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1. INTRODUCTION

A perfect coloring1 (or an equitable partition) of a graph � with t colors (perfect t-
coloring for short) is a partition of the vertex set of � into t parts (colors) P1, . . . , Pt

such that, for all i, j ∈ {1, . . . , t}, every vertex of Pi is adjacent to the same number of
vertices, namely, pij vertices, of Pj . The matrix P := (pij )i,j=1,...,t is called the quotient
matrix of the perfect t-coloring. We do not distinguish between colorings obtained by
renaming the colors (i.e., by equal permutations of rows and columns of P ). Note that
every eigenvalue of P is that of �, see [8].

The Johnson graph J (v, k) (without loss of generality, let 2k ≤ v) is a graph whose
vertex set consists of all k-subsets of a fixed v-set; two k-sets are adjacent if and only if

1This term is due to D. Fon-Der-Flaass, cf. [7].
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2 GAVRILYUK AND GORYAINOV

they share k − 1 elements exactly. The distinct eigenvalues of J (v, k) are the numbers
θi := (k − i)(v − k − i) − i, i = 0, . . . , k, see [4, Chapter 9.1].

Given a perfect 2-coloring of the Johnson graph J (v, k), a set C of all vertices of the
same color is a completely regular code with covering radius 1. (For the definitions and
background, see Section 2.) The quotient matrix P of a perfect 2-coloring has two distinct
eigenvalues that are those of J (v, k): θ0 and θs , s ∈ {1, 2, . . . , k} (so that the strength of
the corresponding completely regular code equals s − 1). The completely regular codes
with strength zero in J (v, k) were classified by Meyerowitz in [14]. If s = k then the
vertices of the same color are the blocks of a (k − 1)-(v, k, λ)-design and, conversely, the
blocks of an arbitrary (k − 1)-(v, k, λ)-design as the vertices of J (v, k) give a completely
regular code with covering radius 1 and strength k − 1, see [11]. (Recall that, for a
2-design with k = 3, the necessary conditions are known to be sufficient [5].)

In this paper, we study the perfect 2-colorings of the Johnson graphs J (v, 3). By the
above, we are mainly interested in the case s = 2. For odd v, we show that there are no
such 2-colorings, see Theorem 3.1. In case of even v, we consider the perfect 2-colorings
with symmetric quotient matrix. Then one can show that v must be congruent to 2 modulo
4. There are examples of such 2-colorings when v ∈ {6, 10}. However, for v > 10, we
prove that there are no such 2-colorings, see Theorem 3.2.

The paper is organized as follows. In Sections 2.1 and 2.2, we recall the various notions
and results concerning graphs and their codes. In Section 2.3, we give the background
of the present work. In Section 3, we describe our approach of investigation of perfect
2-colorings in J (v, 3) and prove our main results. Section 4 contains some concluding
remarks concerning future results.

2. DEFINITIONS AND PRELIMINARIES

2.1. Graphs

We consider only finite undirected graphs without loops or multiple edges. Let � be a
connected graph. The distance d(x, y) between any two vertices x and y of � is the length
of a shortest path from x to y in �. The diameter diam(�) of � is the maximal distance
occurring in �.

For a subset X of the vertex set of �, we will also write X for the subgraph of � induced
by X. For a vertex x of �, define �i(x) to be the set of vertices that are at distance i from
x (i = 0, . . . , diam(�)). The subgraph �1(x) is called the neighborhood of a vertex x.
We will write �(x) instead �1(x) for short.

A connected graph � with diameter d := diam(�) is distance-regular if there are
integers bi , ci (i = 0, . . . , d) such that, for every pair of vertices x, y ∈ � with d(x, y) = i,
there are exactly ci neighbors of x in �i−1(y) and bi neighbors of x in �i+1(y) (we
assume that �−1(y) and �d+1(y) are empty sets). We also define ai := b0 − bi − ci .
The numbers ai , bi , ci (i = 0, . . . , d) are called the intersection numbers and the array
{b0, b1, . . . , bd−1; c1, c2, . . . , cd} is called the intersection array of the distance-regular
graph �.

By an eigenvalue of a graph �, we mean an eigenvalue of its adjacency matrix. We
recall that a distance-regular graph with diameter d has d + 1 distinct eigenvalues exactly,
which can be calculated from its intersection array, see [4, Section 4.1.B].

Journal of Combinatorial Designs DOI 10.1002/jcd



ON PERFECT 2-COLORINGS OF JOHNSON GRAPHS J (v, 3) 3

Let � be a distance-regular graph with diameter d ≥ 2. For i = 0, . . . , d, define Ai to
be a square (0, 1)-matrix of size |�| whose rows and columns are indexed by the vertex set
of �, and, for all x, y ∈ �, set (Ai)x,y := 1 if and only if d(x, y) = i. In particular, A1 is
just the adjacency matrix of �. Since � is distance-regular, we see that, for i = 0, . . . , d,

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1,

and this implies [4] that Ai = pi(A1) for certain polynomial pi of degree i. Hence, A1

generates the matrix algebra A over C, the so-called Bose–Mesner algebra, of dimension
d + 1, and the set of matrices A0 = I, A1, . . . , Ad is a basis of A. Since the algebra A
is semisimple and commutative, A also has a basis of pairwise orthogonal idempotents
E0 := 1

|�|J,E1, . . . , Ed [4] (the so-called primitive idempotents of A). In fact, Ej is the
matrix representing orthogonal projection onto the eigenspace of A1 corresponding to
some eigenvalue of �. For the distinct eigenvalues b0 = θ0 > θ1 > · · · > θd of �, the
basis of primitive idempotents is usually ordered so that

A1Ej = θjEj , j = 0, . . . , d.

An l-clique L of � is a complete subgraph (i.e., every two vertices of L are adjacent)
of � with exactly l vertices. We say that L is a clique if it is an l-clique for certain l.

By the n × m-grid, we mean the Cartesian product of two complete graphs on n and
m vertices.

The Johnson graph J (v, k) is distance-regular with diameter k, the following intersec-
tion numbers:

bi−1 := (k − (i − 1))(v − k − (i − 1)), ci := i2, i = 1, . . . , k,

and eigenvalues

θi := (k − i)(v − k − i) − i, i = 0, . . . , k.

The proof of Lemma 2.1 is straightforward.

