom by reduction
to the Goldreich-Levin hardcore predicate [4]. An interest-
ing open problem is to come up with a family Q that has
similar properties and in addition has description length n.
Instead, in this paper we relax the requirements from Q.

Defining q(s) = As is equivalent to selecting each one of
the output bits of q(s) to be a uniformly selected location of
the Hadamard encoding of s. If instead we let each bit be a
location in a polynomially-long encoding of s, we get descrip-
tion length n logn. As long as this encoding possesses good
list-decoding properties, such a construction still suffices for
our purposes. To save the final log n factor, we will look at
an encoding of x into logarithmically long symbols (and thus
will only need n/ logn symbols as the output of q(s)). The
following lemma formalizes the properties of the encoding

4I.e., the distinguisher is non-uniform and does not get ora-
cle access to OX,Y .

we will use. As with the Hadamard Code, the code we will
use will satisfy both the role of extracting Df (y)−O(logn)
truly random bits via the Leftover Hash Lemma and the
role of extracting O(logn) pseudorandom bits similarly to a
hardcore function.

Lemma 4.4. There exists an NC1 algorithm Enc such
that on input s ∈ {0, 1}n, the algorithm Enc produces
t = poly(n) symbols Enc(s)1,Enc(s)2, . . . ,Enc(s)t with each
Enc(s)i ∈ {0, 1}` for ` = dlogne and such that the following
properties hold:

Almost 2-Universal: For every two distinct n-bit strings
s 6= s′ it holds that

Pr
i∈[t]

[Enc(s)i = Enc(s′)i] ≤ 2−` · (1 + 1/(2n5)).

List Decoding: There exists a polynomial-time algorithm
Dec that on input 1n and given oracle access to a
function Ã : [t] × {0, 1}` → {0, 1}, outputs a list
of poly(n) strings that includes every s ∈ {0, 1}n

satisfying the following: Pr
i
R←[t]

[Ã(i,Enc(s)i) = 1] −

Pr
i
R←[t],z

R←{0,1}`
[Ã(i, z) = 1]] > 1/5n2.

Note that the oracle Ã has a domain of size t · 2` = poly(n),
so Dec has enough time to query it on all inputs (i.e. “local
decoding” is not needed).

Proof. Enc can be taken to be the concatenation of a
Reed-Solomon Code (over a field of size a sufficiently large
polynomial in n) and the Hadamard Code over GF(2`). The
almost-universality property follows from a standard argu-
ment: the probability that Enc(s) = Enc(s′) is bounded by
the probability that a random symbol of two distinct Reed-
Solomon codewords agree plus the probability that a ran-
dom symbol in two distinct Hadamard codewords agree. By
making the field of the Reed-Solomon encoding sufficiently
larger than 2` (but still poly(n)) we get the desired property.
The list-decoding property follows from the list-decoding al-
gorithm of Sudan [23] for the Reed–Solomon code, combined
with brute-force decoding of the Hadamard code. 2

Construction 4.5. Let n, Enc, t and ` be as in
Lemma 4.4. The description of a random hash function
q ∈ Qn is composed of dn/`e random indices i1, . . . , idn/`e ∈
[t]. On input s define q(s) to be the first n bits of
Enc(s)i1 . . .Enc(s)idn/`e .

Lemma 4.6. Let n be a security parameter, Q be as in
Construction 4.5, let Gnb be the oracle-aided algorithm for
Construction 4.2 (with respect to Q), and let f : {0, 1}n →
{0, 1}n be a (T, ε) one-way function, for T = T (n) ≥ n, ε =
ε(n). Then there exists a constant c > 0 such that

n−1∑
i=0

Pr[P (f(S), Q,Q(S)1, . . . , Q(S)i) 6= Q(S)i+1]

≥ n−H(f(S)) + log(1/ε)− c logn

2
,

even when P is allowed to run in time T/nc, where S and Q
are uniformly distributed over {0, 1}n and Qn respectively.

Note that above (and below) Q(S)1, . . . , Q(S)i+1 refer to
individual bits of Q(S), not `-bit blocks.

