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1. Introduction  

The surface of biomaterials is frequently chemically modified with the aim to modify the 
physicochemical properties (hydrophobicity, electrical charge, solvation) which control the 
interactions with biomolecules and consequently with cell surfaces, or to retain biochemical 
entities which are specifically recognized by the cells (Williams, 2010). Regarding inorganic 
materials, widespread procedures involve self-assembly of alcane thiols on gold, silver, 
copper or platinum (Wink et al., 1997). However, these substrates have limited interest in 
biomedical applications. Other procedures consist in grafting organosilanes on silica and 
other metal oxides (Weetall, 1993). The use of silane coupling agents has been reported in 
various biomaterials researches, such as surface modification of titanium (Nanci et al., 1998), 
natural fiber/polymer composites (Xie et al., 2010) or dental ceramics (Matinlinna et al., 
2004; Matinlinna & Vallittu, 2007). 
The silanization reaction at interfaces is complex and there is still considerable debate on the 
retention mechanisms and on the organization of the interface (Gooding & Ciampi, 2011; 
Haensch et al., 2010, Suzuki & Ishida, 1996). Depending on the nature of reactive moieties 
bound to Si in the silane (typically Cl or alkoxy group) and their number, and on the 
reaction conditions (particularly the presence of water), the relative importance of covalent 
binding to the surface, oligomerization, polymerization along the surface plane, three-
dimensional polymerization may possibly vary. The efficiency of the surface modification is 
often demonstrated by its influence on biochemical or biological activity. However the 
nature of the interface produced is difficult to characterize, which limits the guidelines 
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available to improve the procedures. Moreover organic contaminants are always present on 
high energy solids. They are mainly of hydrocarbon nature and are readily adsorbed from 
surrounding air or in surface analysis spectrometers (Caillou et al., 2008; Landoulsi et al., 
2008a). The possible influence of contaminants on the silanization process and product is 
usually not considered. In the case of silicon wafer silanized with 
3-[methoxy(polyethyleneoxy)]propyl trimethoxysilane and trichlorosilane in organic 
solvents under a controlled atmosphere, the surface obtained was described as a 1 to 2 nm 
thick grafted silane layer covered by a thin layer of adventitious contaminants, suggesting  
that contamination was posterior to the silanization reaction. On the other hand, the silane 
layer was not stable in phosphate buffered saline at 37°C (Dekeyser et al., 2008).  
Aminopropylalkoxysilanes are attractive for surface modification (Plueddemann, 1991), as 
their bifunctional nature is expected to offer the possibility of covalently attaching a 
biomolecule, either directly or through a linker. 3-Aminopropyl(triethoxysilane) (APTES) is 
one of the most frequently used organosilane agents for the preparation of amine-
terminated films (Asenath Smith & Chen, 2008; Howarter & Youngblood, 2006; Kim et al., 
2009a; Lapin & Chabal, 2009; Pasternack et al., 2008). 
Table 1 presents a list of references in which APTES was used to hopefully graft 
biomolecules on different substrates. The survey is exhaustive for stainless steeel substrates 
relevant for the field of biomaterials and illustrative for other substrates. Additional 
references are: El-Ghannam et al., 2004; Kim et al., 2010; Sasou et al., 2003; Sarath Babu et al., 
2004; Quan et al., 2004 ; Subramanian et al., 1999 ; Jin et al., 2003 ; Cho & Ivanisevic, 2004 ; 
Katsikogianni & Missirlis, 2010 ; Sordel et al., 2007 ; Toworfe et al., 2006 ; Balasundaram et 
al., 2006 ; Doh & Irvine, 2006 ; Palestino et al., 2008 ; Son et al., 2011 ; Koh et al., 2006 ; Mosse 
et al., 2009 ; Weng et al., 2008 ; Charbonneau et al., 2011 ; Iucci et al., 2007 ; Chuang et al., 
2006 ; Schuessele et al., 2009 ; Ma et al., 2007 ; Toworfe et al., 2009 ; Zile et al., 2011 ; Sargeant 
et al., 2008 ; Lapin & Chabal, 2009. Table 1 indicates the substrate and linker used, the main 
conditions of the APTES treatment and the evaluation of the surface treatment regarding 
biomolecule activity with the blank used for comparison. The table also presents the main 
data obtained by surface characterization. In some systems, no covalent grafting was aimed. 
In other systems, although it was aimed, there is no direct evidence for the formation of 
covalent bonds between the biomolecules and the substrate surface. On the other hand, the 
evaluation of the bio-efficacy was never based on comparisons involving a complete set of 
blanks: treatment with the biomolecule without silanization, without linker, without 
silanization and linker. In a study of surface modification with the aim to enhance 
mineralization, it has been demonstrated that APTES-coated glass retains a homopolymer 
with monoester phosphate groups, poly[(2-methacryloyloxy)ethyl phosphate], by proton 
transfer and electrostatic interaction, while the retention of a neutral homopolymer, poly[2-
(acatoacetoxy)ethyl methacrylate], was attributed to covalent linkage by reductive 
amination between the keto groups of the polymer and the surface amine functions 
(Jasienak et al., 2009). The retention of the diblock copolymer seemed to occur via segments 
allowing covalent bonds to be formed. In Table 1, several systems show an improved 
behavior which may only be attributed to non covalent bonding between the biomolecule 
and the silanized substrate. In contradiction with frequent implicit considerations, the 
occurrence or improvement of bioactivity as a result of surface treatments does not 
demonstrate that the chemical schemes which motivated the treatments worked in reality. 
This question is crucial as many organic reactions that work well in solution are difficult to 
apply at solid surfaces (Kohli et al., 1998). 
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Stainless steels (SS) are extensively used in biomaterials researches and other applications 
involving contact with biologic compounds, owing to their adaptable mechanical properties, 
their manufacturability and their outstanding corrosion resistance. For instance, SS may be 
used in the manufacture of vascular stents, guide wires, or other orthopedic implants 
(Hanawa, 2002, Ratner, 2004). In these conditions, SS are subjected to the adsorption of 
biomolecules (proteins, polysaccharides, lipids) and biological materials (cellular debris). 
The surface modification of SS may thus be important to orient the host response as desired.  
The present work is dedicated to the surface composition of 316L SS surfaces at different 
stages of the procedure used to graft a protein via the use of APTES and of a bifunctional agent 
expected to link the NH2-terminated silane with NH2 groups of the protein. Glucose oxidase 
was chosen as a model protein for reasons of convenience owing to previous works related to 
microbiologically influenced corrosion (Dupont et al., 1998, Landoulsi et al., 2009, Landoulsi et 
al., 2008b, Landoulsi et al., 2008c). A particular attention is given to (i) the real state of the 
interface (composition, depth distribution of constituents) at different stages and (ii) the mode 
of protein retention. Therefore, X-ray photoelectron spectroscopy is used in a way (angle 
resolved measurements, reasoned peak decomposition, validation by quantitative 
relationships between spectral data) to provide a speciation in terms of classes of compounds 
(silane, protein, contaminants), using guidelines established in previous works (Genet et al., 
2008; Rouxhet & Genet, 2011). Water contact angle measurements are used to address the issue 
of the presence of contaminants and the perspectives of avoiding it. 
 