Lemma 2.1. The following holds.
(1) for a vertex x of J (v, k), the neighborhood of x is the k × (v − k)-grid;
(2) for every pair of vertices x, y at distance 2 in J (v, k), the subgraph induced by

their common neighbors is a 4-cycle;
(3) for a vertex x of J (v, k) and for every 4-cycle C in its neighborhood, there is a

unique vertex y such that d(x, y) = 2 and C is the subgraph induced by the common
neighbors of x and y.

2.2. Codes in Graphs

Let � be a graph. An arbitrary subset C of the vertex set of � is called a code in graph �.
For a code C ⊆ � with |C| ≥ 2, we define the minimum distance of C:

δC := min{d(x, y)|x, y ∈ C, x �= y},

Journal of Combinatorial Designs DOI 10.1002/jcd



4 GAVRILYUK AND GORYAINOV

and the covering radius:

ρC := max{d(x, C)|x ∈ �},

where, for a vertex x ∈ �, d(x, C) := min{d(x, y)|y ∈ C}.
A code C is called an e-code if e is a maximal integer such that δC ≥ 2e + 1, i.e., balls

with radius e around the vertices of C are all pairwise disjoint. If � is distance-regular
then, for any its e-code C and a vertex x ∈ C, the so-called sphere packing bound holds
[8]:

|C|
e∑

i=0

|�i(x)| ≤ |�|.

An e-code C is called perfect if equality holds in this bound (non-trivial if e > 0 and
|C| > 2). Evidently, in the Hamming graphs (see [4, Chapter 9]) this notion is equivalent
to that in the coding theory [19].

The error-correcting perfect codes over finite fields were classified by Zinoviev and
Leontiev [10], and Tietävàinen [18]. In [6], Delsarte introduced completely regular codes
— a class of codes with nice combinatorial properties similar to those observed in perfect
codes. In particular, the class of completely regular codes includes all perfect codes.
Delsarte gave the definition not only for codes in Hamming graphs, but also for codes in
arbitrary distance-regular graphs, and conjectured the nonexistence of nontrivial perfect
codes in Johnson graphs. All presently known results [9] confirm this conjecture.

A code C gives a natural partition of the vertex set of � according to distance from
C: for i = 0, . . . , ρC , define �i(C) to be the set of vertices that are at distance i from
C. The partition {C = �0(C), �1(C), . . . , �ρC

(C)} will be referred to as the distance
partition of the vertex set of � with respect to C. For a vertex x and a code C, we write
δi(x, C) := |�i(x) ∩ C|. The numbers δi(x, C), i = 0, . . . , diam(�), are called the outer
distribution numbers of C.

Following Delsarte [6], we say that a code C in a distance-regular graph � is completely
regular if the outer distribution number δi(x, C) only depends on i and d(x, C), i.e., there
exist integers δil (i = 0, . . . , diam(�), l = 0, . . . , ρC) such that, for every vertex x ∈ �

and all i = 0, . . . , diam(�), δi(x, C) = δil holds, where l := d(x, C).
Let � be a distance-regular graph and C be a code with covering radius ρ in �.

Consider the distance partition � := {C = �0(C), �1(C), . . . , �ρ(C)} of the vertex set
of � w.r.t. C. It follows from [17] that C is completely regular if and only if � is a perfect
(ρ + 1)-coloring. In this case the quotient matrix P of the partition � can be written in
the following tridiagonal form:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0 β0 0 . . . 0

γ1 α1 β1

0 γ2 α2 β2

...
. . .

. . .
. . .

0 . . . 0 γρ αρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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ON PERFECT 2-COLORINGS OF JOHNSON GRAPHS J (v, 3) 5

where αi, βi, γi (i = 0, . . . , ρ) are integers such that each vertex in �i(C) has αi neighbors
in �i(C), βi neighbors in �i+1(C), and γi neighbors in �i−1(C). These numbers are called
the intersection numbers of the completely regular code C.

Let us remark that the quotient matrix P has ρ + 1 distinct eigenvalues exactly; each of
them is an eigenvalue of �, see [8]. In addition, the set �ρ(C) is also completely regular,
see [17] (so that in the case ρ = 1 both C = �0(C) and �1(C) = � \ C are completely
regular).

Further note that b0 = θ0 is always an eigenvalue of P . Let χC be the characteristic
vector of C (here χC is indexed by the vertex set of �). The following lemma will be
used in Section 2.3.

Lemma 2.2 ([13, Lemma 1]). Let E0, E1, . . . , Ed be the primitive idempotents of �.
Then, for j = 1, . . . , d, EjχC �= 0 holds if and only if θj is an eigenvalue of P .

For more results and background on completely regular codes (in various graphs) we
refer the reader to [4] and the survey [13]. From now on, we restrict our attention to the
Johnson graphs J (v, k) and their completely regular codes.

2.3. Completely Regular Codes in Johnson Graphs

Recall that a t-(v, k, λ)-design (t-design for short) is a collection of k-subsets (called
blocks) of a fixed v-set such that every t-subset occurs in λ blocks exactly (in this paper,
repeated blocks are not allowed in a design). Note that a 0-design is just a collection of
k-subsets. The strength of a design D is the largest t such that D is a t-design.

By the definition of the Johnson graph J (v, k), we may consider an arbitrary subset
C of its vertices as a collection of some k-subsets of a fixed v-set X. Let χC be the
characteristic vector of a subset C of the vertex set of J (v, k) and E0, E1, . . . , Ek be
the primitive idempotents of J (v, k) (recall that k ≤ v/2 and k = diam(J (v, k))). The
following important result is due to Delsarte.

Theorem 2.3 ([6, Theorem 4.2]). A subset C of the vertex set of J (v, k) is a t-design
if and only if

E1χC = E2χC = · · · = EtχC = 0.

It now follows from Lemma 2.2 and Theorem 2.3 that a subset C of vertices in J (v, k),
being a completely regular code, is a t-design. The strength of this design is the smallest
t such that θt+1 is an eigenvalue of P . (For this reason, a completely regular code in
J (v, k) is sometimes referred to as a completely regular design, see [12].) In the case
ρ = 1, we have the following convenient corollary.

Lemma 2.4 ([2, Theorem 1, Corollary 1]). Let C be a completely regular code with
covering radius 1 and quotient matrix P := (pij )2×2 in J (v, k). Then p11 + p12 = θ0,
p11 − p21 = θt+1 for some t ∈ {0, . . . , k − 1}, and the vertices of C are the blocks of a
design with parameters

t −
(

v, k,
p21

p12 + p21

(
v − t

k − t

))
.

Journal of Combinatorial Designs DOI 10.1002/jcd



6 GAVRILYUK AND GORYAINOV

(Therefore, for all 0 ≤ j ≤ i ≤ t , the numbers

p21

p12 + p21

(
v − i

k − i + j

)

are integer.)

