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In this paper and its companion [J. Opt. Soc. Am. A. 23, 2251 (2006)], the problem of ray propagation in non-
uniform random half-plane lattices is considered. Cells can be independently occupied according to a density
profile that depends on the lattice depth. An electromagnetic source external to the lattice radiates a mono-
chromatic plane wave that undergoes specular reflections on the occupied sites. The probability of penetrating
up to level % inside the lattice is analytically evaluated using two different approaches, the former applying the
theory of Markov chains (Markov approach) and the latter using the theory of Martingale random processes
(Martingale approach). The full theory concerned with the Martingale approach is presented here, along with
an innovative modification that leads to some improved results. Numerical validation shows that it outper-
forms the Markov approach when dealing with ray propagation in dense lattices described by a slowly varying

density profile. © 2007 Optical Society of America

OCIS codes: 000.3860, 000.5490, 030.6600, 080.2710, 350.5500.

1. INTRODUCTION

This paper deals with ray propagation in nonuniform
half-plane random lattices [1,2], where each site can be
independently occupied with probability q;=1-pj;, j being
the row index. A monochromatic plane wave impinges on
the lattice with a prescribed angle 6. Sites are assumed to
be large compared with the wavelength, and accordingly
the incident wave is modeled as a collection of parallel
rays that undergo specular reflections on the occupied
cells; see Fig. 1. The objective is to analytically estimate
the probability, Pr{0— %}, that a single ray reaches a pre-
scribed level % inside the lattice before being reflected
back in the above empty half-plane.

A companion paper [3] proposed a solution based on the
so-called Markov (MKV) approach, which is summarized
next. The original bidimensional ray propagation problem
was recast as a one-dimensional random-walk problem,
where the dependence on the incidence angle 6 is lost.
The core observation of [3] was that whenever a ray hits
an occupied vertical face it does not change its vertical di-
rection of propagation. Thus, from the point of view of
evaluating the propagation depth, only reflections on
horizontal faces play a relevant role and at each level the
ray runs into just one of them, independently from 6. A
ray traveling with positive direction inside level j either
enters level j+ 1, keeping its direction of propagation, or it
remains in level j, changing its directions of propagation.
These two mutually exclusive events clearly depend on
the status of the encountered horizontal face, which is oc-
cupied with probability gj,;. Similar considerations hold
true when a ray traveling inside level j with negative di-
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rection is considered, but in this case the two events occur
on the basis of the occupancy probability at level j—1. Ac-
cordingly, ray propagation inside the whole lattice is de-
scribed by means of a Markov chain [4], leading to the fol-
lowing result (see [3] for details):

P1P2
Pr{0—k} = s . (1)
Qr-i
14ppd ———
i=0 Pr-iPr-i-1
The above equation reduces to
Prlo )= L @
T [ d =
(F-2)g+1

in the special case when g;=q for all j. It is also worth re-
minding that in order to construct the Markov chain, it is
assumed that the ray never crosses cells it has already
encountered along its path. This assumption loses valid-
ity when the incidence angle is far from 45° and when the
percolation lattice is dense. The solution provided by Eqgs.
(1) and (2) has been compared with that proposed in [5],
which is limited to uniform random lattices having g;=q
for all j, and to its extension to the nonuniform case,
briefly summarized in [3] and referred to as the Martin-
gale (MTGQG) approach.

This paper supplements [3] by presenting in detail the
theory of the MTG approach, along with a mathematical
analysis on the range of validity of the proposed solution
that was not provided in [3]. Moreover, a modification
that leads to improved results is proposed and compared
with the MKV approach. It is shown that this modified

© 2007 Optical Society of America
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Fig. 1. (Color online) Vectorial representation of the stochastic process modeling ray propagation inside nonuniform random lattices.
The nth element of the stochastic process r, is the vertical component of the vector 7,.

version of the MTG approach outperforms the MKV ap-
proach when dealing with dense random grids described
by slowly varying density profiles.

The paper is organized as follows. In Section 2, the
MTG approach is presented. The range of validity of the
proposed solution is discussed in Section 3. Section 4
deals with the numerical validation, providing a compari-
son between the MTG and the MKV approaches with ref-
erence to an exhaustive number of test cases concerned
with various density profiles as well as incidence angle
conditions. Final comments and conclusions are drawn in
Section 5.