Substrate Linker Biomolecule Reference 
a. Substrate preparation 
b. APTES treatment   
c. Evaluation of efficiency regarding biomolecule activity. Substrate taken as  blank  
d. Interface characterization  

Stainless steel EDC Alginate Yoshioka et al., 2003 
a. Sonication in acetone, 5 min; heating 2 h at 500°C in air. 
b. In toluene, 1h; rinsing in toluene and ethanol; sonication in ethanol, 5 min; drying in air; 
curing 10 min at 105°C. 
c. Preventing adsorption of blood-clotting proteins. Blanks = native, silanized. 
d. XPS: elemental concentration, consistent evolution according to reaction steps; C 1s 
peak, demonstration of alginate retention, majority of carbon of C-(C,H) type at all stages. 

Stainless steel GA Lysozyme Minier et al., 2005 
a. Acid etching at 60 °C; rinsing in water; drying under N2 gas flow. 
b. In ethanol/water, 3 min; curing 1 h at 100-150 °C in air; rinsing with water.  
c. Increase of the enzymatic activity in bacterial lysis. Blanks = native + enzyme, silanized 
+ enzyme. 
d. IRRAS: Characteristic bands of APTES. XPS: elemental concentration, consistent 
evolution according to reaction steps; N/Si ratio vs photoelectron collection angle, 
consistent evolution.  

Stainless steel stent none Chitosan/heparin 
LbL film 

Meng et al., 2009 

a. Cleaning in ethanol/water (1/1, v/v); rinsing in water; drying under reduced pressure, 
24 h at 30 °C. 
b. In ethanol, 4 h at 37 °C; rinsing in water, drying in air at 50 °C. 
c. Promoting re-endothelialization after stent implantation, improvement of 
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haemocompatibility (in vivo and in vitro tests). Blank = native stainless steel stent, 
native+chitosan. 
d. QCM on model substrate slide: in situ monitoring of the LbL film growth on APTES-
coated silicon substrate. 

Stainless steel screw GA Fibrinogen + 
bisphosphonate 

North et al., 2004 

a. Sonication in acetone; acid etching; treatment in H2O2/NH4OH solution, 5 min at 80 °C. 
b. Vapor deposition, 10 min at 60 °C; curing 1 h at 150°C; sonication in xylene. 
c. Improvement of  fixation of  screws in rat tibia. Blank = test of bisphosphonate action. 
d. Ellipsometry on model substrate slide: consistent increase of the film thickness 
according to reaction steps. 

Titanium SMP RGDC peptide Xiao et al., 1997 
a. Acid etching; rinsing with different solvents; outgassing. 
b. In dry  toluene, 120 °C, 3 h plus variants; sonication in various organic  solvents and 
water. 
c. - 
d. Ellipsometry and radiolabeling: growth of silane surface layer upon repeating 
treatments. XPS peak shapes: semi-quantitatively consistent evolution according to 
reaction steps. 

Titanium GA Chitosan Martin et al., 2007 
a. Polishing; cleaning in different solvents followed by nitric acid passivation or piranha 
treatment. 
b. In toluene, 24 h; sonication in toluene, ethanol and water. 
c. - 
d. XPS: elemental concentration, consistent evolution according to reaction steps. 

Titanium none Heparin/fibronectin Li et al., 2011 
a. Polishing; sonication in different solvents, drying 2 h at 60 °C ; NaOH treatment, 2h at 
80°C. 
b. In anhydrous ethanol, 10 h, sonication in ethanol; curing 6 h at 120 °C. 
c. Improvement of blood compatibility and promotion of endothelialization. Blanks = 
native, silanized. 
d. XPS : survey spectra consistent with treatments. AFM: small clumps after APTES step, 
and after APTES + protein step.  Wet chemical analysis of proteins: consistent evolution 
according to reaction steps. 

Ti-6Al-4V SMP Cyclic peptides Porté-Durrieu et al., 
2004 

a. Substrate oxidation; outgassing at 150 °C. 
b. In dry hexane under argon; rinsing with dry hexane; outgassing.  
c. Increase of osteoprogenitor cells attachment. Blanks = native, native + peptide. 
d. XPS: elemental concentration, consistent evolution according to reaction steps; N 1s 
peak, demonstration of peptide retention; C 1s peak, majority of carbon of C-(C,H) type at 
all stages. 

Co-Cr-Mo; Ti-6Al-4V GA Trypsin Puleo, 1997 
a. Cleaning in different solvent, acid passivation. 
b. In water 3 h or acetone 10 min; curing at 45 °C overnight. 
c. Decrease of the loss of enzymatic activity as a function of time for Co-Cr-Mo, no effect 
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for Ti-6Al-4V. Blank = native + enzyme, silanized + enzyme.   
d. Wet chemical analysis of amino groups on silanized substrate only.  

Magnesium Ascorbic acid BSA Killian et al., 2010 
a. Surface polishing; rinsing in water and ethanol. 
b. In toluene, 24 h at 70 °C; rinsing in different solvents; sonication in ethanol.  
c. - 
d. XPS: elemental concentration, consistent evolution according to reaction steps. Tof-
SIMS: demonstration of silanization and protein retention.  

Tantalum coating DS3; DSS; DSC; 
CDI 

Collagen Müller et al., 2005 

a. Acid etching; rinsing with different solvents; drying in vacuum. 
b. In boiling toluene under argon; rinsing in chloroform, methanol, and in water. 
c. Increase of cell adhesion and proliferation (stem cell culture and subcutaneous 
implantation). Blanks = native, silanized. 
d. Wet chemical analysis:  amino groups, collagen, consistent with expectation. AFM: 
typical structure of fibrillar collagen.  

SiO2, TiO2, Si3N4 GA Antigen Kim et al., 2009b 
a. Plasma treatment. 
b. In ethanol/water (95/5, v/v), rinsing with ethanol ; curing 15 min at 120 °C. 
c. Antigen/antibody test. Influence of plasma exposure time. 
d. Water contact angle and XPS on cleaned substrate, influence of plasma exposure time. 

Silicon dioxide SMP RGD peptide Davis et al., 2002 
a. Oxidation and hydroxylation; rinsing with different solvents. 
b. In dry toluene, 120 °C, 3 h; sonication in various organic solvents and water. 
c. Increase of fibroblast proliferation. Blanks = no RGD. 
d. XPS: elemental concentration, consistent evolution according to reaction steps. AFM: 
small clumps after APTES step ; larger clumps after APTES+SMP step. 