Let us recall some results on completely regular codes with small strength in J (v, k).
The completely regular codes with strength 0 in Johnson graphs were classified by
Meyerowitz.

Theorem 2.5 ([14, Theorem J]). Let C be a completely regular design in J (v, k) with
zero strength . Then there is a subset Y ⊂ X such that

either C = {c ⊂ X : |c| = k, Y ⊆ c} or C = {c ⊂ X : |c| = k, c ⊆ Y }.

Following the approach that was used by Meyerowitz to prove Theorem 2.5, Martin
[11] found all completely regular codes in J (v, k) with strength 1 and minimum distance
at least 2. Let us describe his result. Suppose that |X| = v = qp, k = sp, where q ≥
2s, p ≥ 2, and consider a partition X = X1∪̇X2∪̇ . . . ∪̇Xq into q groups, each of size p.
Define C to be the set of all vertices of the form ∪i∈IXi , where I runs over all s-element
subsets of {1, 2, . . . , q} (so that |C| = (

q
s

)
). Then C is a design with strength 1 and

minimum distance p ≥ 2. Martin [11] called such a design a groupwise complete design
and showed that a groupwise complete design is completely regular if and only if one of
the following holds:

� p = k, v = 2k,
� p = 2,
� p = 3, s = 1.

Note that the covering radius of a groupwise complete design is at least 2.

Theorem 2.6 ([11, Theorem 3.1]). Let C be a completely regular design in J (v, k)
having strength 1 and minimum distance at least 2. Then C is a groupwise complete
design.

We should also mention one more result by Martin.

Theorem 2.7 ([12, Corollary 3.5]). Let C be a (k − 1)-design in J (v, k). Then C is
completely regular.

We now turn to completely regular codes with smallest covering radius in J (v, k),
i.e., perfect 2-colorings. (Note that the problem of existence of those includes the Del-
sarte conjecture, see [3], [13].) Perfect 2-colorings were studied by Avgustinovich and
Mogilnykh in several papers [1], [2], [3], [15], [16]. Let us survey some of their results.
For a distance-regular graph �, let {P1, P2} be a perfect 2-coloring of � with quotient
matrix P and C be a completely regular code in � with covering radius ρ and inter-
section numbers αi, βi, γi (i = 0, . . . , ρ). The following theorem can be considered as a
generalization of that from [17].

Journal of Combinatorial Designs DOI 10.1002/jcd



ON PERFECT 2-COLORINGS OF JOHNSON GRAPHS J (v, 3) 7

Theorem 2.8 ([1, Theorem 1]). For all 0 ≤ i ≤ ρ, the following holds:

|P1 ∩ �i−1(C)|βi−1 + |P1 ∩ �i(C)|(p21 − p11+ αi) + |P1 ∩ �i+1(C)|γi+1 = |�i(C)|p21.

Suppose that a distance-regular graph � with diameter d is antipodal, i.e., the relation
being at distance d or 0 induces an equivalence relation on the vertex set of �, and,
in addition, suppose that an equivalence class contains two vertices exactly (and note
that J (2m, m) satisfies this condition). Given a perfect 2-coloring of �, the two vertices
from one equivalence class may be colored with one color or two different colors. But
Theorem 2.8 implies that only one case may appear in a given perfect 2-coloring of �.
Moreover, in the second case (when the vertices from every equivalence class are colored
with two different colors) the quotient matrix is symmetric.

In [3], two infinite series of perfect 2-colorings of J (v, 4) and J (v, 5) based on Steiner
triple and quadruple systems were found. In [2], three perfect 2-colorings of J (2m, 3)
with quotient matrices

(
3(2m − 5) 6
4(m − 2) 2m − 1

)
,

(
3(m − 3) 3m

m − 2 5m − 7

)
, and

(
3(m − 1) 3(m − 2)
m + 4 5m − 13

)
(1)

were constructed with merging some orbits of an automorphisms group of J (2m, 3).
Note that these matrices have the second eigenvalue 2m − 7 = θ2 of J (2m, 3) (so that
the corresponding designs have strength 1).

Also, in [1], [2], [16], all realizable quotient matrices of perfect 2-colorings of J (v, k),
where v ≤ 8, were listed and, for J (9, 3), the existence of a perfect 2-coloring with

quotient matrix

(
10 8
8 10

)
was left as an open case.

Theorem 2.9 ([1, Theorem 5]). The following matrices are all the realizable quotient
matrices of perfect 2-colorings of J (7, 3):

(
9 3
4 8

)
,

(
0 12
3 9

)
,

(
3 9
6 6

)
.

In the next section, we shall give a general answer for J (v, 3) with odd v.

3. PERFECT 2-COLORINGS OF JOHNSON GRAPHS J(v, 3)

In this section, we denote a graph J (v, 3) by �. Let {P1, P2} be a perfect 2-coloring of �

with quotient matrix P ,

P :=
(

p11 p12

p21 p22

)
,

(in other words, P1 and P2 are completely regular codes with covering radius 1 in �).
Then P has exactly two distinct eigenvalues that are those of J (v, 3): θ0 = 3(v − 3)
and θs = (3 − s)(v − 3 − s) − s for some s ∈ {1, 2, 3}. Now Theorem 2.5 allows us to
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assume that s > 1. If s = 3 then, by Lemma 2.4 and Theorem 2.7, the vertices of Pi ,
{i, j} = {1, 2}, are the blocks of a 2-design with parameters

2 −
(
v, 3,

pji

pij + pji

(v − 2)
)
,

and, conversely, the blocks of every such a design give a completely regular code with
covering radius 1 in J (v, 3). Further, it follows from [5] that the following congruences:

λ(v − 1) ≡ 0 (mod 2), λv(v − 1) ≡ 0 (mod 6)

are necessary and sufficient conditions for a 2-(v, 3, λ)-design to exist. Therefore, we are
mainly interested in the case s = 2.

In this section, we prove the following theorems.

Theorem 3.1. Let v be odd and {P1, P2} be a perfect 2-coloring of J (v, 3). Then the
vertices of Pi , i ∈ {1, 2}, are the blocks of a design with strength 0 or 2. In other words,
there are no perfect 2-colorings of J (v, 3) with quotient matrix P such that θ2 is an
eigenvalue of P .