We omit the proof from this version.
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4.2 Proving Next-block Pseudoentropy via
Hardcore Lemma

Lemma 4.6 shows that the output of Gnb (after f(S) and
Q) satisfies a weak next-bit unpredictability. In this section
we use Holenstein’s “Uniform Hardcore Lemma” of Holen-
stein [14, 15, 16] (the uniform variant of the Impagliazzo
[17] Hardcore Lemma), to translate this weak next-bit un-
predictability into next-bit pseudoentropy, thereby proving
Theorem 4.1. We begin with a statement of the the Hardcore
Lemma. This translates weak unpredictability (of a single
bit) into strong unpredictability on a noticeable fraction of
inputs.

Proposition 4.7. Let n be a security parameter, and let
` = `(n), h : {0, 1}n 7→ {0, 1}`, V : {0, 1}n 7→ {0, 1}, δ =

δ(n) ∈ (0, 1) > 1/poly(n), and γ = γ(n) ∈ (0, 1) > 2−n/3

all be poly(n)-time computable functions. Assume that

Pr[M(h(Un)) = V (Un)] ≤ 1− δ/2

for every probabilistic algorithm M running in time T =
T (n) and large enough n. Then there is a polynomial p
such that for every oracle-aided predictor P running in time
T ′ = T/p(n, 1/γ) and all sufficiently large n, there exists a
set L ⊆ {0, 1}n of density at least δ such that

Pr
W

R←L
[PχL(h(W )) = V (W )] < (1 + γ)/2,

where χL is the characteristic function of L, provided that
all the queries of P to χL are computed independently of the
input h(W ).

We now reinterpret Holenstein’s Hardcore Lemma in
terms of conditional pseudoentropy, similarly to the rein-
terpretation of Impagliazzo’s Hardcore Lemma in [24].

Proposition 4.8. Let n be a security parameter, and let
` = `(n), δ = δ(n) ∈ (0, 1) > 1/ poly(n), and γ = γ(n) ∈
(0, 1) > 2−n/3 all be poly(n)-time computable functions, and
let (A,B) be a poly-time samplable distribution on {0, 1}` ×
{0, 1} such that

Pr[M(A) = B] ≤ 1− δ/2

for every probabilistic algorithm M running in time T =
T (n) and large enough n. Then there is a polynomial p
such that for every oracle-aided distinguisher D running in
time T ′ = T/p(n, 1/γ) and all sufficiently large n, there is a
random variable C, jointly distributed with A, such that:

1. H(C|A) ≥ δ.

2. Pr[DOA,B,C (A,B) = 1]− Pr[DOA,B,C (A,C) = 1] ≤ γ.

Proof. Let (h, V ) : {0, 1}n → {0, 1}`×{0, 1} be the poly-
time sampling algorithms for (A,B), i.e. (h(Un), V (Un)) =
(A,B). (By renaming the security parameter n, we may as-
sume that the sampling algorithms use n coin tosses.) Thus
we may apply Proposition 4.7 to the pair (h, V ). For any
given subset L ⊆ {0, 1}n of density δ, we define a probabilis-
tic function VL : {0, 1}n → {0, 1}, where

VL(r) =

{
V (r) if r /∈ L
a random bit if r ∈ L.

From this we get a random variable CL jointly distributed
with A, defined by (A,CL) = (h(Un), VL(Un)). Notice that

H(CL|A) is at least the density of L, namely δ. We will
show that taking C = CL for some L suffices. Suppose
for contradiction that we have an oracle-aided distinguisher
D running in time T ′ such that for every L of density δ,
Pr[DOA,B,CL (A,B) = 1] − Pr[DOA,B,CL (A,CL) = 1] > γ.
Since B and CL are identical when Un /∈ L, we have
Pr[DOA,B,CL (A,B) = 1|Un ∈ L] − Pr[DOA,B,CL (A,CL) =
1|Un ∈ L] > γ. Since CL is a uniformly random bit when
Un ∈ L, we can apply the standard reduction from distin-
guishing to predicting to obtain an oracle-aided predictor P ,
running in time T ′ +O(1) such that