Silicon dioxide GA Glucose oxidase Libertino et al., 2008 
a. Oxidation in a solution of ammonia and hydrogen peroxide. 
b. Vapor deposition; curing 40 min at 80 °C under vacuum. 
c. Slight decrease of the enzyme activity when the surface is not oxidized (a). No blank. 
d. AFM: consistent evolution of surface roughness according to reaction steps. XPS: 
elemental concentration, consistent evolution according to reaction steps. 

Silicon dioxide LC-SPDP Tagged Kcoil peptides Boucher et al., 2009 
a. Piranha treatment, 10 min at 100°C; rinsing in water; drying in air; storing in vacuum. 
b. In anhydrous toluene, 3 h; curing 1.5 h at 120°C; sonication in freshly distilled toluene. 
c. Improvement of binding efficiency (amount, affinity) of Ecoil-tagged EGF. Blank = 
silanized + LC-SPDP with blocked termination. 
d. Ellipsometry and water contact angle: consistent evolution according to reaction steps.  

Glass none Proteins from ECM,  
RGD peptide 

Siperko et al., 2006 

a. Cleaning in different solvent. 
b. In anhydrous ethanol + acetic acid, followed by addition of ultrapure water, 5 min; 
curing 15 min at 120°C.  
c. Improvement of osteoblast adhesion and growth. Blank = silanized. 
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d. AFM: increase of surface roughness, presence of nanostructures presumably due to 
proteins or peptide.   
Poly(dimethylsiloxane) SSMCC DNA Vaidya & Norton, 2004 

a. Surface plasma oxidation. 
b. Vapor deposition, 30 min, 100 °C. 
c. Hybridization of attached DNA. No blank. 
d. XPS: elemental composition and peak shapes, demonstration of silane deposition. 

Polystyrene BS3, GMBS IgG North et al., 2010 
a. Plasma treatment. 
b. In ethanol+acetic acid; rinsing in methanol. 
c.  - 
d. Fluorescence labeling: increase of amount of immobilized proteins by silanization + 
linker step. 

Cellulose SMP RGDC peptide Bartouilh de Taillac et 
al., 2004 

a. Drying, outgassing. 
b. In dry toluene under argon, 1.5 h; rinsing with dry toluene; outgassing. 
c. Increase of osteoprogenitor cells attachment and proliferation. Blank = native. 
d. XPS: qualitative consistency with expectations but probable Si contamination on final product.  

 

BSA = bovine serum albumin 
BS3 = bis(sulfosuccinimidyl) suberate 
CDI = 1,1’-carbonyldimidazole 
DSC = N,N’-disuccinimidyl-carbonate  
DSS = N,N’-disuccinimidyl-suberate 
DS3 =  N,N’-disulphosuccinimidyl-suberate 
EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. 
ECM = extracellular matrix 
EGF = epidermal growth factor 
GA = glutaraldehyde  
GMBS = 4-maleimidobutyric acid N-hydrosuccinimide ester 
LbL = layer-by-layer 
LC-SPDP = Succinimydil 6-[30-(2-pyridildithio)-propionamido]hexanoate 
QCM = quartz crystal microbalance 
RGDC = arginine - glycine - aspartic acid – cysteine 
SMP = N-succinimidyl-3-maleimidopropionate   
SSMCC = sulfosuccinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate 
TNBS = 2,4,6-trinitrobenzenesulfonic acid 

Table 1. Illustration of the use of APTES for retaining biomolecules on surfaces. The 
meaning of a, b, c, and d is given in the upper box.  

2. Materials and methods  

2.1 Materials 
Disks of 316L SS (0.74 cm2, from Outokumpu Stainless AB, ARC) were used. The bulk 
chemical composition of 316L SS was given previously (Landoulsi et al., 2008a). All 
chemicals (NaCl, Na2SO4, NaNO3 NaHCO3, NaHPO4, Na2PO4) were provided by Prolabo 
(VWR, France) and ensured 99% minimum purity. 3-aminopropyl(triethoxysilane) (APTES, 
99%), glucose oxidase (Gox, EC 1.1.3.4, 47200 U.g-1) from Aspergillus Niger and D-glucose 
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were purchased from Sigma-Aldrich (France). Bis(sulfosuccinimidyl) suberate (BS) was 
purchased from Pierce (Rockford, IL, USA). 

2.2 Stainless steel surface preparation 
The samples (both faces and perimeter) were polished with 1 µm diamond suspension 
(Struers, Denmark), rinsed in binary mixture of milliQ water/ethanol (1/1, v/v) in a 
sonication bath (70W, 40 kHz, Branson, USA) and dried under nitrogen gas flow.The 
samples were then immediately immersed for 48 h in synthetic aqueous medium (NaCl 0.46 
mmol.L-1, Na2SO4 0.26 mmol.L-1, NaNO3 0.2 mmol.L-1, NaHCO3 3.15 mmol.L-1, pH about 8), 
abundantly rinsed with milliQ water (Millipore, Molsheim, France) and dried under 
nitrogen gas flow. These samples are considered as native SS and designated as “nat”. 

2.3 Surface treatment procedure 
The silanization of nat samples was performed in the gas phase with APTES. To this end, 
nat samples were placed, together with a small vial containing 100 µL APTES, in a 7 dm3 
closed recipient under vacuum for 30 min at room temperature. The samples were cured for 
1 h at 100°C under vacuum, rinsed and incubated for 6 h in milliQ water to eliminate the 
excess of non attached silanes. These are called “sil”. 
Both nat and sil samples were subjected to treatments with the coupling agent (BS) and/or 
the enzyme (Gox) as detailed below: 
i. “+BS” and “sil+BS” obtained after BS treatment (10 mM in milliQ water) for 30 min on 

nat and sil samples, respectively, 
ii. “+Gox” and “sil+Gox” obtained after Gox treatment (0.1 mg.mL-1 in phosphate buffer 

pH~6.8) for 2 h, on nat and sil samples, respectively, 
iii. “+BS+Gox” and “sil+BS+Gox” obtained after both BS and Gox treatment (according to 

the procedure described above) on nat and sil samples, respectively. 
After BS or Gox treatment, the samples were rinsed three times with milliQ water and dried 
under nitrogen gas flow. 
In order to clarify the issue of surface contamination, nat samples were further cleaned by 
UV-ozone treatment (UVO Cleaner, Jelight Co, Irvine, Ca, USA) during 20 minutes. They 
were then placed in a Petri dish, left in the laboratory environment, and submitted to water 
contact angle measurements as a function of time. 