Theorem 3.2. Let {P1, P2} be a perfect 2-coloring of J (v, 3) with symmetric quotient

matrix P such that θ2 is an eigenvalue of P . Then P =
(

2v − 8 v − 1
v − 1 2v − 8

)
, and

v ∈ {6, 10}.
Let y be an arbitrary vertex of �. The perfect 2-coloring {P1, P2} naturally induces

a partition of {y} ∪ �(y) into two parts. The main idea of the proof is to consider such
a partition and establish some of its properties and connections with similar partitions
for vertices of �(y). Roughly speaking, for a given partition of {y} ∪ �(y) and a vertex
x ∈ �(y), we will be able to derive a partition of {x} ∪ �(x).

In what follows, we suppose that P has an eigenvalue θ �= θ0 of J (v, 3) (not necessarily
θ = θ2). For a subset S of the vertex set of �, define

S := |S ∩ P1|.

To simplify the notation, we use x instead of {x} if x is a vertex of �, i.e.,

x :=
{

1 if x ∈ P1,

0 if x ∈ P2.

Note that

�(x) = p11x + p21(1 − x) = θx + p21. (2)

Recall that by Lemma 2.1, for a vertex y ∈ �, the subgraph �(y) is the 3 × (v − 3)-
grid. So that every maximal clique in � has size 4 or v − 2. If X is an underlying
v-element set for �, i.e., the vertices of � are all the 3-element subsets of X, then a

Journal of Combinatorial Designs DOI 10.1002/jcd



ON PERFECT 2-COLORINGS OF JOHNSON GRAPHS J (v, 3) 9

maximal 4-clique is induced by the 3-element subsets whose union contains exactly four
elements of X; a maximal (v − 2)-clique is induced by the 3-element subsets that contain
two fixed elements of X. In the 3 × (v − 3)-grid, we call a maximal (v − 3)-clique a row,
and a maximal 3-clique a column.

For a vertex x ∈ �(y), we denote by (y, x] the row of �(y) that contains x, and by
[y, x] the maximal (v − 2)-clique that contains x, y. Note that y /∈ (y, x] and [y, x] =
{y} ∪ (y, x].

Let {x1, x2, x3} induce a column of �(y). Then, for {i, j, k} = {1, 2, 3}, a vertex xi lies
in a column (namely, {y, xi, xk}) and a row of �(xj ). Thus, the vertices xi and xj have
exactly v − 4 common neighbors in �2(y), which induce a clique. We denote by

(
xi, xj

)
these common neighbors, i.e.,

(
xi, xj

)
:= [

xi, xj

] \ {xi, xj }=
(
xi, xj

] \ {xj }=
(
xj , xi

] \ {xi} = �(xi) ∩ �(xj ) \ �(y),

(
xi, xj

) = (
xj , xi

)
.

For a vertex y ∈ �, let {xiδ|i = 1, 2, 3, δ = 1, . . . , v − 3} be the vertex set of �(y) (so
that distinct vertices xiδ and xjε are adjacent if and only if i = j or δ = ε). Then define
a matrix

M(y) :=
⎛
⎝x1,1 x1,2 . . . x1,v−3

x2,1 x2,2 . . . x2,v−3

x3,1 x3,2 . . . x3,v−3

⎞
⎠ .

For two matrices M1 and M2 of equal size, we write M1 ∼ M2 if they can be obtained
from each other by some permutations of rows and columns. Otherwise, we write M1 �∼
M2. For a matrix M and a set of matrices M := {M1, . . . , Mm}, we write M �M if
M ∼ Mi for at least one matrix Mi ∈ M (otherwise, we write M ��M).

Lemma 3.3. For a vertex y ∈ � and a column {x1, x2, x3} of �(y), the following holds:

(
xi, xj

) − (y, xk] = θ + 1

2
(xi + xj − xk − y) − xk, (3)

where {i, j, k} = {1, 2, 3}.
Proof. Consider the following system of equations:

�(y) = θy + p21 = (y, x1] + (y, x2] + (y, x3],

�(x1) = θx1 + p21 = (x1, y] + (x1, x2] + (x1, x3],

�(x2) = θx2 + p21 = (x2, y] + (x2, x1] + (x2, x3],

�(x3) = θx3 + p21 = (x3, y] + (x3, x1] + (x3, x2].

Journal of Combinatorial Designs DOI 10.1002/jcd
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In order to derive the required formula (3) it is sufficient to consider the sum of any
pair of the last three equations and take into account the other two equations and obvious
relations (y, xi] = (xi, y] + xi − y,

(
xi, xj

] = (
xj , xi

] + xi − xj . �

Proof of Theorem 3.1. Suppose that θ = θ2 = v − 7. The right part of (3) must be
integer, which implies, for odd v, that xi + xj − xk − y is even, {i, j, k} = {1, 2, 3}.

Without loss of generality, assume that y ∈ P1. Denote by ti the number of columns
{x1, x2, x3} of �(y) such that x1 + x2 + x3 = i (so that t0 = t2 = 0). Then

t1 + t3 = v − 3, t1 + 3t3 = p11.

It follows that t3 = (p11 − v + 3)/2, t1 = (3(v − 3) − p11)/2. If t1 = 0 then p11 =
3(v − 3) and � = P1, a contradiction. Suppose that M(y) does not contain a row of
all 1s. Then we may choose a vertex x ∈ �(y) ∩ P2 such that (x, y] contains at least
t3 + t1/3 + 1 vertices from P1. Since, for a column {z1, z2, z3} of �(x), one of the
following holds:

{z1, z2, z3} = {0, 0, 0} or {z1, z2, z3} = {1, 1, 0},

we see that �(x) contains at least 2(t3 + t1/3 + 1) vertices from P1 with equality if and
only if M(x) contains a row of all 0s. This yields

2(t3 + t1/3 + 1) ≤ p21,

(p11 − v + 3) + (3(v − 3) − p11)/3 + 2 ≤ p21 = p11 − θ = p11 − v + 7,

(3(v − 3) − p11)/3 ≤ 2,

p11 ≥ 3v − 15.

Now if y ′ ∈ P2 and M(y ′) does not contain a row of all 0s, then one can show that
p22 ≥ 3v − 15 in the same manner. Taking into account p11 − p21 = θ2 = v − 7, and
p21 + p22 = 3(v − 3), we obtain p11 + p22 = 4v − 16. Thus, 6v − 30 ≤ 4v − 16, i.e.,
v ≤ 7, and Theorem 3.1 now follows from Theorem 2.9.