Pr[PχL(A) = B|Un ∈ L] > (1 + γ)/2. (1)

Specifically, on input x, P generates a random bit b
R←{0, 1},

runs DOA,B,CL (x, b), outputs b if D outputs 1, and outputs
¬b if D outputs 0. P can simulate random samples from

the oracle OA,B,CL by choosing r
R←{0, 1}n and outputting

(h(r), V (r), VL(r)), which can be efficiently computed using
P ’s oracle access to χL. Equation (1) can be rewritten as:

Pr
W

R←L
[PχL(h(W )) = V (W )] > (1 + γ)/2.

This contradicts Proposition 4.7. 2

We can now use this form of the Hardcore Lemma to de-
duce Theorem 4.1 from Lemma 4.6. The proof is omitted
from this version.

5. FROM NEXT-BLOCK PSEUDOEN-
TROPY TO PSEUDORANDOM GENER-
ATORS

In this section we show how to transform a next-block
pseudoentropy generator into a pseudorandom generator.

Theorem 5.1. (Next-block pseudoentropy generator to
pseudorandom generator) Let n be a security parame-
ter, and let m = m(n), ∆ = ∆(n) ∈ [1/ poly(n), n],
and κ = κ(n) ∈ {1, . . . , n} be poly(n)-time computable.
For every polynomial-time computable, m-block generator
Gnb : {0, 1}n 7→ {0, 1}m, there exists a polynomial-time

computable generator G : {0, 1}d → {0, 1}d·(1+Ω(∆)) with
d = d(n) = O(m2 · (n/∆)3 ·κ · log2 n) such that the following
holds:

Security: Assume that Gnb has (T, ε)-next-block pseudoen-
tropy at least n + ∆, for T = T (n), ε = ε(n), then
G is a (T/ poly(n),poly(n) · (ε+ 2−κ))-pseudorandom
generator.

Complexity: G is computable in NC1 with O(d/n) oracle
calls to Gnb.

In Theorem 5.1, it may be convenient to view κ(n) as the
security parameter of the construction. In particular, when
κ(n) logarithmic in 1/ε(n) we get that (T (n), ε(n))-next-
block pseudoentropy turns into an (T (n)/poly(n),poly(n) ·
ε(n))-pseudorandom generator.

We prove Theorem 5.1 via the following sequence of re-
ductions:

1. In Section 5.1 we show how to get a better handle
on the output distribution of the Gnb — specifically,
we apply a generic transformation on Gnb, to get a
generator for which the (conditional) pseudoentropy of
each of its output blocks is the same (i.e., (n+∆)/m).
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2. In Section 5.2 we consider a direct product of the lat-
ter next-block pseudoentropy generator, and show that
this action both increases the absolute gap between
the next-block pseudoentropy of the generator and its
real entropy (i.e., its input length), and transforms its
next-block pseudoentropy into next-block pseudo-min-
entropy.

3. In Section 5.3 we show to extract pseudorandomness
from the output of the latter type of generators.

4. In Section 5.4 we put the above parts together to prove
Theorem 5.1.

To simplify notations, we prove the first three steps with
respect to arbitrary next-block pseudoentropy distributions.
Given a distribution X over Um, a set of distributions
Y = {Yi}i∈[m] over U , and an oracle-aided algorithm D(·),

we let δDX,Y := E
i
R←[m(n)]

[
δDX,Y,i := Pr[DOX,Y (X1, . . . , Xi) =

1]−Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]
]
, where OX,Y (i) sam-

ples according to the joint distribution (X,Yi) (see Defini-
tion 3.1). Finally, in all of the following claims we assume
the description of the “universe” U is polynomial in n.

