
1

Parallel Simulation of AGVs in Container Port Operations

Rong YE Voon-Yee VEE Wen-Jing HSU Sneha SHAH
Center for Advanced Information System (CAIS)

School of Applied Science
Nanyang Technological University

Singapore 639798
{P146859245, PA3112812, HSU, SA0750578}@ntu.edu.sg

Abstract
We describe parallel simulations of an Automated

Guided Vehicle (AGV) system for the container handling
at a port. The AGV system is modelled with a time-driven
approach and executed on efficient simulation engines
implemented by using Cilk, a multi-threaded parallel
programming language developed at MIT. The speedup
results of the AGV simulation over sequential versions are
documented. We also present congestion control schemes
of our AGV routing system.

1. Introduction

The businesses associated with the container ports and
shipping industries amount to billions of dollars every
year. Clearly, the container handling is an important
business and it is therefore very important to promote the
efficiency of the container handling process. However,
with hundreds of pieces of equipment and numerous
handling steps, a container port is a very complex system.
To achieve a high efficiency, many aspects of operations
must be optimized simultaneously to remove any
bottlenecks. To manage the complexities of the processes,
however, we will divide the container operations into the
following aspects:

• Quayside operations: This includes the unloading
process and the reversed loading process. For the
unloading process, it involves the scheduling of vessels to
the quayside; sequencing of the containers to be unloaded
and the handling of the containers onto the vehicles.

• Transfer operations: It involves the dispatching,
scheduling and routing of vehicles, the traffic rules for
congestion controls, deadlock detection/resolution
schemes, etc.

• Stacking operations: This involves the decision of
stacking location, the sequencing of movement at the
locations, e.g., the sequence to stack or un-stack a
sequence of containers.

In this paper, we will concentrate on the second aspect
of the container operations. Even so, the simulation of this
aspect with high level of details still requires large
amount of time with the sequential computers, and
parallel computers are naturally acknowledged as the
most promising solution to alleviate this problem.
Nevertheless, the parallel hardware, by itself, will not
allow us to automatically solve the problem. We still need
commensurably competent parallel software to fully
exploit the potentials of parallel computers.

Because of its apparent importance, there has been
much active research in parallel simulations. However, to
date, there has not been a commercially available parallel
simulation engine that offers reliable simulation
performance. Therefore, to facilitate the simulations of
port scenarios, our project not only aims to develop an
AGV simulation application, but also aims to build a
parallel simulation engine that could offer a certain degree
of performance assurance.

Organization of paper

• Section 2 briefly introduces two versions of our
parallel simulation engine, i.e. the event-driven version
and the time-driven version.

• Section 3 describes an approach for modeling the
AGV simulation system based on the time-driven
simulation engines and discusses the performance results.

• Section 4 presents our partly decentralized traffic
control scheme and AGV routing algorithm for reducing
and resolving deadlocks in the AGV running system.

• Section 5 summaries our findings and briefly
discusses possible future work.

2. Parallel simulation engine

Our simulation engine is developed by using an
algorithmic, multi-threaded parallel language, Cilk [1,9,
12, 13]. The Cilk model is able to provide the
programmer an algorithmic model of performance

2

guarantee [1, 2, 3, 8]. In particular, it guarantees a near-
linear speedup for programs written following the Cilk
programming paradigm. The readers are referred to the
literature for the features of Cilk.

A simulation model can be viewed as a representation
of the physical system under simulation. It can be
classified into the continuous-state model and the
discrete-state model [5]. The discrete-state simulation
models can further be classified into time-driven
simulation and event-driven simulation according to how
the simulation time advances:

• In the time-driven discrete simulation (sometimes
also referred to as the unit time approach), the simulation
time is incremented by a constant time step ∆. Thus a
simulation comprises a number of cycles where all model
objects synchronize at the transition of cycles. In this
algorithm, the n-th cycle corresponds to the n-th time step
of the simulation. Within each cycle, the states of all
components during the time interval will be simulated.