2.4 X-ray photoelectron spectroscopy 
XPS analyses were performed using a Kratos Axis Ultra spectrometer (Kratos Analytical, 
UK), equipped with a monochromatized aluminum X-ray source (powered at 10 mA and 15 
kV) and an eight channeltrons detector. No charge stabilization device was used on these 
conductive samples. Analyses were performed in the hybrid lens mode with the slot 
aperture; the resulting analyzed area was 700 µm Ì 300 µm. A pass energy of 40 eV was 
used for narrow scans. In these conditions, the full width at half maximum (FWHM) of the 
Ag 3d5/2 peak of clean silver reference sample was about 0.9 eV. The samples were fixed on 
the support using a double-sided adhesive conducting tape. The pressure in the analysis 
chamber was around 10-6 Pa. The photoelectron collection angle θ between the normal to the 
sample surface and the electrostatic lens axis was 0° or 60°. The following sequence of 
spectra was recorded: survey spectrum, C 1s, O 1s, N 1s, P 2p, Cr 2p, Fe 2p, Ni 2p, Mo 3d, 
Na 1s, S 2p, Si 2p and C 1s again to check for charge stability as a function of time, and 
absence of sample degradation. The binding energy scale was set by fixing the C 1s 
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component due to carbon only bound to carbon and hydrogen at 284.8 eV. The data 
treatment was performed with the Casa XPS software (Casa Software Ltd., UK). The peaks 
were decomposed using a linear baseline, and a component shape defined by the product of 
a Gauss and Lorentz function, in the 70:30 ratio, respectively. Molar concentration ratios 
were calculated using peak areas normalized according to the acquisition parameters and 
the relative sensitivity factors and transmission functions provided by the manufacturer. 

2.5 Atomic force microscopy (AFM) 
The surface topography was examined using a commercial AFM (NanoScope III MultiMode 
AFM, Veeco Metrology LLC, Santa Barbara, CA) equipped with a 125 µm Ì 125 µm Ì 5 µm 
scanner (J-scanner). A quartz fluid cell was used without the O-ring. Topographic images 
were recorded in contact mode using oxide-sharpened microfabricated Si3N4 cantilevers 
(Microlevers, Veeco Metrology LLC, Santa Barbara, CA) with a spring constant of 0.01 N.m-1 
(manufacturer specified), with a minimal applied force (<500 pN) and at a scan rate of 5-6 
Hz. The curvature radius of silicon nitride tips was about 20 nm. Images were obtained at 
room temperature (21-24°C) in milliQ water. All images shown in this paper were flattened 
data using a third order polynomial. The surface roughness (Rrms) was computed over an 
area of 1 µm Ì 1 µm using the Veeco software. 

2.6 Water contact angle measurements 
Water contact angles were measured at room temperature using the sessile drop method 
and image analysis of the drop profile. The instrument, using a CCD camera and an image 
analysis processor, was purchased from Electronisch Ontwerpbureau De Boer (The 
Netherlands). The water (milliQ) droplet volume was 0.3 ┤L, and the contact angle was 
measured 5 s after the drop was deposited on the sample. For each sample, the reported 
value is the average of the results obtained on 5 droplets. 

3. Results 

AFM images obtained in water on SS samples after different treatments are presented in 
Figure 1. The nat sample showed the presence of nanoparticles with different sizes (nat, 
Figure 1, Rrms = 3.2 nm), in agreement with previous results. The formation of nanoparticles, 
presumably made of ferric hydroxide, resulted from oxidation occurring during the 48 h of 
immersion subsequent to polishing (Landoulsi et al., 2008a). The surface of silanized SS 
exhibited particles with a bigger size (sil, Figure 1) and the roughness decreased slightly (sil, 
Figure 1, Rrms = 2.4 nm). The treatment with Gox, with or without previous treatment with 
BS, led to the formation of particles with a more uniform size and a higher density, in 
comparison with nat sample, and no appreciable change of surface roughness (Rrms = 1.7 nm 
for sil+Gox and 2.5 nm for sil+BS+Gox, Figure 1).  
XPS is a suitable method to obtain information regarding the different constituents at the 
surface (substrate, silane, other organic compounds). The elemental composition of the 
samples is given in Table 2. Representative C 1s and O 1s peaks recorded on SS surface prior 
to and after silanization, and after further treatments are given in Figure 2. After BS and/or 
Gox treatment of silanized SS, a relative increase of the component around 531.2 eV in the O 
1s peak was observed (Figure 2). In the C 1s peak, an increase of the components at 286.3 
and 288.7 eV was also clear, while the main component remained at 284.8 eV. The same 
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tendency regarding the C 1s and O 1s peaks was also observed after BS and/or Gox 
treatment of nat sample, but was less pronounced (data not shown). It may be attempted to  
  
 

 
Fig. 1. AFM height images (1Ì1 µm2, contact mode, in water; z scale 10 nm) of native (nat), 
silanized stainless steel (sil), the same after adsorption of glucose oxidase (sil+Gox) and after 
treatment with  glucose oxidase subsequent to treatment with the coupling agent  
(sil+BS+Gox). Cross sections were taken at the place indicated by the dashed lines. 
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extract chemical information by careful decomposition of the peaks. This requires to impose 
reasonable constraints (number of components, full width at half maximum FWHM) in 
order to insure reliable comparisons, and to check the chemical relevance of the results by 
examining correlations between spectral data of different natures (Genet et al., 2008; 
Rouxhet & Genet, 2011). In previous studies (Landoulsi et al., 2008a; Landoulsi et al., 2008b), 
we have demonstrated the usefulness of this approach, even when the evolution of the C 1s 
and O 1s peak shape is weak, in order to obtain information on the amount and the nature 
of organic and inorganic constituents on SS surfaces. 
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Fig. 2. O 1s and C 1s peaks of native (nat), of silanized stainless steel (sil), of the same after 
treatment with the coupling agent (sil+BS), after adsorption of glucose oxidase (sil+Gox) 
and after treatment with  glucose oxidase subsequent to treatment with the coupling agent 
(sil+BS+Gox). 

