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ABSTRACT 

In this paper, we propose a method for analyzing compact acoustic reproduction systems (e.g. mobile phones) 
through acoustic equivalent circuits. Measured responses of compact acoustic reproduction systems cannot be 
represented accurately by the analysis based on the conventional acoustic theory. Acoustic engineers consequently 
are obliged to design compact acoustic reproduction systems by trial and error. Moreover, the sound quality of those 
systems is likely to deteriorate due to the difficulty of such an acoustic design. We therefore clarify the cause of the 
difference between the measured response and the analysis one calculated by the finite element method (FEM) 
analysis and consider the possibility of obtaining new acoustic theorical formulae based on the analysis results in 
order to make it easier for acoustic engineers to design compact acoustic reproduction systems. 

INTRODUCTION 

Recently, the demand for small, thin acoustic reproduction 
systems (e.g. mobile phones) has been increasing. The 
acoustic structure design for mobile phones is becoming 
more and more difficult because the mobile phones are made 
smaller and more complicated. As a result, even experienced 
engineers design compact acoustic reproduction systems by 
the trial and error. The trial and error design increases cost, 
wastes time, and deteriorates the sound quality. To solve this 
problem, we proposed an automatic design technique using 
genetic algorithm (GA) for the acoustic components of 
mobile phones [1]. This system is based on the acoustic 
equivalent circuit analysis using the conventional acoustic 
formulae. However, this system is impractical because it 
cannot describe the variation of acoustic parameters related to 
the spatial relationship of acoustic holes. To solve this 
problem, we have already examined the influence of the 
spatial relationship between acoustic holes using two 
dimensional FEM analysis [2], [3]. However, the physical 
mechanism has not been clarified enough. We therefore 
analyze an actual acoustic phenomenon using three 
dimensional FEM analysis, and clarify the cause through the 
analysis results. Moreover, we discuss the possibility of new 
acoustic theorical formulae based on the analysis results. 
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Figure 1. Structure of a mobile phone. 
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CONVENTIONAL ACOUSTIC FORMULAE FOR 
ACOUSTIC HOLE AND THEIR PROBLEM Figure 2. Equivalent circuit model of Fig. 1. 

The general acoustic formulae for acoustic hole are given 
depending upon the frequency range as follows [4]: 
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Table 1. Sizes and acoustic parameters of Fig. 1. 

  Parameter 

 5R  71076.2 ×  

Diaphragm 5L  31056.3 ×  

( , , ) 5R 5L 5C 5C  121067.4 −×  

 Length 1.6 

Receiver hole Radius 1.0 

( , ) 1R 1L Number 1 

2nd front cavity ( ) 1FC Capacity 3.30 

 Length 0.3 

Front cover hole Radius 1.35 

( , ) 3R 3L Number 1 

1st front cavity ( ) 2FC Capacity 0.43 

Back cavity ( ) BC Capacity 0.56 

 Length 1.0 

Back hole Radius 0.9 

( , ) 7R 7L Number 1 
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(b) Simulated characteristic  

Figure 3. Comparison of measured frequeny responses of Fig. 
1 and the corresponding simulated frequency ones calculated 
by the conventional acoustic theory.  

Length[mm], Radius[mm], Capacity[cc]  

  

acoustic hole in meters  a  radius of holes in meters, l  
length of open-end correction in meters, 0

,
ρ  air density in 

kilogram per cubic meter, N  number of acoustic holes,  

・ fa /002.0<  

 μ  
viscosity coefficient of air in pascal･second, and S  cross 
sectional area of acoustic holes in square me  ter.
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・ faf /10/01.0 <<  Fig. 1 shows the acoustic structure of a mobile phone, 
whose sizes and acoustical equivalent circuit are shown in 
Table 1 and Fig. 2, respectively. Fig. 3 shows measured 
responses and the corresponding calculated ones obtained by 
the conventional acoustic formulae in case where the position 
of the receiver hole changes as shown in Fig. 1. From Fig. 
3(a), we can see that the level of the response becomes high 
as the position of the receiver hole moves outwardly from the 
center of the receiver plane. On the other hand, the calculated 
response shown in Fig. 3(b) cannot explain the change of 
measured responses at 2nd and 3rd resonant frequencies. 
Hence, the conventional acoustic formulae are useless to 
practical design. In the next section, we clarify the causes 
through some analyses by FEM analysis.  
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ACOUSTICAL PHENOMENON ANALYSIS 
USING FINITE ELEMENT METHOD  

222111 , LjRZLjRZ ωω +=+=                     (5) Fig. 4 shows the structure of a mobile phone, whose sizes 
and acoustical equivalent circuit are shown in Table 2 and 
Fig. 5, respectively. We analyze the acoustic phenomenon of 
this structure by the finite element mothod (FEM), especially, 
including acoustic impedance analysis. 

where , and  is acoustic impedance of acoustic hole 
in pascal･second per cubic meter, 

1Z 2Z 3Z
R acoustic resistance of 

acoustic hole in pascal･second per cubic meter, L acoustic 
mass in pascal･square second per cubic meter.  length of   h
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Figure 4. Prototype of a mobile phone. 
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Figure 5. Equivalent circuite model of Fig. 4. 

