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ABSTRACT 

Thermal storage systems are central elements of various types of power plants operated from 
renewable and conventional energy sources. Where gaseous heat transfer media are used, a 
regenerator-type heat storage based on a packed bed inventory is a particularly cost-effective 
solution. However, suitable design tools that cover the thermo-mechanical aspects of such a 
design are still missing today. As a basis for such a tool, this contribution presents a novel 
approach to investigate the thermo-mechanical behaviour of such a storage under thermo-
cyclic operation. The relevant relations are formulated on the basis of the discrete element 
method (DEM). Results of simulation runs determine the temporal and spatial displacements 
and acting forces for the individual bodies. Coupling the equations to a simplified thermal 
model allows to investigate the thermo-mechanical behaviour. Initial results for a thermo-
cyclic operation using simplified assumptions are presented. 

1. BACKGROUND 

Thermal energy storages for the high temperature range are central components for power 
plants driven from renewable energy: Heat storage allows solar thermal power plants to 
continuously operate beyond sunshine duration. In fossil CHP power plants they increase the 
operational flexibility and thus improve the revenue situation. Industrial waste heat use and 
electricity storage based on Adiabatic Compressed Air Energy Storages (ACAES) are further 
examples. 

An increasing interest in these technologies calls for large-scale storage solutions in a 
temperature range between 500-1000°C with storage capacities up to 3GWh for discharge 
durations between 4 and 12h. In many applications the heat is transferred by gaseous heat 
transfer media, such as air or flue gas. Here, a direct contact between the heat transfer fluid 
and storage inventory is a particularly cost-effective design solution. Installations of these so-
called regenerator-type heat storages have been used in the steel and glass industry for many 
decades. The storage inventory is stacked from ceramic bricks. 

To reach the cost targets for power plant applications, regenerators based on a packed bed 
inventory are a promising option. They offer a large specific heat transfer area and high heat 
transfer rates, as well as the potential to reduced investment costs, especially for natural 
stones as an inventory material. 
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However, the design of large packed beds is afflicted with technical uncertainties. The 
punctiform contacts of the particles lead to high mechanical loads and thus make the 
inventory or the containment insulation prone to failures. To come to improved inventory 
layouts, suitable simulation tools need to be developed. 

2. THE THERMO-MECHANICAL MODEL OF GRANULAR MATERIALS 

Mechanical problems that exhibit a microstructure scale that is small compared to the object 
size are usually solved with a conventional continuum based approach, such as FEM. In 
contrast, packed beds show a macroscopic behaviour that can more adequately be described 
as a system of distinct interacting bodies that are subject forces and resulting motions. 

Today, simplified packed bed models are based on either continuous or discontinuous 
approaches [1, 2]. They neglect internal motions and rearrangements inside the packed bed 
during thermal-cyclic operations. 

A more accurate numerical technique is the discrete element method (DEM). The procedure 
determines the time-varying contact locations of the individual bodies. It considers the 
mechanical interaction between bodies and numerically solves the associated equation of 
motion. Also, various particle shapes [3, 4] and containments forms can be modelled. The 
DEM was originally applied in the context of rock mechanics and geotechnics by Cundall and 
Strack [5]. Typical industrial applications are in the area of granular flow, for example hopper 
techniques [6]. 

So far, the method has been used in “cold” applications. To exploit the technique with heat 
storage, it is extended to account for thermally induced mechanical loads. For this purpose the 
DEM equations are coupled to a spatially distributed thermal model of the storage inventory. 
The considered forces include friction, recoil, damping and gravity force. 

In the following, the basic model equations are outlined. 

2.1. MECHANICAL MODEL 

The DEM describes the motions and rotations of individual particles in time and space. Basic 
quantities of the DEM are the particle coordinates xr , the particle velocities vr  and its 
rotational speed ω

r
. When particles get in contact, the acting forces on each particle are 

summed up and the Newton’s equation of motion is integrated to obtain acceleration, velocity 
and position of the particles at the next time step. 

The forces interacting between particles are described by spring models. During contact, 
virtual springs are created at the contact locations and are compressed as the particles 
interpenetrate. This approach is the basic idea behind DEM and is illustrated in figure 1 (left). 
An increasing penetration thus results in increasing forces acting on the particles. 

The geometric and kinematic relations form the method’s fundamental set of equations, which 
is summarized in figure 1 (right) for the case of spherical two-dimensional particles with 
radius r. 