5.1 Entropy Equalization
In this section we show to manipulate a given distribution

to gain a better characterization of its next-block pseudoen-
tropy, without losing“too much”pseudoentropy. The follow-
ing transformation is closely related to a similar reduction
from [8]. The idea is the following: consider an m-block ran-
dom variable X over Um with next-block pseudoentropy k.
Now generate m · ` blocks by concatenating ` independent
copies one after the other. Finally, for a random j ∈ [m],
erase the first j blocks and the last m − j blocks. We now

have a new variable X̃ with m · (`− 1) blocks and for every

location i the block in the ith location of X̃ is a block of
X in a random location. It is not hard to prove (as we do
below) that the next-block pseudoentropy of each block is

at least k/m. On the other hand, the real entropy of X̃ is at
most ` times that of X. Taking large enough ` we get that
the (relative) difference between next-block pseudoentropy
and real entropy has not significantly decreased.

For j ∈ [m] and z(1), . . . , z(`) ∈ Um, we let

Eq(j, z(1), . . . , z(`)) := (z
(1)
j , . . . , z

(1)
m , . . . , z

(`)
1 , . . . , z

(`)
j−1).

Claim 5.2. Let n be a security parameter, and let m =
m(n) = poly(n) and ` = `(n) = poly(n) be poly(n)-
time computable integer functions, where `(n) > 1. Let
X be random variable over Um with (T, ε)-next-block pseu-
doentropy at least k, for T = T (n), ε = ε(n) and k =

k(n). Let J be uniformly distributed over [m] and let X̃ =

Eq(J,X(1), . . . , X(`)), where the X(i)’s are iid copies of X.

Then X̃ has (T −O(` ·m · log |U|), 2`ε) next-block pseudoen-
tropy at least k/m.

Proof. Let m′ = (` − 1) ·m and let Y = {Y1, . . . , Ym}
be a set of random variable jointly distributed with X. In
the following we think of Y as a single random variable
Y = (Y1, . . . , Ym) jointly distributed with X, though we only

sample a single entry Yi per instance of Y . Let Y (1), . . . , Y (`)

be iid copies of Y and let Ỹ = Eq(J, Y (1), . . . , Y (`)) be jointly

distributed with X̃ in the natural way —- J takes the same

value as in X̃, and for every j ∈ [`], Y (j) is jointly distributed

with X(j) according to the joint distribution (X,Y ). Notice

that Ỹi = YJ+i−1 mod m (where we define m mod m to equal
m rather than 0), and that J+ i−1 is uniformly distributed
in [m].

Thus, for every i ∈ [m′] we have that

H(Ỹi | X̃1,...,i−1) (2)

≥ H(YJ+i−1 mod m|X1, . . . , X(J+i−1 mod m)−1)

= E
i′

R←[m]

[H(Yi′ | X1, . . . , Xi′−1)].

Let D̃ be an adversary the violates the next-block pseu-

doentropy of X̃. We define D for breaking the next-block
pseudoentropy of X as follows: on input (x1, . . . , xi−1, z),
D generates a random sample x′ = (x′1, . . . , x

′
m′) from

X̃ (using OX,Y ). It then selects i′ ∈ [m′] uniformly
at random such that i′ = j + i − 1 mod m, where j
is the value of J in the generation of x′, and returns

D̃
O

X̃,Ỹ (x′1, . . . , x
′
i′−i, x1, . . . , xi−1, z), while answering D̃’s

queries to OX̃,Ỹ using OX,Y .
We note that D makes at most 2` times more oracle

queries than D̃, and that D can be implemented in the

running time of D̃ plus O(` ·m · log |U|).
For every Y as above with

∑
i∈[m] H(Yi | X1,...,i−1) ≥ k,

Equation (2) yields that Ỹ is a random variable that D̃

should be able to next-block distinguish from X̃. Since the

query to D̃ done by D is distributed identically to a random

challenge to D̃ with respect to the joint distribution (X̃, Ỹ ),
it follows that

δD̃
X̃,Ỹ

= δDX,Y ≤ L · ε = L̃ · (2`ε),

where L and L̃ are the number of oracle calls made by D and

D̃, respectively. This is contradiction to the assumption
about the next-block pseudoentropy of X. 2

5.2 Next-block Pseudoentropy Converts to
Pseudo-Min-Entropy

In this section we show how to transform next-
block (Shannon) pseudoentropy to next-block pseudo-min-
entropy, while increasing the overall entropy gap. The trans-
formation of X is simply a t-fold parallel repetition of X
(i.e., every block of the new random variable Xt is com-
posed of t corresponding blocks of t independent copies of
X). This generalizes an analogous transformation that was
used by H̊astad et al. [13] in the context of standard (i.e.
single-block) pseudoentropy.