 

 

In this simulation, the model shown in Fig. 6 is used. The 
boundary condition on the inside wall is set as the particle 
velocity is equal to 0. Additionally, the boundary condition 
on the output edge is set as the sound pressure is equal to 0. 
The simulation conditions are shown in Table 3. 

Input signal 

In this simulation, the virtual plane sound source in Fig. 6 
is driven by an input signal (particle velocity)  which 
is a gaussian pulse as follows [5]: 

)(tuvps

( ){ 229.0/
0)( TTtn

vps eAtu −Δ−= }

 Fig. 7 shows the dynamics of gaussian pulse used for the 
analysis, whose parameters and electric power spectrum are 
shown in Table 4 and Fig. 8, respectively. 

Parameter 

                      (6) 

Table 2. Sizes and acoustic parameters of Fig. 4. 

  

 dR  61014.8 ×  

Diaphragm (HDR9310) dL  31091.8 ×  

( dR , dL , dC ) dC  11002.4 −×  2

 Length 1.0 

R ei r ho e ec ve l Radi  1.0 us

( 2R , 2L ) Number 1 

1st front cavity ( C1 ) Capacity 0.18 

 Length 1.0 

Front cover hole Radius 1.0 

( 3R , 3L ) Number 1 

2nd front cavity ( 2C ) Capacity 364 −π  10×h

Length[mm], Radius[mm] y[cc] 

imu itions. 
Type of fluid Air (incompressible) 

, Capacit

Table 3. S lation cond

Spe
Temp  

V

cific heat ratio 1.4 
erature 20℃
ity of air 18.2E-6Piscos a・s 

 (a) Model 1 (The entire structure)

2nd cavity HoleReceiver hole

Cross section 1 1st Front cavity

2nd Front cavity

Front cover hole

h[mm]

5[mm]

(Virtual plane sound source)
Cross section 2

(Virtual plane sound source)

(b) Model 2 (Only the hole)  

Figure 6. Model of simulation with FEM analysis. 

 

Acoustic impedance analysis 

The sound pressure in the structure is caused by the 
particle velocity at the virtual plane sound source in Fig. 6. 

 at the virtual plane 
so

 

At that time, the sound pressure vpsp

lcula

und source is calculated by the FEM analysis and the 
acoustic impedance vpsZ  of the output edge side to the 
virtual plane sound source can be ca ted by 

whereΔt is sampling period, n integer, t (t=Δtn) time, A0 
amplitude, and T is determined according to the frequency f0 
at which the electric power spectrum of the gaussian pulse 
decreases by 3dB as follows: 

0/646.0 fT =                                     (7) )(
)(

)
ω

ω

vps

vps
vp US

P
Z

⋅
= ,                          (8) (ωs

where  is the area of the virtual plane sound source. S
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Table 4. Parameters of gaussian pulse. 
A0 1.0E-5 

1st Front cavity

 
Zcs1

2nd Front cavity

Cross section 1
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Δt 1.0E-5sec 
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Figure 9. Equivalent circuit model of Model 1. 
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Figure 7. Dynamics of gaussian pulse. 
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Figure 10. Measured frequency characteristics in case where 
the position of the receiver hole changes (SPL). 

 

Therefore, can be estimate  from real part and  can be 
estimated from the gradient of the reactance to the angular 
frequency. 

e n

d as follows: 

        

The parameters shown in Fig. 9 are determined b
relationship between the acoustic im
based on the equivalent circuit analysis and the FEM analysis. 
Specifically, these parameters are determined to become 

 
Figure 8. Amplitude-Frequency characteristic of gaussian 
pulse. 

 

Procedure for estimating acoustic parameters 

is simulation, acoustic impedance analyses are done 
 of structures shown in Fig. 6. To clarify how 

the acoustic parameter of the r iver hole changes according 
to the position, the acoustic parameters shown in Fig. 5 are 

c impedance at low frequencies can be 
approximated as follows: 

 the reactance to the angular 
frequency shows the sum total of the acoustic mass

. Hence, the sum total o
 es

                             (11) 

 

 2R  d  2L

To finally stimate other parameters, the equivale t circuit 
shown in Fig. 9 to Model 1 is employed. 1M  and 2M  in Fig. 
9 are define

In th
on the two kinds

ece

estimated. 