It remains to exclude the case when M(y) contains a row of all 1s (or 0s). Suppose
that, for every vertex y ′ ∈ P2, the matrix M(y ′) contains a row of all 0s and there is a
vertex y ∈ P1 such that M(y) does not contain a row of all 1s. Then it follows from the
above that p11 = 3v − 15 and thus

P =
(

3v − 15 6
2v − 8 v − 1

)
,
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which contradicts to Lemma 2.4 (for instance, p21

p12+p21

(
v
3

) = v(v−2)(v−4)
6 is not integer if v

is odd).
Finally, suppose that, for every vertex y ∈ P1 (resp. y ∈ P2), the matrix M(y) contains

a row of all 1s (resp. a row of all 0s). Then, for y ∈ P2, a row of M(y) that is not of all 0s
contains precisely p21/2 1s. On the other hand, this number is v − 3 − p12/2 + 1. Hence,
p21 + p12 = 2v − 4. Since

∑
i,j pij = 2(3v − 9), we obtain p11 + p22 = 4v − 14. We

now have p11 − p21 + p22 − p12 = 4v − 14 − (2v − 4) = 2v − 10 �= 2θ2, a contradic-
tion, which completes the proof of Theorem 3.1. �

Remark 3.4. It follows from Lemma 3.3 that

0 ≤ (
xi, xj

) = (y, xk] + θ + 1

2

(
xi + xj − xk − y

) − xk ≤ v − 4. (4)

Let us consider some examples:

� if y = 1 and, for a column {x1, x2, x3} of �(y), we have x1 = x2 = x3 = 0 then
(y, xi] ≥ θ+1

2 for i = 1, 2, 3. Indeed, it directly follows from Lemma 3.3 that(
xj , xk

) = (y, xi] + θ+1
2 (0 + 0 − 0 − 1) − 0 = (y, xi] − θ+1

2 ≥ 0.
� if v > 8, θ = θ2, and y = 1 then M(y) does not contain a submatrix of the type

⎛
⎝ x1ε x1δ

x2ε x2δ

x3ε x3δ

⎞
⎠ :=

⎛
⎝ 1 0

1 0
0 1

⎞
⎠ .

Assuming the converse, we see that (x1ε, x2ε) = (y, x3ε] + θ+1
2 (1 + 1 − 0 −

1) − 0 = (y, x3ε] + θ+1
2 so that (y, x3ε] ≤ v − 4 − θ+1

2 . On the other hand,
(x1δ, x2δ) = (y, x3δ] + θ+1

2 (0 + 0 − 1 − 1) − 1 = (y, x3δ] − (θ + 2) and (y, x3ε] =
(y, x3δ] ≥ θ + 2, which is impossible as v > 8.

The arguments similar to the examples above will be used in the proof of Theorem
3.2. �

We next consider two distinct columns {x1ε, x2ε, x3ε} and {x1δ, x2δ, x3δ}, ε �= δ, of �(y)
(assuming that the vertices xiε and xiδ lay in the same row of �(y)). Then, for {i, j, k} =
{1, 2, 3}, the vertices xjε, xkε, xjδ , and xkδ induce a 4-cycle of �(y) and, by Lemma 2.1,
there is a unique vertex zi ∈ �2(y) such that �(y) ∩ �(zi) = {xjε, xkε, xjδ, xkδ}. With this
notation, we formulate the following lemma.

Lemma 3.5. For {i, j, k} = {1, 2, 3} and ε �= δ, the following holds.

(xiδ, xjδ) − (xiε, xkε) = θ + 1

2
(xiδ + zk − zj − xiε) + zk − zj − xjδ + xkε. (5)

Proof. Taking into account the relations:

[xiδ, y] = [xiε, y], [xiδ, zk] = [xiδ, xjδ], [xiε, zj ] = [xiε, xkε],

Journal of Combinatorial Designs DOI 10.1002/jcd



12 GAVRILYUK AND GORYAINOV

the required equality (5) is obtained by applying (2) to the sum of the following
equations:

�(xiδ) = (xiδ, y] + (
xiδ, zj

] + (xiδ, zk],

−�(xiε) = −(xiε, y] − (
xiε, zj

] − (xiε, zk],

−�(zj ) = −(
zj , xiδ

] − (
zj , xiε

] − (
zj , zk

]
,

�(zk) = (zk, xiδ] + (zk, xiε] + (
zk, zj

]
,

which follow from the fact that {zk, xiε, xiδ, zj } is a maximal 4-clique in �. �
Let us outline the proof of Theorem 3.2. From now on we assume that θ = θ2 and the

quotient matrix P is symmetric. Since p11 − p21 = v − 7, p12 = p21 and p11 + p12 =
p21 + p22 = 3(v − 3) hold, we have p11 = p22 and thus

P =
(

2v − 8 v − 1
v − 1 2v − 8

)
,

and, in addition, v ≡ 2(mod 4), which is clear from Lemma 2.4.
Further, it follows from [1, Theorem 5] that there is a perfect 2-coloring of J (6, 3)

with quotient matrix

(
4 5
5 4

)
,

and the third matrix from (1) provides us with an example of a perfect 2-coloring of
J (10, 3) with symmetric quotient matrix.

Therefore, in the remainder of this section we assume that v > 10 and fix an arbitrary
vertex y ∈ P1. The proof consists of two steps. First we shall show that there are exactly
four matrices M1, M2, M3, and M4 such that M(y)� {M1,M2,M3,M4}, see Lemmas
3.7–3.10. Then, for each i = 1, . . . , 4, we will show that M(y) ∼ Mi implies that there
is a vertex x of �(y) ∩ P1 such that M(x) �� {M1,M2,M3,M4}, see Lemmas 3.11–3.13,
and this contradiction will finish the proof.

Remark 3.6. Recently Gavrilyuk, Goryainov, and Mogilnykh showed that there are
exactly two nonisomorphic perfect 2-colorings of J (10, 3) with the same symmetric
quotient matrix and eigenvalue θ2. Their arguments were essentially similar to the lemmas
below. �

As above, let {xiδ|i = 1, 2, 3, δ = 1, . . . , v − 3} be the vertex set of �(y) (so that
(M(y))iδ = xiδ). To shorten the notation we also define wi := (y, xiδ], and wδ

ij :=(
xiδ, xjδ

)
. Obviously, wi and wδ

ij are non-negative integers and, moreover,

0 ≤ wi ≤ v − 3, 0 ≤ wδ
ij = wδ

ji ≤ v − 4.
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In Lemmas 3.7–3.10 below we assume that M(y) contains a 3 × 2-submatrix
of a certain type. Let ε, δ be the indices of columns of M(y) that form this
submatrix, and, for {i, j, k} = {1, 2, 3}, let zi be a vertex of �2(y), such that �(y) ∩
�(zi) = {xjε, xkε, xjδ, xkδ}.
Lemma 3.7. If the matrix M(y) contains a submatrix of the type

⎛
⎝x1ε x1δ

x2ε x2δ

x3ε x3δ

⎞
⎠ :=

⎛
⎝ 1 1

1 1
0 0

⎞
⎠ ,

then

M(y) ∼ M1 :=
⎛
⎝ 1 1 · · · 1 1 0

1 1 · · · 1 0 1
0 0 · · · 0 0 0

⎞
⎠ .