• In the event-driven approach, the increment of
simulation time is triggered by the next earliest occurring
event. The algorithm we adopted here comprises a
number of cycles where all LPs synchronize at the
transition of cycles. The safetime algorithm [see, e.g.
7,10] is used to determine the events that may be
processed within each iteration. Because all the events
processed within each cycle are guaranteed to be safe, the
algorithm is based on a synchronous conservative method.
The reader is referred to [7,10] for detailed descriptions of
the safetime computation.

Both algorithms are synchronous in the sense that they
comprise a number of cycles where all processors
synchronize at the transition of cycles.

Because of their negligence of the cache effects and
the significant overheads in context switching, the
existing algorithms have not been very successful in
delivering good speedups. It needs extensive knowledge
to fine-tune parallel simulation programs. In our engine,
we employed the following innovative and original
techniques [15,16,17, 18].

• Better utilization of memory hierarchy

We designed and implemented a load balancing
mechanism that is cache-aware with minimal
overhead. The key observation is: when one
processor has just processed a simulation object (a
logical process, or LP), most information related to
the LP will still be cached by this processor. By
ensuring that an LP often be processed by the same
processor, our cache-aware load-balancing
mechanism exploits both spatial and temporal
localities and makes better use of the memory
hierarchy (esp. primary and secondary caches).

• Better load balancing mechanism

We have designed a number of load-balancing
schemes that rely on the following ideas (refer to [15]
for detailed descriptions):

• Select victims systematically from neighbors
• Teach other thieves to select victims more smartly
• Use preprocessing techniques to speed up

selection
• Allow fully concurrent victim selections (zero

lock contention)

• Minimize context switching overhead with
persistent Cilk threads

Instead of spawning one Cilk thread to simulate an
LP within each step, we spawn one Cilk thread for
each processor throughout the entire run of simulation
and replace context switching with processor
synchronization. We refer to the Cilk threads thus
created as persistent Cilk threads. They are persistent
as they are spawned at the beginning of a Cilk
execution, and they are not returned (and thus
‘persistent’) until the end of the execution of the entire
program. The use of persistent Cilk threads in Cilk
programs appears to be an innovation because it is a
reversal of the well-advocated spawn-and-synchronize
paradigm where ephemeral child/slave threads are
spawned to concurrently carry out the bulk of work.
This change indeed demonstrated impressive speedups
in our system.
With these innovations, we built up a rather powerful

parallel simulation engine called “Silk”, meaning
“Simulation by using Cilk”. With it, we can model our
AGV simulation system on parallel SMP computers.

3. Modelling AGV simulation system

Docked
Ship

Berth

Stack
Areas

AGV

Junction

Figure 3.1 Simulation Port Layout

3

Fig 3.1 shows the layout in our system. Vessels will
arrive at the upper side to load or discharge containers,
while the AGVs (represented as small blobs) transfer the
containers in between the quayside and the stacking
yards.

Firstly, we developed a system based on an event-
driven simulation engine. However the event-driven
approach did not achieve obvious speedups. In fact, in
some cases, we got speed-downs instead. The reason is
that the event-driven simulation engine is more suitable
for dealing with highly asychronous scenarios. Therefore,
for our AGV system, which does not correspond exactly
to such a scenario, we developed a more efficient time-
driven version.

3.1 Time-driven version

In the time-driven discrete simulation, the simulation
model is decomposed into a number of submodels or
components (in space domain). Each component is
assigned a logical process (LP), where several LPs may
be run on the same processor.

A time-driven discrete simulation progresses in a
stepped fashion. A constant size of the time step ¨ is
chosen to advance the simulation. In the 1st time step, the
behavior of each component within the time interval [0,
¨] will be simulated; in general, the behavior of each
component within the time interval [(n – 1)�¨, n ̈] will
be simulated in the n-th step. The time step ¨ is largely
application specific and is properly chosen here to be a
small quantity. Maintaining the accuracy of the simulation
generally requires a smaller ̈, while running the
simulation efficiently requires a larger value of ¨.

In this AGV simulation system, the tracks on which
the AGVs travel are partitioned into a number of tiles.
The size of the “tiles” corresponds to the range of sensors
attached to the AGV in the real-life scenario. Only one
AGV can occupy a tile at any instant of time.