)21

2
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2
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t
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First of all, Model 1 shown in Fig. 6 is considered. From 
Fig. 5, we can see that the acoustic compliance of the cavity 
is considered to be open at low frequencies because the 
acoustic impedance of the cavity grows very much. Therefore, 
the acousti

y the 
pedance characteristics 

small most the sum total of square error of characteristics 
based on the equivalent circuit analysis and the FEM analysis 
by Maximum Likelihood Estimation (MLE). In addition, 
since the receiver hole and the front cover hole are the same 
sizes, 21 RR =  and 21 LL = . Therefore, all parameters of 
Model 1 are determined. However, it is difficult to estimate 
those parameters accurately because there are a lot of the 
combinations of the parameters to match both characteristics. 

ANALYSIS RESULTS 

Fig. 10 shows the measured frequency characteristics of a 
mobile phone shown in Fig. 4. From Fig. 10, we can see that 

)2()( 21211 βαω +++++≈ LLjRRZcs             (9) 

(Low frequency band)                  

In a word, the gradient of
tM  

f the )2( 21 βα +++= LLMt

acoustic mass tM  can be timated.  

Next, the analysis of Model 2 is described. The acoustic 
impedance 2csZ  in Model 2 is shown as follows: 

222cs LjRZ ω+=
the frequency characteristics 
the receiver hole. In this s

vary according to the position of 
ection, such a phenomenon is 

cl
  

arified based on some analysis results. 
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Figure 13. Acoustic impedance charasteristics (Model 2). 

 

Figure 11. Acoustic impedance charasteristics in case where 
the position of the receiver hole changes (Model 1). 
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Figure 12. Reactance characteristics in case where the 
position of the receiver hole changes (Model 1). 

Acoustic impedance analysis 

・Model 1 

Fig. 11 shows the acoustic impedance characteristics of  
el 1 by the FEM analysis. From Fig. 11, it can be 

front

Fig. 13 shows the acoustic impedance characteristics of 
el 3 by the FEM analysis. From Fig. 13, we can 

Fig. 14 shows acoustic impedance characteristics that use 
the estimated parameters. From Fig. 14, we can see that these 
characteristics are consistent with the characteristics obtained  

Figure 14. Acoustic impedance characteristic that uses 
estimated parameters. 

 

 

from the FEM analysis. Hence, it can be seen that the 
parameters can be estimated accurately.  

Next, Figs. 15-17 show parameters estimated by MLE. 
rom Fig. 15, it can be seen that the sum total of the acoustic 

mass increases as the position of the acoustic hole shifts 

cause a virtual tube 
is

as the e of t

to the position of the 
acoustic hole. 

 

 

1csZ  in Mod
se
ac
the h

en that the position of the receiver hole influences the 
oustical characteristics. Moreover, the influence grows as 

eight of the 2nd front cavity becomes short. The 
measured characteristics shown in Fig. 10 also have the same 
tendency. Next, Fig. 12 shows the reactance characteristics of 

1csZ . Fig. 12 shows that the resonant frequency changes 
according to the sum total of the acoustic mass, and 
influences the acoustic characteristics. The gap between the 

 cover hole and the receiver hole relates to the increase 
of the acoustic mass in the tight space. The cause is examined 
in detail in the next section. 

・Model 2 

F
t

from center to edge. Furthermore, the increase is remarkable 
as the 2nd front cavity narrows. This is be

M  

 formed by the open-end correction in the 2nd front cavity 
and the interference becomes intense as the the 2nd front 
cavity narrows. From Fig. 16, we can see that there is little 
influence of the position of the acoustic hole and these 
parameters are almost the same value as the theory ones. 
Hence, we can see that the variation of the acoustic 
characteristics according to the position of the receiver hole 
is related to the change in the acoustic mass. Next, 

1cavR and 2cavR  shown in The parameters shown in Fig. 17 
cannot be calculated by the conventional acoustic theory. 
This is because the viscosity of air becomes large as the 
space of the cavity narrows. Therefore, the resistance of the 
1st cavity whose capacity does not change is a constant and 
the resistance of the 2nd cavity whose capacity changes grows 

 spac he cavity narrows.  

From the analysis results, the formulae that accurately 
calculate the open-end correction and the related resistance 
should be established for the compact acoustic reproduction 
systems such as mobile phones because the acoustic 
characteristics change according 

3csZ  in Mod
see th
Ho
react

at the resistance is a function of the frequency. 
wever, the change is small compared with that of the 

ance, so that the resistance is treated as a parameter that 
does not depend on the frequency. Therefore, the acoustic 
resistance 1R  is regarded as a mean value.  

Estimated result of acoustic parameters 
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C

er the change in the open-end correction and 
that in the acoustic resistance of the narrow cavity depending 

the acoustic hole in case where compact 
acoustic reproduction systems are designed.  
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ONCLUSIONS 

In this paper, we have examined the influence of the 
position of the acoustic hole to the acoustic characteristics 
based on three dimensional FEM analysis. As a result, we 
need to consid
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In the future, we will obtain the acoustic theorical formulae 
that can explain the measurement characteristic accurately 
from various analysis results.  
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