Proof. It follows from Lemma 3.5 that

wδ
1,2 − wε

1,3 = v − 4

2
(z3 − z2) − 1, and wδ

1,2 − wε
2,3 = v − 4

2
(z3 − z1) − 1. (6)

From Lemma 3.3 we obtain

wδ
1,2 = w3 + v − 6

2
, wε

1,3 = w2 − v − 6

2
− 1, and wε

2,3 = w1 − v − 6

2
− 1. (7)

Equations (6) and (7) give us the following:

w3 − w2 = v − 4

2
(z3 − z2) − v + 4, (8)

w3 − w1 = v − 4

2
(z3 − z1) − v + 4. (9)

In addition, we recall that w1 + w2 + w3 = p11 = 2v − 8. Note that z3 − zi ∈ {0, ±1},
i = 1, 2, and let us consider all the possible cases.

If, for instance, z3 − z2 = 0 then equation (8) has only two solutions:
(a) w3 = 1, w2 = v − 3, and hence w1 = v − 6,
(b) w3 = 0, w2 = v − 4, and hence w1 = v − 4.

In Case (a), substituting w3 = 1 and w1 = v − 6 into (9) we get 1 − (v − 6) = (v −
4)(z3 − z1)/2 − v + 4. Hence, 6 = (v − 4)(z3 − z1) and v = 10 so that this case may be
dropped.

In Case (b), the matrix M(y) contains a row of all 0s. If M(y) contains a column, say,
with index γ , of all 0s then, by Lemma 3.3, we have w

γ
1,2 < 0 (see also Remark 3.4), a

contradiction. Therefore, we conclude that M(y) is of the required type.
If z3 − z2 = −1 then it follows from (8) that w2 = w3 + 3(v − 4)/2 ≤ v − 3. This

implies that v ≤ 6.
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Finally, if z3 − z2 = 1 then we may also assume that z3 − z1 = 1 and hence w3 −
w2 = w3 − w1 = −(v − 4)/2. Thus w1 = w2 = 5(v − 4)/6, and w3 = (v − 4)/3. It now
follows that M(y) does not contain the following columns:

⎛
⎝ 0

1
1

⎞
⎠ ,

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 1

0
1

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ ,

⎛
⎝ 0

0
0

⎞
⎠ ,

otherwise, for appropriate index γ , by Lemma 3.3, we have w
γ
2,3 > v − 4, w

γ
2,3 < 0,

w
γ
1,3 > v − 4, w

γ
1,3 < 0, or w

γ
1,2 < 0, respectively (the last inequality holds for two last

columns).
This means that M(y) is of the type

M(y) =
⎛
⎝ 1 · · · 1 1 · · · 1

1 · · · 1 1 · · · 1
1 · · · 1 0 · · · 0

⎞
⎠ ,

which is impossible because �(y) then contains at least 2v − 6 > 2v − 8 vertices from
P1. The lemma is proved. �
Lemma 3.8. If the matrix M(y) contains a submatrix of the type

⎛
⎝x1ε x1δ

x2ε x2δ

x3ε x3δ

⎞
⎠ :=

⎛
⎝ 1 1

0 1
1 0

⎞
⎠,

then

M(y) ∼ M2 :=
⎛
⎝ 1 1 · · · 1 1 1 1 1 · · · 1 0

1 1 · · · 1 0 1 0 0 · · · 0 0
1 1 · · · 1 1 0 0 0 · · · 0 0

⎞
⎠.

Proof. It follows from Lemma 3.5 that

wδ
1,2 − wε

1,3 = v − 4

2
(z3 − z2), (10)

wδ
2,1 − wε

2,3 = v − 4

2
(z3 − z1) + v − 6

2
. (11)

It follows from Lemma 3.3 that

wδ
1,2 = w3 + v − 6

2
, wε

1,3 = w2 + v − 6

2
, wε

2,3 = w1 − v − 4

2
. (12)

From (10)–(12) we obtain

w3 − w2 = v − 4

2
(z3 − z2) (13)
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and

w3 − w1 = v − 4

2
(z3 − z1) − v − 4

2
. (14)

As before, w1 + w2 + w3 = 2v − 8 and z3 − z1 ∈ {0, ±1}.
Further, it follows from Remark 3.4 (see the second example) that M(y) does not

contain the following columns:
⎛
⎝ 0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ ,

and, by virtue of the previous lemma, we may also assume that M(y) does not contain
the following columns:

⎛
⎝ 1

1
0

⎞
⎠ ,

⎛
⎝ 1

0
1

⎞
⎠ ,

apart from those with indices ε, δ.
But this yields that w2 = w3.
If z3 − z1 = 1 then w1 = w2 = w3 = 2(v − 4)/3. Since wδ

1,2 ≤ v − 4, it follows from
(12) that w3 ≤ v/2 − 1, and hence v ≤ 10.

If z3 − z1 = −1 then (14) gives w1 = v − 3 and w2 = w3 = 1, a contradiction.
Finally, we have z3 − z1 = 0. Then (14) gives w1 = v − 4, w2 = w3 = (v − 4)/2.

Since w1 > v/2 − 1, we conclude that M(y) does not contain a column γ

⎛
⎝ 0

1
1

⎞
⎠ ,

otherwise w
γ
2,3 > v − 4.

Now it is easily seen that M(y) is of the required type. The lemma is proved. �
Lemma 3.9. If the matrix M(y) contains a column of the type

⎛
⎝ 1

1
0

⎞
⎠ ,

then M(y)� {M1,M2}.
Proof. If M(y) contains a submatrix of one of the following types:

⎛
⎝ 1 1

1 1
0 0

⎞
⎠ ,

⎛
⎝ 1 0

1 1
0 1

⎞
⎠ , or

⎛
⎝ 1 1

1 0
0 1

⎞
⎠ ,

then the lemma follows from the two previous lemmas.
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Therefore, we suppose that M(y) contains exactly one column of the type
⎛
⎝ 1

1
0

⎞
⎠ ,

and it now follows from Remark 3.4 that M(y) does not contain a column
⎛
⎝ 0

0
1

⎞
⎠ .