In this version:
• each AGV corresponds to an LP; and
• the set of tiles is a shared resource accessible by all

AGVs.
Within each time step, an AGV (i.e., an LP) locates the

adjacent tile it will move to and attempts to move into the
tile. Conflicts arising from more than one AGV
attempting to move into the same tile are resolved by
enforcing exclusive access to the tile resource. Figure 3.2
illustrates the actions taken by each AGV within each
time step.

3.2 Results and discussion

Fig. 3.3 shows the speedups obtained using the time-
driven simulation approach with and without load
balancing. The same algorithms were run on different
numbers of processors to obtain the speedup values. To
scale beyond the limit of our 6-processor machine, this set
of experiments was carried out on a 32-processor SGI
Origin 2000. This parallel computer, however, is a
heavily shared system, which has caused difficulty in
gathering speedup figures beyond 10 processors.

Notably, with our load-balanced time-driven approach,
we have obtained:

• a speedup of 7.34 assuming 1,000 operations per
move(using 10 processors); and

• a speedup of 4.58 assuming 100 operations per
move(using 7 processors).

We would like to note here that all the experiments
were carried out during the time the system was loaded by
more than 40 users with a workload of more than 10
processors fully-occupied.

Figure 3.3 (a)

A New Movement

Check the
tile

Yes

No

Locate the next
adjacent tile

according to a
routing scheme

Move to the
tile

Figure 3.2 Operations performed by
each AGV with time-driven discrete

simulation

4

The speedups obtained for AGV simulations by
assuming (a) 1,000 operations per move and (b) 100
operations per move respectively. The dip of performance
beyond 8 processors is caused by heavy usage of the
shared system.

4. AGV routing and traffic control schemes

By nature, AGV systems are concurrent (parallel and
distributed) system, therefore, we will also address certain
routing issues of AGVs here.

Two types of AGV routing are generally identified:
centralized AGV routing algorithm and decentralized
AGV routing algorithm [11, 14, 19].

• Centralized AGV routing algorithms
The system uses a central controller for scheduling and

routing. In this case, the AGVs do not have a map of the
routes and they just act according to the instructions of the
central controller. An AGV runs from the start point to its
destination by executing a sequence of instructions pre-
calculated by the central controller. Alternatively, AGV
receives instructions from the central controller only at
critical decision point (e.g., a junction) on which path to
take and when to stop or proceed.

• Decentralized AGV routing algorithms
In this case, the AGV has full knowledge of the routes

and is able to guide itself from the source to destination,
requiring only the entry of a destination. In such a system,
one or more simple controllers can be used to assist
controlling the traffic, preventing and resolving deadlock,
and so on.

In our AGV simulations, a decentralized routing
algorithm is evaluated for performance on a mesh layout.
In this routing algorithm, the AGV will monotonically
decrease the distance from current position to destination.
At the junction of crossroads, the AGV will always

choose to move along the vertical direction first. In other
words, it is a “Shortest Path, Row-First” algorithm.

Congestion control

Lacking global information, a decentralized routing
algorithm may lead to traffic congestion and even
deadlocks in the system. Therefore, we need auxiliary
mechanisms to help reduce congestion and resolve
deadlocks.

• Deadlock prevention
We employ a zone control technique in our system.

The zone control divides the whole topology into a set of
zones. Only a limited number of AGVs are permitted in a
given zone at a time. As a result, the traffic of a given
zone will not exceed a controlled level and the AGVs will
be distributed more evenly on the whole topology. The
probability of deadlock within the zone is therefore
greatly reduced. However, the scheme used in the zoning
and the number of vehicles within each zone are two
important control parameters in this technique. Because
junctions are the most likely place where deadlocks occur,
it is intuitive to divide the map by junctions. With our
scheme, each zone contains one junction, and the junction
is centered in each zone. The following relation is used
to determine the maximum number of AGVs per zone:

AGVNUM = ()tilezone NUMCoeff , , where

zoneCoef represents the congestion level of a given zone,

which depends on the general traffic of the junction in the

zone; tileNUM denotes the number of tiles(spaces)

within the zone.