Figure 3 presents typical O 1s, N 1s and C 1s XPS peaks recorded on native SS (nat), 
silanized (sil) and the same after Gox treatment (sil+Gox). For the decomposition of these 
peaks, reasonable constraints were applied, based on our experience with the XPS analysis 
of biosurfaces (Genet et al., 2008, Rouxhet & Genet, 2011). The C ls peak was decomposed in 
four components, the FWHM of which were imposed to be equal: (i) a component at 284.8 
eV due to carbon only bound to carbon and/or hydrogen [C–(C,H)]; (ii) a component at 
about 286.3 eV due to carbon making a single bond with oxygen and/or nitrogen [C–(O,N)] 
in alcohol, amine, or amide; (iii) a component at 287.8 eV due to carbon making one double 
bond or two single bonds with oxygen (C=O, O–C–O) and (iv) a component at 288.7 eV 
attributed to carboxyl or ester functions [(C=O)–O–R].  
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The O 1s peak was decomposed in three components (Landoulsi et al., 2008a). The first one, 
at 529.7 eV, is due to inorganic oxygen in metal oxides (M–O) (NIST Database). The FWHM 
of the two other components were arbitrarily imposed to be equal. The component at about 
531.2 eV may be due to oxygen making a double bond with carbon (C=O including amide 
and carboxyl group) and to oxygen of carboxylate. Contributions of metal hydroxides (M–
O–H) as well as oxygen bound to silicon [Si–O] in silane are overlapping with this 
component (NIST Database; Genet et al., 2008). The last component, at 533.1 eV, is attributed 
to oxygen making single bonds with carbon (C–O–H of alcohol and carboxyl, C–O–C of 
ether and ester).  
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Fig. 3. Decomposition of O 1s, N 1s and C 1s peaks recorded on: native stainless steel (nat), 
silanized stainless steel (sil) and the same after adsorption of glucose oxidase (sil+Gox). The 
N 1s peak is overlapped with a Mo 3p3/2 contribution. 
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The N 1s peak showed a main component at 400.0 eV attributed to amide or amine (N–C). 
An additional component appeared clearly near 401.6 eV in silanized SS samples (sil and 
sil+Gox, Figure 3), indicating the presence of protonated amines. The contributions at lower 
binding energies in the N 1s spectral window are due to Mo 3p3/2 components (Olefjord & 
Wegrelius, 1996); the reliability of their quantification was checked by comparison with the 
Mo concentration deduced from the Mo 3p3/2 and Mo 3d peaks (Landoulsi et al., 2008a). The 
N 1s contribution of sil shows a shape which is in agreement with spectra reported in the 
literature for APTES-modified surfaces (Suzuki et al., 2006; Xiao et al., 1997). It was not 
found justified to decompose it in three components attributed to amine, amide and 
protonated amine, respectively, as done in (Suzuki et al., 2006). The surface concentrations 
(mole fraction) associated with the components of C 1s, O 1s and N 1s peaks are given in 
Table 2. 
 

Ni 
ox

Ni 
met Ni tot Fe 

ox
Fe 

met Fe tot Cr 
ox

Cr 
met Cr tot Mo 

ox
Mo 

met Mo tot Si
 0

nat 1.23 0.73 1.95 7.59 1.57 9.16 4.69 0.33 5.02 0.34 0.12 0.46 0.38

+BS 0.81 0.54 1.35 8.32 1.89 10.21 5.96 0.40 6.36 0.46 0.12 0.57 0.29

+Gox 0.59 0.51 1.10 8.63 1.70 10.33 5.53 0.33 5.86 0.37 0.12 0.49 -

+BS+Gox 0.66 0.39 1.05 8.90 1.43 10.33 4.56 0.30 4.87 0.32 0.12 0.44 0.36

sil 0.47 0.33 0.80 7.89 1.22 9.10 4.59 0.27 4.86 0.31 0.10 0.40 0.37

sil+BS 0.47 0.43 0.91 6.91 1.45 8.36 5.24 0.33 5.57 0.35 0.11 0.45 0.32

sil+Gox 0.60 0.38 0.98 6.14 1.29 7.42 4.95 0.29 5.23 0.32 0.12 0.44 0.26

sil+BS+Gox 0.54 0.32 0.86 6.22 1.16 7.39 4.58 0.24 4.82 0.34 0.09 0.42 0.30

C 288.7 C 287.8 C 286.3 C 284.8 C tot O 533.1 O 531.2 O 529.7 O tot Oorg N401.6 N400 Ntot Si org ∑org

nat 2.45 2.29 3.92 39.62 48.28 2.36 19.02 12.60 33.98 7.92 0.00 0.73 0.73 0.44 57.37

+BS 2.89 2.08 3.88 34.87 43.71 2.48 18.96 13.86 35.30 7.64 0.00 1.21 1.21 0.43 52.99

+Gox 2.03 2.16 4.78 35.56 44.53 2.97 20.96 11.27 35.20 7.50 0.13 1.34 1.48 - 53.50

+BS+Gox 2.55 2.60 5.89 30.02 41.06 3.96 22.01 12.57 38.54 9.46 0.23 1.35 1.58 0.89 52.99

sil 1.15 2.37 4.57 36.13 44.23 1.95 21.22 12.28 35.45 5.93 0.63 1.54 2.17 2.29 54.61

sil+BS 2.03 3.30 6.48 32.72 44.53 1.07 23.16 9.71 33.94 8.49 0.66 2.65 3.31 2.13 58.47

sil+Gox 1.18 5.97 10.39 25.08 42.62 4.74 21.09 8.86 34.70 11.78 0.59 5.16 5.75 1.74 61.90

sil+BS+Gox 1.46 4.89 8.31 30.39 45.05 2.87 22.24 8.52 33.63 9.86 0.50 4.30 4.80 2.01 61.72  
Table 2. Surface concentration (mole fraction (%) computed over the sum of all elements 
except hydrogen) of elements determined by XPS (θ = 0°) on stainless steel samples. 

The Si 2p peak was decomposed in two components, at 99.3 and 101.8 eV, attributed to non 
oxidized silicon in SS (Si0) and to silicon of silane (Siorg), respectively. It was not decomposed 
in Si 2p3/2 and Si 2p1/2 contributions because these are very close in energy. The 
decomposition procedure for Fe 2p3/2, Cr 2p, Ni 2p3/2 , and Mo 3d peaks was described 
before (Landoulsi et al., 2008a). The Fe concentration may be underestimated due to the 
procedure used to treat the complex baseline of the Fe 2p peak. The distinction between 
contributions of oxidized (Mox) and nonoxidized (Mmet) metal elements was easily made. 
The concentrations obtained are also given in Table 2.  
The concentration of oxygen present in organic compounds Oorg may not directly be 
deduced from the O 1s peak owing to the overlap with inorganic hydroxide. However, for 
biological systems the sum of O and N concentrations may be evaluated by the 
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concentration of carbon in oxidized form, Cox, in consistency with alcohol, primary amine, 
primary amide and ester functions. Accordingly, 

 Oorg = Cox - N = C286.3 + C287.8 + C288.7 – Ntot (1) 

where the name of an element in italic designates its concentration and the number in 
subscript designates the binding energy of the peak component. Errors would occur in case 
of a high concentration of polysaccharides (Cox/O = 6/5) or carboxyl (Cox/O = 1/2) (Genet et 
al., 2008 ; Landoulsi et al., 2008a). 
The sum of the concentrations of the elements present in organic compounds is then given 
by:  

 ∑org = Ctot + Oorg + Ntot + Siorg = Ctot + Cox + Siorg  (2) 

For sake of uniformity, all spectral data involved in correlations below are ratioed to ∑org 
(Table 2). 
The concentration of the main elements or functions due to organic compounds, obtained at 
photoelectron collection angle θ = 0°, is plotted in Figure 4 as a function of the same quantity 
obtained at θ = 60°. A 1:1 relationship is obtained for all elements or functions and all 
samples, indicating no significant effect of the photoelectron collection angle θ on the 
relative contribution of the constituents of the organic adlayer. 