2. MARTINGALE APPROACH

The propagation of a ray inside the lattice is described by
a realization of the following one-dimensional stochastic
process [Fig. 1(a)l:

rn=r0+2xm’ n>0, (3)

where r, is the lattice row reached after n+1 reflections,
ro is the row where the first reflection takes place, and

Xn=Tn="Tn-1, n=1 (4)

is a sequence modeling the change of level between suc-
cessive reflections. According to such a formulation, the
probability that a single ray reaches level k& before being
reflected back into the above empty half-plane can be de-
noted as Pr{ry=#k}, where N is the number of jumps such
that the ray either reaches (and possibly goes beyond) the
level k& [Fig. 2(a)] or it is reflected back to crossing level 0
[Fig. 2(b)], i.e.,

N =min{n:r, =k or r, < 0}. (5)

Now, let us express Pr{ry=F%} as follows:

0

Pr{ry =k} = >, Pr{ry = klro=i}Pr{ro=i}, (6)
=0

where Pr{ry=i} is the probability mass function of r( (i.e.,
the probability that the first reflection takes place at level
i, i=0) and the remaining term Pr{ry=k|ro=i} repre-
sents the probability, conditioned to r(y, that the ray
reaches level & before escaping in the above empty half-
plane.

As far as Pr{ry=i} is concerned, two mutually exclusive
situations can occur. The ray impinging on the lattice is
reflected either at level i=0, without entering the half-
plane, or at a level i=1. In the first case,

PI'{T‘O = 0} =41, (7)

q1 being the occupancy probability of the first level. Oth-
erwise, under the assumption of cell-status independence,
Pr{ro=0} is computed as the product of the following three
probabilities: (a) the probability that the ray enters the
lattice, Pr{a}=p;, (b) the probability that any cell on the
ray’s path until level i is empty, Pr{b}, and (c) the prob-
ability that a reflection takes place at level i given that
the ray has freely crossed the previous i—1 levels, Pr{c}.
Since, at every level j, the ray runs into tan 6 vertical
faces (with overall probability p}an % to be empty) and one
horizontal face (statistically characterized by the prob-
ability p;,; to be empty), we have

i-1

Pr{o}=[]p:, ®)
J=1

where pjj_:p}an ﬂpjﬂ is the effective probability that the
ray, procjeeding in the positive direction, crosses level j
reaching level j+1. We explicitly note that when a single
stochastic process realization is considered, tan 6 should
be rounded to an integer, but in our case, focusing on av-
erage propagation properties, the real value is considered.
As far as Pr{c} is concerned, a reflection takes place at
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level i if one of the following situations occurs: the first
vertical face reached by the ray, which proceeds toward
level i, is occupied; this face is empty and the ray hits the
next one; and so on until the ray completes the path of
length tan 6 and is reflected by the horizontal face sepa-
rating level ¢ and level i+ 1. Accordingly,

tan 6-1
tan 6 _

Pric}=q; 2 pi+quwi™’=1-pi=q;.  (9)
s=0

Combining the previous results, we obtain

q1, i=0

Pr{ro=i}= (10)

i-1
+ + : :
pa;llps, =1
J=1

Computation of Pr{ry=%|ry=i} is now in order. Let us
point out that three mutually exclusive situations can oc-
cur: (a) ro=0, (b) 0<ry<k, and (c) ro=%k. While cases (a)
and (c) are trivial, a deeper analysis is required to evalu-
ate Pr{ry=k|ro=i} when dealing with case (b). Let us in-
troduce the shifted version, with respect to the level rg, of
the process (3), that is,

level O (r )
ApEl level 1
level 2 (r)
A =k-i .
A2

level k—1
| level k (ryo)

(@)

level 0

level 1 (ray)

level k-1
| level k (ryo)

(c) Y 1

Fig. 2.
min {n: r,=k or r,<1}.

Vol. 24, No. 8/August 2007/J. Opt. Soc. Am. A 2365
n
r,'lzrn—r():Exm, n=1. (11)
m=1

Under the ansatz that the ray’s jumps following the first
one (x,, n=1) are independent and zero mean, the sto-
chastic process {r, ,n=1} can be considered a martingale
[6] with respect to {x,,,n=1} (see Appendix A). Therefore,
following the same procedure described in [5], we obtain

—(rylry < =ro) i
Pr{iry=k|rg=i}= — — =_
rylry =k —ro) = (rylry < -rg) &

(12)

the last equality following by applying the so-called Wald
approximation. Thus, the final result is

0, 1=0
i .