• Deadlock resolution
Even with the zone control technique, the deadlock may
still occur at a junction. Fig. 4.1 shows a typical deadlock
where all lanes are unidirectional. In this scenario, a
deadlock occurs because AGV 1 intends to go right, while

Figure 3.3(b)

AGV 1 AGV 2

UP

RIGHTLEFT

DOWN

JUNCTION

LANE 2

LANE 1

Figure. 4.1 Deadlock
at a junction

5

AGV 2 wants to move down and AGV 3 wants left and so
on. Therefore, we need a mechanism to detect deadlocks
and resolve them. If an AGV is blocked for some reason
for more than a certain predefined number of simulation
steps, we assume that there may be a deadlock.
Consequently, we will make the AGV go along another
way which is alternative to the original direction
determined by the routing algorithm. For example, if
AGV 1 is the one who waited the longest, then after a
certain number of simulation steps, it will try to go up
instead of right. For AGV 1, perhaps the bypass is not the
shortest way to approach its destination, however, at least
the deadlock at the junction is resolved. Because each
lane in our layout is unidirectional, AGV 1 can move up
unless there is another deadlock at the upper junction and
Lane 1 is filled with AGVs all lined up. There are at least
two ways to solve this problem. One is that if one of the
four AGVs can move out of the current position, the
deadlock is resolved. Therefore, we can make another
AGV for example AGV 2 to bypass the junction. If, at a
junction, all of four AGVs’ alternative routes are blocked,
then deadlocks at the other junctions will have be
resolved first. Once the adjacent deadlock is resolved, this
deadlock is resolved too. Because the total number of tiles
in the overall path layout is much more than the total
number of AGVs, at any time, there must be zones that
have light traffic in the system. By using the "detouring
scheme" described earlier, the deadlocks in the adjacent
zones of these lightly-loaded zones can be resolved,
which in turn will also help resolve the deadlocks in the
other zones. Of course, it takes more rigorous arguments
to prove that the system is free from long lasting
deadlocks. This issue will be addressed specifically in
further research work.

Simulation Results Comparison and Analysis

One task is defined as one AGV picking up a box from
the ship and transferring it to the storing area or a
reversed movement. From the chart, we can see that,
when the number of AGVs is small, there is no difference
between the two schemes. But as the number of AGVs
increases, it is obvious that the scheme with traffic control
surpasses the one without traffic control. Fig. 4.3 shows
traffic control scheme greatly reduces the total blocked
steps in the system as the number of AGVs grows, which
leads to more task completions.

5. Conclusions

This project arises from the need to improve container
operations by providing the higher level of services
through efficient planning and management of port
facilities. Using efficient simulation engines that are
implemented by using Cilk, we have presented an
efficient model for the AGV simulation system. The
following are recaps of our main contributions:

(1). We have designed and implemented a successful
parallel simulation of the port operations resulting in
nontrivial speedups.

(2). We have also developed efficient AGV routing
algorithms with the help of the simulations.

This system, although still a research project and under
further developments, will be a useful basis for future
research and developments in this area. The completed
result will help the port designer and planner to evaluate
different options more comprehensively in shorter time,
and thereby provide a higher-level of service while using
resource more efficiently.

Tasks Completed (last 10000 steps)

0

1000

2000

3000

4000

60 80 100 120 140 150 160

Number of AGVs

Without Traffic Control With Traffic Control

Figure 4.2 Toal Number of Completed Tasks vs
the Number of AGVs

Total Blocked Steps (last 10000 steps)

0
100000
200000

300000

400000

500000
600000

60 80 100 120 140 150 160

Number of AGVs

Without Traffic Control With Traffic Control

Figure 4.3 Total Number of Blocked Steps vs the
Number of AGVs

6

Acknowledgment

We wish to thank Professor Charles Leisserson of MIT
for sharing the use of his Cilk parallel programming
environment. We also acknowledge the Maritime and Port
Authority of Singapore for its support in related projects.