Given an m-block random variable V taking val-
ues in Um and an integer t > 0, we let V t =

((V
(1)
1 , . . . , V

(t)
1 ), . . . , (V

(1)
m , . . . , V

(t)
m )) ∈ (U t)m, where V (i)

for every i ∈ [t] is an independent copy of V .

Claim 5.3. Let n be a security parameter, and m =
m(n) = poly(n), t = t(n) = poly(n), be poly(n)-time com-
putable functions, and let X be a random variable over Um
where every block of X has (T, ε) next-block pseudoentropy
α, for T = T (n), ε = ε(n), α = α(n). Then for every
κ = κ(n) > 0 it holds that every block of Xt has (T ′, ε′)
next-block pseudo-min-entropy α′, where

• T ′ = T ′(n) = T −O(m · t · log |U|).

• ε′ = ε′(n) = 2 · t2 · (ε + 2−κ + 2−c·t) for a universal
constant c > 0, and
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• α′ = α′(n) = t · α − Γ(t, κ, |U|), for Γ(t, κ, |U|) ∈
O(
√
t · κ · log(|U| · t)).

Notice that the t · α term is the largest we could hope for
the pseudoentropy — getting α bits of pseudoentropy per
copy. However, since we wish to move from a pseudo-form
of Shannon entropy (measuring randomness on average) to
a pseudo-form of min-entropy (measuring randomness with
high probability), we may have a deviation that grows like√
t. By taking t large enough, this deviation becomes in-

significant.
In more detail, consider the case that X has next-block

pseudoentropy α with polynomial security, i.e. T and
1/ε can be taken to be arbitrarily large polynomials in
n, and we would like to deduce that Xt has next-block
min-pseudoentropy α′ with polynomial security. More-
over, assume U = {0, 1}. Then we should take κ and t
to be an arbitrarily large multiples of log n, and we have
α′ = t · (α − O(

√
(logn)/t) · log t). So if we would like

to have pseudo-min-entropy at least t · (α − δ), we should
take t to be polylog(n)/δ2. In our application, we have

δ = Θ(∆/n) = Θ(logn/n), so we take t = Õ(n2) copies.
We omit the proof from this version.

5.3 Next-block Pseudo-Min-Entropy to Pseu-
dorandomness

For our final step, we assume that X is such that each of
the m blocks of X has large next-block pseudo-min-entropy
α. Using a two-universal independent hash function S, we
extract almost all its pseudo-min-entropy of each block indi-
vidually. The result is a sufficiently long pseudorandom bit
sequence. This is a computational analogue of block-source
extraction in the literature on randomness extractors [2, 28].

Claim 5.4. (from next-block pseudo-min-entropy to pseu-
dorandomness) Let n be a security parameter, m = m(n) =
poly(n), t = t(n) = poly(n), α = α(n) ∈ [t(n)] and
κ = κ(n) ∈ [α(n)] be poly(n)-time computable integer func-
tions. There exists an efficient procedure Ext ∈ NC1 that
on input x ∈ ({0, 1}t)m and s ∈ {0, 1}t, outputs a string
y ∈ ({0, 1}α−κ)m such that the following holds.

Let X be a random variable over ({0, 1}t)m such that ev-
ery block of X has (T, ε) next-block pseudo-min-entropy α,
for T = T (n) and ε = ε(n), then Ext(X,Ut) is (T − m ·
poly(t),m · ε+ 2−κ/2) pseudorandom.

Proof. Let Ext(x, s) := (s(x1), . . . , s(xm)), where s
is interpreted as a member of a family of two-universal
hash functions from t bits to α− κ bits in NC1 (such as
s(x) := s · x over GF (2t) truncated to α− κ bits). Let
DPRG be an adversary that violates the pseudorandomness
of Ext(X,Ut), and let δPRG be its distinguishing advan-
tage. We define D for breaking the next-block pseudoen-
tropy of X as follows: on input (x1, . . . , xi−1, z), D returns
DPRG(s(x1), . . . , s(xi−1), s(z), U(α−κ)·(m−i)), where s is uni-
formly chosen from {0, 1}t.