The contact forces are decomposed in the normal and tangential direction. The normally 
directed forces describe recoil and damping, the tangentially directed forces the friction 
models. A more detailed description can be found in [8, 9]. 
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Figure 1: Illustration of the DEM concept for spherical 2D particles [10] (left) and the 
basic geometric and kinematic equations (right) 

The recoil force is calculated from Hook’s law using the normal directed spring constant kn 
and the penetration depth δn. The normal damping force, described by the normal component 
of the relative velocity vn and the damping coefficient C, dissipates a part of the kinetic 
energy. The normal force between two bodies i and j is expressed as: 
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Dynamic and static friction forces FF are the reaction forces in tangential direction. Classical 
friction models consist of velocity dependent components that can be combined in various 
ways. Here, the simplified calculations are based on a velocity |v| dependent component (I) for 
the static friction and Coulomb friction (II) for dynamic friction as illustrated in figure 2.  
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Figure 2: Static friction force (I) and dynamic friction force (II) 

Static friction plays a significant role with static packed beds. An adequate model uses a 
virtual tangential spring as outlined above for the normal force. At the moment when two 
bodies get in contact (t0), the calculation procedure creates a spring of zero length. During 



contact time, the spring is stretched by the excursion ξ in the tangential direction for the 
duration of a time step Δt': 
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The tangential directed forces between two bodies i and j are thus expressed as: 
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where μ is the Coulomb friction coefficient and kt is the spring constant for tangential 
direction. If sliding occurs, ξ is limited by the following relationship: 
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Besides the normal and tangential directed forces, gravitation is included as an external force 
in the model [10]. The particle-containment interaction is treated similarly to a particle-
particle contact. 

With this set of geometric, kinematic and force equations the motions of each single particle 
are determined. The force balances around the individual particles constitute the right hand 
side of Newton’s equations of motion: 

( ) ( )[ ] gmxFxF
t
x

m i

N

ijj
ii

ij
tii

ij
n

i
i

rrrrrrrr

++=
∂
∂

⋅ ∑
≠= ,1

2

2

,, ωω  (3), ( ) 0,0 ii xtx rr
==  

( ) ( ) ([∑
≠=

×=
∂

∂ N

ijj
ii

ij
tiiji

i
i xFxnr

t
J

,1

,ω
ω rrrrr
r

)]   (4), ( ) 0,0 ii t ωω
rr

==  

where mi is the mass of particle i, gr  is the gravitational acceleration and Ji is the moment of 
inertia. 

Equations (3) and (4) are discretised in time and solved numerically using a Verlet integration 
scheme to obtain the positions and velocities at the next time step. For satisfying results, the 
time step Δt' must be sufficiently small. It is determined on the basis of the maximum 
stiffness and the smallest mass of a particle. An often used relationship can be found in [11]. 
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Apart from particle positions and velocities, a simulation run provides the forces at each 
particle at the contact locations. To compare the mechanical load with permissible material 
strengths, the concept of averaged stress is introduced. For the individual particle, a mean 
stress tensor is calculated from the acting forces and the normal vector of the contact plane 
[12]: 
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where VP is the volume of a single particle and the eigenvalues of the tensor constitute the 
principle norm stress levels. 

2.2. THERMAL MODEL 

The thermal model provides the temporal and spatial temperature variation of the particles. It 
considers the storage inventory as a heterogeneous porous medium, calculating the heat 
balances for the fluid and solid phase [7]. As a simplification that is well justified for large 
installations, radial gradients are neglected and adiabatic conditions are assumed.  

With these assumptions and a normalisation of time t* and space variables z*, the one-
dimensional thermal behaviour of the solid medium TS and the heat transfer fluid TF in axial 
direction can be written as 
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where k is the total regenerator heat transfer [7], O the heat transfer surface, τ the 
charge/discharge duration, mS the total storage mass,  the mass flow rate and cFm& S and cP the 
specific heat capacities of the solid and fluid. In this formulation, the thermal operation can be 
described with only two dimensionless parameters, the reduced period duration Π and the 
reduced regenerator length Λ. 

2.3. MODEL COUPLING 

The coupling of the mechanical model to the thermal model allows to investigate the 
mechanical behaviour of packed beds during thermal cycling. A coupling equation is given 
through a term for the thermal expansion of the particles. For spherical particles and a linear 
expansion coefficient αW, the local diameter is written as: 
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The calculation procedure consists of a sequential application of equations (5) and (6) to 
calculate the temperature field, equation (7) for the particle size, equations (1) and (2) to 
calculate the interacting forces and, finally, application of equations (3) and (4) to calculate 
the particle motions. This constitutes a one-way coupling of the models: small effects of 
particle rearrangements on the thermal model are neglected. 