4. Discussion 

4.1 Passive film composition 
Table 2 shows that the apparent concentrations of metal elements varied only slightly 
according to the surface treatment. The main change concerned the decrease of the Feox 
concentration for sil+BS, sil+Gox and sil+BS+Gox samples. However, no change in the 
shape of the Fe 2p3/2 peak was observed (data not shown). For these samples, a significant 
decrease of the molar concentration of O529.7 was also noticed (Table 2). It appears that the 
oxide layer of SS passive film, after incubation in the aqueous medium for 48 h (nat sample), 
was mainly constituted with a mixture of Fe and Cr oxides/hydroxides and small amounts 
of partially oxidized Ni and Mo. This is in agreement with a previous study (Landoulsi et 
al., 2008a), however in the latter, the stoichiometry of the passive film was not computed. 
The O 1s component at 529.7 eV is due to metal oxides. By considering  that Moox is in the 
form of MoO3 (Landoulsi et al., 2008a), the difference between the O529.7 concentration and 
three times the Moox concentration should be due to Fe and Cr oxides. Figure 5 presents the 
relation between this difference and the sum of Feox and Crox concentrations. All data show 
reasonable linear regressions. The shift of the dots along the line when the photoelectron 
collection angle changes from 0° to 60° is due to the presence of the organic constituents on 
top of stainless steel. The average ratio between the y and x scales is 0.80 and 0.96 at θ = 0 
and 60°, respectively; the slope of the regression lines is 1.03 (s.d. 0.23) and 1.42 (s.d. 0.12), 
respectively. Thus, the ratio oxide/metal ions in chromium and iron oxyhydroxides is of the 
order of 1 to 1.5. 
The evaluation of the quantity of hydroxide associated to Fe and Cr is complex due to the 
multiple chemical functions overlapping in the O531.2 component. Niox is in the form of 
Ni(OH)2 (component at ~855.6 eV (Briggs & Seah, 1990, Zhou et al., 2006), spectra not 
shown). The amount of oxygen associated to silane depends on the products of APTES  
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Fig. 4. Plots of molar concentrations ratioed to the sum of organic elements (Σorg) measured 
by XPS at θ = 60° vs θ = 0° on native (open symbols) or silanized stainless steel (closed 
symbols), as such (¼,æ) or further treated with coupling agent BS (r,t), glucose oxidase 
(”,») or coupling agent followed by glucose oxidase (̈,̊). The dashed lines represent a 
y/x ratio of 1:1.   
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Fig. 5. Relations between molar concentrations ratioed to the sum of organic elements (Σorg) 
measured by XPS at θ = 0° (data from Table 2) and θ = 60° on native (open symbols) or 
silanized stainless steel (closed symbols), as such (¼,æ) or further treated with coupling 
agent BS (r,t), glucose oxidase (”,») or coupling agent followed by glucose oxidase 
(̈,̊). 

reaction. The different possibilities, corresponding to the relative importance of grafting 
with respect to polymerization, are shown in Figure 6 and characterized by a, defined as the 
sum, over oxygen atoms which are not bound to a metal element, of the inverse of the 
number of bonds oxygen forms with silicon. Accordingly the concentration of inorganic 
hydroxide in the passive film may be given as follows:  

 OHinorg = Otot – Oorg – O529.7 – a × Siorg                 (3) 

where a can take the values of 0, 0.5, 1, 1.5 or 2 (Figure 6).  
Figure 7 shows the plot of the concentration of hydroxide which should be associated with 
Fe and Cr, considering different values of a. Taking silicon into account (a≠0) brings the 
silanized substrates better in line with the non-silanized substrates and the correlation 
improves as a increases, indicating that silane is polymerized and not just grafted. 
Depending on the value of a, the y : x ratio varies from 1.1 (a = 0) to 0.8 (a = 2).  
These observations indicate that the stoichiometry of the Cr and Fe oxyhydroxide at the 
surface is close to (Fe,Cr)OOH. Many studies have reported a stratification in the passive 
film and the presence of Fe and Cr oxyhydroxides in the outermost layer (Le Bozec et al., 
2001). In our case, no significant effect of the photoelectron collection angle appears in the 
OHinorg/O529.7 ratio (Figure 8), whatever the value selected for a to evaluate OHinorg. However 
it must be kept in mind that the surface roughness revealed by Figure 1, which is of the 
order of the inelastic mean free path of photoelectrons in oxides, may mask the effect of a 
stratification.  
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Fig. 6. Possible products of APTES reaction. “M” designates metal elements of stainless steel. 
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Fig. 7. Relations between molar concentrations ratioed to the sum of organic elements (Σorg) 
measured by XPS at θ = 0° (data from Table 2) on native (open symbols) or silanized 
stainless steel (closed symbols), as such (¼,æ) or further treated with coupling agent BS 
(r,t), glucose oxidase (”,») or coupling agent followed by glucose oxidase (̈,̊). 
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Fig. 8. Plots of OHinorg / O529.7 ratio measured by XPS at θ = 60° vs θ = 0° on native (open 
symbols) or silanized stainless steel (closed symbols), as such (¼,æ) or further treated with 
coupling agent BS (r,t), glucose oxidase (”,») or coupling agent followed by glucose 
oxidase (̈,̊). The dashed lines represent a y/x ratio of 1:1. 

4.2 Chemical speciation of the organic adlayer 
Table 2 reveals an increase of Ntot concentration as a result of surface treatments, and an 
increase of Siorg concentration for samples prepared with APTES treatment. However, the 
concentration of carbon is high and remains almost unchanged, suggesting that organic 
contaminants, mainly hydrocarbon-like compounds, are always dominating in the organic 
adlayer. If nitrogen was exclusively due to amide functions (N-C=O) as in the peptide link 
of proteins, and if the C 1s component at 287.8 eV was exclusivley due to amide, a 1:1 
correlation would be found between the concentrations of C287.8 and Ntot. This is indeed 
observed (Figure 9a) for the set of samples involving the silanized substrate. As nitrogen is 
partly in the form of silane, relevant alternatives for the abscissa scale may be the 
concentration of N400 or the difference between the concentrations of Ntot and Siorg. If 
polysaccharides were present with protein, the C287.8 concentration should be corrected by 
subtracting the contribution of acetal and thus replaced by [C287.8 − (C286.3 − N400)/5] (Ahimou 
et al., 2007, Landoulsi et al., 2008a) or [C287.8 − (C286.3 − Ntot + Siorg)/5]. A comparison between 
different plots in Figure 9 shows that the dots representative of samples prepared with non-
silanized substrate remain clustered. The shift of the cluster along the ordinate scale 
according to the plot indicates that C287.8 concentration is higher than what can be attributed 
to amide. On the other hand, the samples prepared with silanized substrate preserve a unit 
slope whatever the plot, with much higher values of the coordinates for samples exposed to 
the enzyme, with or without the linker. This reveals an excellent agreement between the 
increases of concentrations of nitrogen and of carbon attributed to peptidic links (N−C=O), 
which result from the Gox treatment. It also validates the C 1s peak decomposition and 
component attribution.  
The meaning of the surface composition appears more clearly if it is summarized in terms of 
concentration of model molecular compounds. This approach was already used for 
microbial surfaces (Dufrêne & Rouxhet, 1996; Tesson et al., 2009), for food products 
(Rouxhet et al., 2008) and for stainless steel aged in different conditions (Landoulsi et al., 
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2008b), considering  proteins (Pr), polysaccharides (PS), and hydrocarbon-like compounds 
(HC) which represent mainly lipids in biological systems. The novelty here is to take silane 
(Sl) into account in addition to the three classes of biochemical compounds; the chemical 
composition and density considered for these model compounds are listed in Table 3. 
Accordingly, the proportion of carbon atoms due to each model compound X (CX/Ctot) can 
be computed by solving the following system of equations: 