We note that D makes no oracle calls (and thus we count
its query complexity as one), and that its running-time is at
most that of DPRG plus m · poly(t).

Let Z [i](W ) := (S(X1), . . . , S(Xi−1), S(W ), U(α−κ)·(m−i)),
for a uniformly distributed hash function S and let
Y = {Y1, . . . , Ym} be a set of random variable over U
jointly distributed with X, with H∞(Yi | x1,...,i−1) ≥ α
for every x ∈ Supp(X) and i ∈ [m]. The Leftover Hash

Lemma [19, 18] can be shown to yield that δDX,Y ≥ ε (further
details are omitted from this version). This contradicts the
assumption about the next-block pseudoentropy of X. 2

5.4 Putting It Together
The proof of Theorem 5.1 follows the three steps given

by the three previous subsection (entropy equalization, ob-
taining pseudo-min-entropy and finally obtaining pseudo-
randomness). We omit the proof from this version.

6. PUTTING IT TOGETHER
We are now ready to prove the main result of the paper.

Theorem 6.1. (Pseudorandom generator from one-way
functions) Let n be a security parameter and f : {0, 1}n 7→
{0, 1}n a polynomial-time computable function. For all
poly(n)-time computable functions ε = ε(n) ≤ 1/nc (where
c is a universal constant) and κ = κ(n) ∈ [n/4], there
exists an efficient generator G from strings of length d =
d(n) = O(n4 · κ · log2 n/ log3(1/ε) to strings of length
d · (1 + Ω(log(1/ε)/n), such that the following holds:

Security: Assume that f is a (T, ε) one-way function for
T = T (n), ε = ε(n), and let ε′ = ε′(n) ≥ 2−κ be
an poly(n)-time computable function, then G is a (T ·
(ε′/n)O(1), ε′ · poly(n))-pseudorandom generator.

Complexity: G is computable in NC1 with O(d/n) oracle
calls to f .

We omit the proof from this version. The above theorem
yields the following important corollaries.

Corollary 6.2. (Pseudorandom generator from one-
way functions — polynomial security case) Let n be a se-
curity parameter f : {0, 1}n 7→ {0, 1}n be a one-way func-
tion, then there exists a pseudorandom generator G from
strings of length d = d(n) ∈ Õ(n4) to strings of length
d · (1 + Ω((logn)/n)).
G is computable in NC1 with O(d/n) oracle calls to f .

Proof. Applying Theorem 6.1 on f , ε = 1/nc and
κ = log2 n, we get an efficient generator G of the stated
input and output lengths. Assume now that G is not a
pseudorandom generater. Namely, there exists p ∈ poly
such that G is not (p(n), 1/p(n)) pseudorandom. There-

fore, G is not (T · (ε′/n)O(1), ε′ ·poly(n))-pseudorandom, for
ε′ := 1/p(n) · poly(n) > 2−κ and T = poly(n) · p(n). It
follows that f is not (T, ε)-one-way, in contradiction. 2

Corollary 6.3. (Pseudorandom generator from
one-way functions —exponential hardness case) Let

f : {0, 1}n 7→ {0, 1}n be a (2Ω(n), 2−Ω(n))-one-way function,
then

1. There exists a (2Ω(n), 2−Ω(log2 n))-pseudorandom gen-

erator G from strings of length d = d(n) ∈ Õ(n) to
strings of length d · (1 + Ω(1)), and

2. There exists a (2Ω(n), 2−Ω(n))-pseudorandom generator

G from strings of length d(n) ∈ Õ(n2) to strings of
length d · (1 + Ω(1)),

G is computable in NC1 with O(d(n)/n) oracle calls to f .