References:

[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. Cilk: an efficient multithreaded runtime system. In
Proceedings of the 5th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 207--
216, Honolulu, Hawaii, July 1995.

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. In Proceedings of
the 35th Annual Symposium on Foundations of Computer
Science (FOCS), pages 356--368, Santa Fe, New Mexico,
November 20--22, 1994.

[3] Robert D. Blumofe. Executing Multithreaded Programs
Efficiently. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
September 1995.

[4] James A. Chisman. Introduction to Simulation Modeling
Using GPSS/PC. Prentice-Hall, Englewood Cliffs, New Jersey,
1992.

[5] Alois Ferscha. Parallel and distributed simulation of discrete
event systems. In Handbook of Parallel and Distributed
Computing. McGraw-Hill, 1995.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introductions to Algorithms. MIT Press, 1990.

[7] Wentong Cai, Emmanuelle Letertre, and Stephen J. Turner.
Dag consistent parallel simulation: a predictable and robust
conservative algorithm. In Proceedings of 11th Workshop on
Parallel and Distributed Simulation (PADS'97), pages 178--181,
Lockenhaus, Austria, June 10--13, 1997.

[8] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the Cilk-5 multithreaded language. In
1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI'98), Montreal, Canada, June
17--19, 1998.

[9] Christopher F. Joerg. The Cilk System for Parallel
Multithreaded Computing. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, January 1996.

[10] Yoke-Hean Low, Chu-Cheow Lim, Boon-Ping Gan, Sanjay
Jain, Wentong Cai, Wen Jing Hsu, Shell Ying Huang and
Stephen J. Turner, "Conservative Parallel Simulation for
Manufacturing of Manufacturing System", 8th International

Parallel Computing Workshop (PCW'98), pp. 293 - 300.
September 7 – 8, 1998, Singapore.

[11] Jeong-Hoon Lee, Bum Hee Lee, Myoung Hwan Choi, Jung
Duk Kim, Kwang-Taek Joo and Hyon Park, “A Real Time
Traffic Control Scheme for a Multiple AGV System”, IEEE
International Conference on Robotics and Automation, 1995
IEEE

[12] MIT Laboratory for Computer Science. Cilk-5.2 Reference
Manual, July 21, 1998. Available on the Internet at
http://supertech.lcs.mit.edu/cilk/.

[13] Keith H. Randall. Cilk: Efficient Multithreaded Computing.
PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 1998.

[14] J. T. L. Soh, Wen-Jing Hsu, S. Y. Huang, and A. C. Y.
Ong. Decentralized routing algorithms for automated guided
vehicles. In Proceedings of ACM Symposium of Applied
Computing, pages 473--479, 1996.

[15] Voon-Yee Vee and Wen-Jing Hsu. Locality-perserving
mechanism for synchronous simulation algorithms. Technical
report, Centre for Advanced Information Systems, Nanyang
Technological University, Singapore, August 1999. Available
on the Internet at http://www.cais.ntu.edu.sg:8000/.

[16] Voon-Yee Vee and Wen-Jing Hsu. Parallel discrete event
simulation: a survey. Technical report, Centre for Advanced
Information Systems, Nanyang Technological University,
Singapore, August 1999. Available on the Internet at http://
www.cais.ntu.edu.sg:8000/.

[17] Voon-Yee Vee and Wen-Jing Hsu. A scalable and efficient
storage allocator on shared-memory multiprocessors. In
International Symposium on Parallel Architectures, Algorithms,
and Networks (I-SPAN'99), pages 230--235, Fremantle, Western
Australia, June 23--25, 1999.

[18] Voon-Yee Vee, Rong Ye, Shah Sneha and Wen-Jing Hsu,
Meeting Challenges of Container Port Operations in the Next
Millennium, Gold Award, SGI-IHPC CRAYQUEST’99,
Singapore, 1999.

[19] X. Yu and S. Y. Huang. A centralized routing algorithm for
agvs in container port. In Proceedings of the 4th International
Conference on Computer Integrated Manufacturing, pages 589--
600, 1997.