3. SIMULATION AND FIRST RESULTS 

Based on the simplifying assumptions above, the thermo-mechanical behaviour of a packed 
bed is looked at in the following.  



An example packed bed consists of 1014 spherical particles (ρS = 2500 kg/m3, μ = 0.5, αW = 
4e-5/K) with a diameters of 0.1 m in a containment with a height of 4.8 m and a diameter of 
2.1 m. The normally and tangentially directed spring constant calculated from the modulus of 
the elasticity and the Poisson number are 100 MN/m and 70 MN/m respectively. The 
damping coefficient C to be determined from experiments is estimated to 11000 kg/s.  

The initial conditions for each particle are chosen after a falling bulk of particles with 
randomly chosen starting coordinates and zero starting velocity. 

The application of calculation procedure determines the particle trajectories and, when 
reaching the static solution, the final positions of the falling bodies. This system state is 
depicted in the left graph of figure 3, where the resulting principle norm stress level of the 
individual particles is given as a grey tone variation. 

It can be seen that structures have evolved for the spatial distribution of the stress level. 
Basically, the mean stress level increase with increasing depth. But clearly, local minima and 
maxima exist, caused through irregularities in the arrangement. 

  

Figure 3: Principle normal stress for steady state solution after initial filling of the 
containment (left) and axial temperature profiles at the end of charging and discharging 
(right) 

As a subsequent step, thermo-mechanical loads are induced through a thermal excitation of 
the model. Imposing time-varying boundary conditions calculates a storage operation with 
inlet temperatures that alternate between 650°C and 20°C. The dimensionless thermal 
parameters - the reduced period duration Π and the reduced regenerator length Λ - are set to 
values of 4 and 8. The resulting temperature profiles at the end of charging and discharging 
are presented in figure 3 (right). For the selected parameters, the particles experience a mean 
temperature spread of about 200°C between end of charging and discharging. 



  

Figure 4: Rearrangements of the particles after five thermal cycles (left) and radial 
average force characteristics before cycling, maximum and minimum forces during 
cycling (right) 

The resulting cyclic thermal expansion of the particles leads to a rearrangement of the 
particles inside the packed bed. The final particle positions after five thermal cycles are 
shown in the left graph of figure 4. The local particle arrangements, especially at the walls, 
have changed to a more uniform distribution. For this case of equally sized spherical particles, 
the displacements lead to a more compact bed with an increased bulk densitiy of 0.85 at the 
end compared to 0.81 initially. 

A plot of the radially averaged forces versus storage height (figure 4, right) reveals the 
mechanical impact of the cyclic densification: where space for particle motion is reduced, 
locally increased values for the mean particles forces appear. For the presented example, the 
maximum values are up to four times higher compared to the initial values. 

Comparing the force curves before and after thermal cycling shows that the forces in the 
denser bulk have a maximum and decrease with depth. This force distribution is ascribed to 
an increased friction at the containment wall. 

4. CONCLUSIONS AND OUTLOOK 

Regenerators based on a packed bed inventory are a promising solution for large-scale heat 
storages in many applications. A design tool that can predict the mechanical loads for the 
particles and the containment under thermo-cyclic operation is prerequisite for a further 
development of this storage technology. The present contribution describes a calculation 
procedure that can serve as a basis for such a design tool together with first results.  

Basically, it consists of a spatially distributed model for the mechanical interactions between 
the individual particles, formulated on the basis of the discrete element method (DEM) and a 
thermal model for the packed bed. These models are coupled through a term for the thermal 
expansion of the particles. 



The first results for an example packed bed reproduce the particle arrangement in the bed and 
their rearrangement under thermal-cyclic operation. An observed bed densification becomes 
apparent in the simulation results. The resulting temporal and spatial distribution of forces 
acting on particles and containment are determined and can be used as an input to stress 
analyses. Thus, the presented approach is considered a good basis for a of design tool that can 
identify low-stress solutions for packed bed stores in large scale installations. 

However, some open questions have to be dealt with before the method can be effectively 
exploited. These include the stochastic properties of the results that make a specific treatment 
necessary. Also, quantitative statements on material durability need to be elaborated. For this 
purpose, the computed results are used to further investigate local stresses at contact points 
with a view to deriving probabilities of failure for the involved materials.  
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