Hence M(y) may only contain the following columns (where exponents mean multi-
plicities of columns):

⎛
⎝ 1

1
0

⎞
⎠

1

,

⎛
⎝ 1

0
0

⎞
⎠

a

,

⎛
⎝ 0

1
0

⎞
⎠

b

,

⎛
⎝ 1

1
1

⎞
⎠

c

,

⎛
⎝ 0

0
0

⎞
⎠

d

,

where we have 1 + a + b + c + d = v − 3, 2 + a + b + 3c = 2v − 8, and these equa-
tions give c ≥ v/2 − 3.

Let us consider a submatrix of M(y) of the type
⎛
⎝x1ε x1δ

x2ε x2δ

x3ε x3δ

⎞
⎠ :=

⎛
⎝ 1 1

1 1
1 0

⎞
⎠ .

Note that w1 = 1 + a + c, w2 = 1 + b + c, w3 = c.
It follows from Lemma 3.5 that

wδ
1,2 − wε

1,3 = v − 4

2
(z3 − z2), and wδ

1,2 − wε
2,3 = v − 4

2
(z3 − z1). (15)

From Lemma 3.3 we obtain

wδ
1,2 = w3 + v − 6

2
, wε

1,3 = w2 − 1, and wε
2,3 = w1 − 1, (16)

and thus (15) and (16) give

w3 − w2 = v − 4

2
(z3 − z2) − v − 4

2
, (17)

w3 − w1 = v − 4

2
(z3 − z1) − v − 4

2
. (18)

Let us consider all the possible values of z3 − z2 (our objective right now is to obtain
a contradiction for every value).
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If z3 − z2 = −1 then it follows from (17) that w2 = v − 3, and w3 = 1, which contra-
dicts c ≥ v/2 − 3 and v > 10.

If z3 − z2 = 1 then it follows from (17) that w2 = w3, which is impossible.
Finally, we may suppose that z3 − z2 = z3 − z1 = 0. It follows from (17) and (18)

that w1 = w2 = 5(v − 4)/6, and w3 = (v − 4)/3. Since w3 ≥ v/2 − 3, we have v ≤ 10,
a contradiction. The lemma is proved. �

Lemma 3.10. If M(y) �� {M1, M2} then M(y)� {M3, M4}, where

M3 :=
⎛
⎝ 1 1 · · · 1 1 1 · · · 1 0

1 1 · · · 1 0 0 · · · 0 0
1 1 · · · 1 0 0 · · · 0 0

⎞
⎠ , M4 :=

⎛
⎝ 1 1 · · · 1 0 0 · · · 0

1 1 · · · 1 0 0 · · · 0
1 1 · · · 1 0 0 · · · 0

⎞
⎠ .

Proof. Since M(y) �∼ M1 and M(y) �∼ M2, we see that M(y) may only contain the
following columns (where exponents mean multiplicities of columns):

⎛
⎝ 1

1
1

⎞
⎠

a

,

⎛
⎝ 1

0
0

⎞
⎠

b1

,

⎛
⎝ 0

1
0

⎞
⎠

b2

,

⎛
⎝ 0

0
1

⎞
⎠

b3

,

⎛
⎝ 0

0
0

⎞
⎠

c

.

We have a + b1 + b2 + b3 + c = v − 3, 3a + b1 + b2 + b3 = 2v − 8. If bi > 0 then
it follows from Lemma 3.3 that a + bi ≥ v − 5. Moreover, if bibj > 0, i �= j , then it is
easily seen that a is at least 2(v − 5) − (v − 3) = v − 7. Further, then 3a + b1 + b2 +
b3 ≥ 2(v − 5) + (v − 7) and this yields v ≤ 9. Therefore, without loss of generality, we
may assume that b2 = b3 = 0. If, in addition, b1 = 0, then M(y) ∼ M4.

If b1 > 0 then we have already noted that a + b1 ≥ v − 5 so that c ∈ {0, 1, 2}. By
the above, we have a + b1 + c = v − 3, 3a + b1 = 2v − 8 and hence 2a = v − 5 +
c. Since v is even, we see that c is odd, i.e., c = 1 and M(y) ∼ M3. The lemma is
proved. �

Our next step is to show that, for every type of M(y), there is a vertex x ∈ �(y) ∩ P1

such that M(x) �� {M1,M2,M3,M4}, which contradicts the lemmas above. We call such
a vertex x bad.

Lemma 3.11. Let M(y) ∼ M3. Then �(y) contains a bad vertex.

Proof. Under the assumptions of the lemma, suppose that

⎛
⎝x1,1 · · · x1,a x1,a+1 · · · x1,v−4 x1,v−3

x2,1 · · · x2,a x2,a+1 · · · x2,v−4 x2,v−3

x3,1 · · · x3,a x3,a+1 · · · x3,v−4 x3,v−3

⎞
⎠ =

⎛
⎝ 1 · · · 1 1 · · · 1 0

1 · · · 1 0 · · · 0 0
1 · · · 1 0 · · · 0 0

⎞
⎠ ,

where x2,a = 1, x2,a+1 = 0, a = (v − 4)/2.
Let us consider a vertex x2,1. The matrix M(x2,1) has the following form:

⎛
⎝x1,1 z3,2 z3,3 · · · z3,v−3

y x2,2 x2,3 · · · x2,v−3

x3,1 z1,2 z1,3 · · · z1,v−3

⎞
⎠ ,
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where, for {i, j} = {1, 3} and δ = 2, . . . , v − 3, a vertex ziδ ∈ �2(y) and �(y) ∩ �(ziδ) =
{xj1, xjδ, x2δ, x2,1}.

Applying Lemmas 3.3 and 3.5 to a pair of the first and the δth columns of M(y) gives
an equation from (5) with respect to z1δ − z3δ . Obviously, z1δ − z3δ ∈ {−1, 0, 1}, and if
z1δ − z3δ �= 0, we can derive the values z1δ and z3δ .

Let us consider an example with the first two columns of M(y):
⎛
⎝x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

⎞
⎠ =

⎛
⎝ 1 1

1 1
1 1

⎞
⎠ .