Proof. Immediate from Theorem 6.1, taking κ = log2(n)
and κ ∈ Ω(n) in the first and second cases respectively, and
ε′ = 2−κ. 2

445



Acknowledgments
We thank Benny Applebaum, Oded Goldreich, Thomas
Holenstein, and Emanuele Viola for very helpful conversa-
tions.

References
[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptog-

raphy in NC0. SIAM Journal on Computing, 36, 2006.

[2] B. Chor and O. Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication
complexity. SIAM J. Comput., 17(2):230–261, Apr.
1988.

[3] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge
proofs of identity. Journal of Cryptology, 1(2):77–94,
1988.

[4] O. Goldreich and L. A. Levin. A hard-core predicate for
all one-way functions. In Proceedings of the 21st Annual
ACM Symposium on Theory of Computing (STOC),
pages 25–32, 1989.

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. Journal of the ACM, 33
(4):792–807, 1986.

[6] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity or all languages
in NP have zero-knowledge proof systems. Journal of
the ACM, 38(1):691–729, 1991. Preliminary version in
FOCS’86.

[7] O. Goldreich, H. Krawczyk, and M. Luby. On the ex-
istence of pseudorandom generators. SIAM Journal on
Computing, 22(6):1163–1175, 1993.

[8] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. In-
accessible entropy. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC).

[9] I. Haitner, D. Harnik, and O. Reingold. On the power
of the randomized iterate. In Advances in Cryptology –
CRYPTO 2006, 2006.

[10] I. Haitner, D. Harnik, and O. Reingold. Efficient pseu-
dorandom generators from exponentially hard one-way
functions. In Automata, Languages and Programming,
24th International Colloquium, ICALP, 2006.

[11] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and
S. Vadhan. Statistically hiding commitments and statis-
tical zero-knowledge arguments from any one-way func-
tion. SIAM Journal on Computing, 39(3):1153–1218,
2009.

[12] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. In-
accessible entropy. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC ‘09),
pages 611–620, 31 May–2 June 2009.

[13] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby.
A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396, 1999.
Preliminary versions in STOC’89 and STOC’90.

[14] T. Holenstein. Key agreement from weak bit agreement.
In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 664–673, 2005.

[15] T. Holenstein. Pseudorandom generators from one-way
functions: A simple construction for any hardness. In
Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, 2006.

[16] T. Holenstein. Strengthening key agreement using hard-
core sets - PhD thesis, 2006.

[17] R. Impagliazzo. A personal view of average-case com-
plexity. In Proceedings of the Tenth Annual Structure
in Complexity Theory Conference, pages 134–147. IEEE
Computer Society, 1995.

[18] R. Impagliazzo and D. Zuckerman. How to recycle ran-
dom bits. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science (FOCS), pages
248–253, 1989.

[19] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-
random generation from one-way functions. In Proceed-
ings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pages 12–24. ACM Press, 1989.

[20] M. Luby and C. Rackoff. How to construct pseudo-
random permutations from pseudorandom functions.
SIAM Journal on Computing, 17(2):373–386, 1988.

[21] M. Naor. Bit commitment using pseudorandomness.
Journal of Cryptology, 4(2):151–158, 1991. Preliminary
version in CRYPTO’89.

[22] A. A. Razborov and S. Rudich. Natural proofs. Journal
of Computer and System Sciences, 55(1):24–35, Aug.
1997.

[23] M. Sudan. Decoding of Reed-Solomon codes beyond the
error correction bound. J. of Complexity, 13:180–193,
1997.

[24] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom
generators without the XOR lemma. Journal of Com-
puter and System Sciences, 62:236–266, 2001.

[25] S. P. Vadhan. Constructing locally computable extrac-
tors and cryptosystems in the bounded-storage model.
Journal of Cryptology, 17(1):43–77, January 2004.

[26] L. G. Valiant. A theory of the learnable. Communica-
tions of the ACM, 27(11):1134–1142, 1984.

[27] A. C. Yao. Protocols for secure computations. pages
160–164, 1982.

[28] D. Zuckerman. Simulating BPP using a general
weak random source. Algorithmica, 16(4/5):367–391,
Oct./Nov. 1996.

446