 (Ntot – Siorg)/Ctot = 0.273 × (CPr/Ctot)               (4) 

 Oorg/ Ctot = 0.312 × (CPr/ Ctot) + 0.833 × (CPS/ Ctot)                    (5)  

 Siorg/ Ctot = 0.333 × (CSl/ Ctot)                       (6) 

 1 = (CPr/ Ctot) + (CPS/ Ctot) + (CSl/ Ctot) + (CHC/ Ctot)                    (7) 
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Fig. 9. Relations between molar concentrations ratioed to the sum of organic elements (Σorg) 
measured by XPS at θ = 0° (data from Table 2) on native (open symbols) or silanized 
stainless steel (closed symbols), as such (¼,æ) or further treated with coupling agent BS 
(r,t), glucose oxidase (”,») or coupling agent followed by glucose oxidase (̈,̊).The 
dashed lines represent a y/x ratio of 1:1. 
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The experimental concentration ratios (CX/Ctot) can be converted into weight percentages of 
model compounds (Genet et al., 2008, Rouxhet & Genet, 2011), using the carbon 
concentration specific to each compound (Table 3). 
 

 O/C N/C 
Carbon concent. 

(mmol.g-1) 
Density 
(g.cm-3) 

Proteins 0.312 * 0.273 * 43.5 1.4 
Silane 0.5 0.333 27.3 0.9 
Polysaccharides 0.833 - 37.0 1.5 
Hydrocarbons - - 71.4 0.9 

* Data computed from the amino acid sequence of glucose oxidase on the basis of ProtParam tool 
available on the ExPASy molecular biology server (http://us.expasy.org). 

Table 3. Chemical composition of organic compounds (molar concentration ratio of elements 
and concentration of carbon) and their densities. 

Results, presented in Table 4, show the often dominating presence of hydrocarbon-like 
compounds and polysaccharides, for all samples. Both compounds are due to adventitious 
contamination which may originate from adsorption from air, as always observed for high 
surface energy solids (Caillou et al., 2008; Mantel et al., 1995), but also from aqueous media 
(Landoulsi et al., 2008a). They may be taken as a global way to reflect the amount of 
compounds which contain hydrocarbon chains and oxygen, such as esters, but excluding 
proteins and silane. The concentration of silane deduced for non-silanized samples is non 
negligible but highly variable, and may also be attributed to contamination. A drastic 
increase of silane concentration is observed for all silanized samples (Table 4).  
 

Pr Sl PS HC at θ = 0° at θ = 60°

nat 2.9 5.8 29.5 61.7 3.6 2.2

+BS (8.5) 6.1 28.3 57.1 3.2 2.1

+Gox 16.3 0.0 24.7 59.0 3.2 2.3

+BS+Gox (7.3) 12.3 35.5 44.9 3.3 2.2

sil 0.0 29.0 22.2 48.8 3.8 2.7

sil+BS (10.8) 25.5 25.2 38.5 3.9 2.8

sil+Gox 35.2 20.0 24.3 20.5 3.9 2.9

sil+BS+Gox 24.4 22.9 22.5 30.2 4.1 2.8

(wt. %) Thickness (nm)

 
* The data between brackets are protein equivalent of BS products and have no physical meaning. 

Table 4. Chemical composition (weight %) of the organic adlayer present on stainless steel 
samples, as deduced from XPS data and expressed in terms of classes of molecular 
compounds*. Thickness of the organic adlayer deduced from measurements at 
photoelectron collection angle θ = 0° and 60°. 

The Gox treatment leads to a marked increase of the protein concentration on nat sample 
and a much stronger increase on sil sample. This may be attributed to physical adsorption 
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and to the fact that protonated amine of silane favors adsorption by electrostatic attraction 
(Jasienak et al., 2009). The pH of the Gox solution (6.8) is indeed higher than the isoelectric 
point of glucose oxidase (4.9). 
In the above computation, the concentration of the BS coupling agent could not be 
evaluated. The reaction of BS with NH2 transforms an amine function into amide. If only 
one end of BS reacts with silane, the N400 concentration should be doubled, which is 
consistent with the increase found in Table 2. However, converting it into protein-equivalent 
gives a number with no physical meaning. When the second end of the coupling agent 
reacts with the protein, no additional nitrogen is incorporated, the evaluation of the protein 
concentration is correct but the suberate (CH2)6 chain is counted in the HC concentration. 
This has no important impact owing to the high concentration of hydrocarbon-like 
compounds. Despite the limitations regarding the accuracy of the data in Table 4, it is clear 
that prior silanization increases markedly the concentration of glucose oxidase (sil+Gox and 
sil+BS+Gox compared to nat+Gox); however the treatment with the coupling agent does not 
increase the amount of immobilized enzyme (sil+BS+Gox compared to sil+Gox). 

4.3 State of stainless steel surface 
It appears in Table 4 that the SS surface prior to and after silanization or enzyme 
immobilization is bearing a high amount of organic contaminants. It may be argued that this 
is due to improper cleaning protocols, inappropriate sample manipulation or contamination 
in the XPS spectrometer. Actually, a clean stainless steel surface is getting quickly 
contaminated in contact with the surrounding atmosphere, as revealed by water contact 
angles, which can be measured quickly in the same environment. A nat sample showed a 
water contact angle of 44° which increased to about 60° within a delay of a few hours 
(Figure 10). When a nat sample was further treated with UV-ozone to oxidize organic 
compounds, the water contact angle was lowered down to 12°. However it increased rapidly 
in contact with the surrounding atmosphere (Figure 10) to reach values above 40° in a few 
hours. Similar results were obtained with 304L stainless steel. Wet cleaning essentially 
standardizes the surface contamination; further cleaning leaves a material with a high 
surface energy, which adsorbs quickly significant amounts of contaminants (Caillou et al., 
2008). 