We have
(
y, x1,1

] = v − 4 and
(
y, x3,2

] = (v − 4)/2 so that
(
x2,1, x3,1

) = v − 5, and(
x2,2, x1,2

) = (v − 6)/2 by Lemma 3.3. Now Lemma 3.5 gives:

(
x2,2, x1,2

) − (
x2,1, x3,1

)= v − 6

2

(
x2,2 + z3,2 − z1,2 − x2,1

) + z3,2 − z1,2 − x1,2 + x3,1,

i.e., (v − 6)/2 − v + 5 = v − 6

2

(
z3,2 − z1,2) + z3,2 − z1,2,

which leads to z3,2 = 0 and z1,2 = 1.
Solving similar equations for δ = 2, . . . , v − 3, we have

⎛
⎝x1,1 z3,2 · · · z3,a z3,a+1 · · · z3,v−4 z3,v−3

y x2,2 · · · x2,a x2,a+1 · · · x2,v−4 x2,v−3

x3,1 z1,2 · · · z1,a z1,a+1 · · · z1,v−4 z1,v−3

⎞
⎠ =

⎛
⎝ 1 0 · · · 0 ♠ · · · ♠ 0

1 1 · · · 1 0 · · · 0 0
1 1 · · · 1 ♠ · · · ♠ 1

⎞
⎠ ,

where ♠ means that the corresponding value of z1,δ − z3,δ is 0 (so that the two symbols
♠ in one column mean the same value).

We see that M(x2,1) simultaneously contains a column of all 1s and a submatrix
⎛
⎝ 0 0

1 1
1 1

⎞
⎠ ,

contrary to Lemma 3.7. The lemma is proved. �
Lemma 3.12. Let M(y) ∼ M2. Then �(y) contains a bad vertex.

Proof. Under the assumptions of the lemma, suppose that
⎛
⎝x1,1 · · · x1,a x1,a+1 x1,a+2 x1,a+3 · · · x1,v−4 x1,v−3

x2,1 · · · x2,a x2,a+1 x2,a+2 x2,a+3 · · · x2,v−4 x2,v−3

x3,1 · · · x3,a x3,a+1 x3,a+2 x3,a+3 · · · x3,v−4 x3,v−3

⎞
⎠

=
⎛
⎝ 1 · · · 1 1 1 1 · · · 1 0

1 · · · 1 0 1 0 · · · 0 0
1 · · · 1 1 0 0 · · · 0 0

⎞
⎠ ,

where x2,a = 1, x2,a+1 = 0, a = (v − 4)/2 − 1.
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Again let us consider the matrix M(x2,1):

⎛
⎝x1,1 z3,2 z3,3 · · · z3,v−3

y x2,2 x2,3 · · · x2,v−3

x3,1 z1,2 z1,3 · · · z1,v−3

⎞
⎠ ,

where, for {i, j} = {1, 3} and δ = 2, . . . , v − 3, a vertex ziδ ∈ �2(y) and �(y) ∩ �(ziδ) =
{xj1, xjδ, x2δ, x2,1}.

Analysis similar to that in the proof of Lemma 3.11 shows that

⎛
⎝x1,1 z3,2 · · · z3,a z3,a+1 z3,a+2 z3,a+3 · · · z3,v−4 z3,v−3

y x2,2 · · · x2,a x2,a+1 x2,a+2 x2,a+3 · · · x2,v−4 x2,v−3

x3,1 z1,2 · · · z1,a z1,a+1 z1,a+2 z1,a+3 · · · z1,v−4 z1,v−3

⎞
⎠

=
⎛
⎝ 1 0 · · · 0 0 1 ♠ · · · ♠ 0

1 1 · · · 1 0 1 0 · · · 0 0
1 1 · · · 1 1 1 ♠ · · · ♠ 1

⎞
⎠ ,

where the two symbols ♠ in a column mean the same value (0 or 1), and the rest of the
proof runs as before. �

Lemma 3.13. Let M(y) ∼ M1. Then �(y) contains a bad vertex.

Proof. Under the assumptions of the lemma, suppose that

⎛
⎝x1,1 · · · x1,v−5 x1,v−4 x1,v−3

x2,1 · · · x2,v−5 x2,v−4 x2,v−3

x3,1 · · · x3,v−5 x3,v−4 x3,v−3

⎞
⎠ =

⎛
⎝ 1 · · · 1 1 0

1 · · · 1 0 1
0 · · · 0 0 0

⎞
⎠ .

Analysis similar to that in the proof of Lemma 3.11 shows that the matrix M(x1,1) has
the following form:

⎛
⎝ y x1,2 · · · x1,v−5 x1,v−4 x1,v−3

x2,1 z3,2 · · · z3,v−5 z3,v−4 z3,v−3

x3,1 z2,2 · · · z2,v−5 z2,v−4 z2,v−3

⎞
⎠ =

⎛
⎝ 1 1 · · · 1 1 0

1 ♠ · · · ♠ 0 0
0 ♠ · · · ♠ 1 0

⎞
⎠ ,

where, for {i, j} = {2, 3} and δ = 2, . . . , v − 3, a vertex ziδ ∈ �2(y) and �(y) ∩ �(ziδ) =
{xj1, xjδ, x1δ, x1,1}, and the two symbols ♠ in a column mean the same value (0 or 1).

We see that M(x1,1) contains a submatrix

⎛
⎝ 1 1

1 0
0 1

⎞
⎠ ,

and Lemma 3.8 implies that M(x1,1) ∼ M2, contrary to Lemma 3.12. The lemma is
proved. �

Let us complete the proof of Theorem 3.2. Lemmas 3.11–3.13 now imply that M(y) ∼
M4. A similar conclusion (with 1 replaced by 0) can be drawn for a vertex of P2 by virtue
of symmetry of quotient matrix P . We leave it to the reader to verify that this leads to a
contradiction, which proves Theorem 3.2. �
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4. CONCLUSION

In this paper, we have classified perfect 2-colorings of J (v, 3) with odd v, and gave a
partial result on perfect 2-colorings of J (v, 3), when v is even, with specific quotient
matrix.

In the forthcoming paper, we will extend our approach in order to classify all the
realizable quotient matrices of perfect 2-colorings of J (v, 3) with even v. In fact, if P

is a quotient matrix of one of them with eigenvalue θ2 then P is one of the matrices
(1). Moreover, if v > 10 then the corresponding perfect 2-coloring is unique (up to
automorphisms of the graph).

Unfortunately, it seems that our approach cannot be directly generalized to study
perfect 2-colorings of J (v, k), k > 3. (Roughly speaking, a generalization of Lemma 3.3
would deal with a system of k linear equations with

(
k
2

)
unknowns.)
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