 
Fig. 10. Contact angle measurements as a function of incubation time in ambient atmosphere 
performed on (”) native stainless steel and (») after UV-ozone treatment. 

0

20

40

60

80

0 4 8 12

Square root of time (h
1/2

)

C
o

n
ta

c
t 

a
n

g
le

 (
°)

 

www.intechopen.com



Silanization with APTES for Controlling the Interactions 
Between Stainless Steel and Biocomponents: Reality vs Expectation 

 

119 

It must be emphasized that outgassing a material of high surface energy is not suitable to 
prevent adventitious contamination of the surface. Materials cleaned with UV-ozone 
treatment and showing a water contact angle below 5° reached an appreciable contact angle 
(20° for silica, 40° for stainless steel and gold) after a stay of 5 minutes in the vacuum of the 
spectrometer chamber. The high rate of contamination may be due to evacuation itself, 
owing to the increased proportion of organic compounds in the residual gas and to their 
increased rate of transfer (Caillou et al., 2008). 

4.4. Thickness of the organic adlayer 
No variation of the relative concentrations of organic compounds was revealed by angle-
resolved XPS analysis (Figure 4) but an effect of stratification may be masked by the surface 
roughness. The evaluation of the adlayer thickness may clarify whether the increase of the 
silane or protein concentration resulting from the respective treatments reflects an addition 
of or a substitution by new compounds in the adlayer.  
If the surface is considered as atomically smooth and the organic layer is continuous with a 
constant thickness, the apparent concentration ratio [C]/[Cr] may be computed using the 
following equation: 

 
[ ][ ]

Org Org
C C Org

CCr C

Ox OxC Cr
Cr Cr Org

Cr

t┣ C 1 exp
┣ cosθC i σ

Cr i σ t┣ C exp
┣ cosθ

⎡ ⎤⎛ ⎞−−⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= ⎛ ⎞−⎜ ⎟⎝ ⎠
       (8) 

iC and iCr are the relative sensitivity factors of C and Cr, respectively, provided by the 
spectrometer manufacturer. The photoionization cross sections σ are 1 for C 1s and 11.7 for 
Cr 2p (Scofield, 1976). The superscripts Org and Ox designate the organic adlayer and the 

passive oxide layer, respectively. The concentration of Cr in the oxide layer ( Org
CrC ; between 

0.015 and 0.020 mol.cm-3, depending on the sample), was determined on the basis of the 
above discussion indicating that the oxide layer is constituted with FeOOH, CrOOH, 
Ni(OH)2 and MoO3 (section 4.1). Note that this is in agreement with a concentration of 
inorganic oxygen close to (Otot  − Oorg), owing to the low concentration of silane. The 
concentration of carbon in the organic adlayer was determined on the basis of the surface 
composition modeled as detailed above, using the densities given in Table 3. The density of 
silane, was taken as the average between the densities of 3-aminopropyl(trimethylsilane) 
(0.8 g.cm-3) and 3-aminopropyl(trimethoxysilane) (1.0 g.cm-3). The electron inelastic mean 
free paths (IMFP) were calculated using the Quases program (http://www.quases.com ) 
and the TPP2M formula (Tanuma et al., 1997), considering the matrix composition deduced 

above. For 
Ox

Cr
λ , values of 2.04 and 1.99 nm were computed for FeOOH and CrOOH, 

respectively (energy gap 2.3 and 1.6 eV, respectively). Considering an energy gap of 6 eV for 

the organic compounds, respective values of 
Org

C
λ  and 

Org

Crλ  were 3.79 and 3.04 nm in 

hydrocarbon-like compounds [(CH2)n], 3.59 nm and 2.89 nm in protein, 3.67 and 2.00 nm in 
polysaccharides [(C6(H2O)5)n], and 3.68 and 2.95 nm in silane [H2N(CH2)3SiO1.5]. 
The thickness of the organic adlayer deduced for photoelectron collection angles θ = 0° and 
60° is given in Table 4. The difference between the values computed for the two 
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photoelectron collection angles is due to the approximation of a smooth surface while the 
analyzed surface is rough at the scale of the inelastic mean free paths. The real organic 
adlayer thickness should be between the values given in Table 4. Comparison between nat 
and sil samples suggests that silane just adds up to the contaminants. A 3.0 nm thick adlayer 
containing 25 wt.% silane corresponds to 4.5 molecules.nm-2. This value is consistent with a 
monolayer of silane, however the retained silane is mixed with a much larger amount of 
contaminants. The protein treatment of silanized substrates (compare sil+Gox and 
sil+BS+Gox to sil) led to a significant decrease of the amount of hydrocarbon-like 
compounds, while the adlayer thickness did not change appreciably. This suggests that the 
protein adsorption caused the displacement of part of contamination present on the 
silanized stainless steel surface in the form of hydrocarbon-like compounds.  

5. Conclusion 

The decomposition of the C 1s and O 1s peak provided a distinct evaluation of oxygen 
present in inorganic oxide, inorganic hydroxide and organic compounds. This led to a 
stoichiometry close to (Fe, Cr)OOH for iron and chromium species in the passive layer. The 
elemental composition of the organic adlayer was converted into concentration of model 
organic compounds: protein, silane and contaminants. For the latter, extreme poles of 
hydrocarbons and polysaccharides were taken as models.  
Silanization increased markedly the retention of glucose oxidase, whether or not using a 
linker expected to couple the enzyme with the silane. Direct retention of the enzyme by the 
silane may be attributed to electrostatic attractions with the protonated amine groups 
(Jasienak et al., 2009). It is thus demonstrated, with the same biomolecule, that its retention 
by using an APTES-treated substrate and a linker does not infer covalent grafting through 
the linker. The occurrence of covalent binding might possibly be evaluated by examining the 
retention upon aging in electrolytes, keeping in mind that the silane layer itself may alter in 
these conditions (Dekeyser et al., 2008). 
The thickness of the organic adlayer was of the order of 3 nm. In all cases, the 
concentration of contaminants exceeded the concentration of silane and protein. Angle-
resolved measurements did not reveal any stratification in the organic adlayer, but this 
was not conclusive since the effect of a stratification may be masked owing to the 
roughness created by nanoparticles of inorganic oxyhydroxide present at the stainless 
steel surface. The presence of organic contaminants is unavoidable when high energy 
materials are exposed to air for a few hours or to vacuum for a very short time. However 
the influence of contaminants on the desired surface reactions is not known and is 
difficult to establish. The best to reduce contamination is to thoroughly clean the substrate 
by oxidation, to minimize the time of contact of substrates with air at any stage, and to 
strictly avoid outgassing. Water contact angle measurement is the best way to assess the 
cleanliness of the native substrate but the information will not be unambiguous after 
silanization and further treatments.  
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