Pr{ry=klry=i} = 7 0<i<k . (13)
1, i=k

Before proceeding, it is worth pointing out that Eq. (12)
approximates the exact value with increasing precision as
the expected value and the variance of the ray’s jumps x,,,

level 0 (ry )
level 1
| level 2(r )

level k-1

(b) | level k (rAQ)

level 0
level 1 (ray)
| level 2 (rO)

level k (rA,_)

(Color online) The two mutually exclusive situations at reflection n=N, (a), (b) N being min {n: r, =k or r,<0} and (¢), (d) N being
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n=1, approach zero and if x,,, n=1, are identically dis-
tributed.

Finally, we substitute Egs. (10) and (13) into Eq. (6); af-
ter some computations, reported in Appendix B of the
companion paper [3], the ray propagation through the lat-
tice turns out to be fully described by the following closed-
form relation:

k-1 - i-1 k-1

l
Pr{rN>k}=p1[E cacllps+ Hpjj] (14)
i=1 =1 =1

As a check on the derived formula, note that it is indepen-
dent of the status of the cells beyond row k£ and that it re-
duces to the corresponding one obtained in [5] when p;
=p, for all j.

Equation (14) represents the natural way to extend the
result in [5] to nonuniform density profiles. Nevertheless,
at this point it makes sense to consider a slight modifica-
tion of such a formula. Let us make reference to Fig. 2
and focus on the evaluation of Pr{ry=k|ry=i} when
0<ro<k. This corresponds to the problem of a one-
dimensional discrete random walk with two absorbing
barriers r41=0 and rs9=%, and we look for the probability
that a walker, starting from level rq=t, is absorbed by the
barrier ryo=*k [Fig. 2(a)] rather than r,;=0 [Fig. 2(b)]. We
explicitly note that these events are mutually exclusive,
being Pr{N=x}=0. It is now evident that Eq. (12) esti-
mates Pr{ry=k|ro=i} on the basis of a distance criterion,

AAl
Priry=klro=i}l= ——— =

13
-, (15)
Apr+D40 K

Ajq and Aye being the distances between the starting
level ry and the absorbing levels r4 L and ry i respectively.
A little thought shows that such approximation does not
take into account the fact that a ray traveling with nega-
tive direction inside the first level surely escapes from the
grid, since there are not any occupied horizontal faces be-
tween level 1 and level 0 that can reflect the ray back into
the grid. Accordingly, provided that ry=2, the first ab-
sorbing barrier r4; is not 0 but 1 and we define N as the
number of reflections such that the ray either reaches
(and eventually goes beyond) level &, ry=Fk [Fig. 2(c)], or
is reflected back in the above empty half-plane crossing
level 1, ry<1 [Fig. 2(d)]. Applying the distance criterion,
we obtain

Anq i-1
Agp+A49 k-1

Pr{ry=k|rg=i} = (16)
Taking into account the above considerations, we ex-
press Pr{0— £} as follows:

Pr{0—k}=Pr{0—1<0Pr{l—>k <1}, (17

where Pr{0— 1< 0} is the probability that the ray reaches
level 1 before being reflected back into level 0, i.e., the
probability of entering the lattice, and Pr{1—% <1} is the
probability that the ray, starting from level 1, reaches
level % before being reflected back into level 1 and thus
escaping from the grid. The probability Pr{0—1<0} is
trivially equal to p;, while Pr{1—% <1} can be evaluated
by following the same lines as in deriving Eq. (14) but
taking into account a one-dimensional stochastic process

Martini et al.

defined starting from level 1 instead of level 0 [Fig. 1(b)]
and Eq. (16) instead of Eq. (15). This modification leads to
the following result:

Pr{0+— % < 0}
pl: k=1
_ k1 i-1 k-1
pwo| 2 ;[ 1pi+11pl |, B>1"7
im k=175 G5
(18)
which reduces to
p7 k=1
2 (k-1)
<0}= 1-p,
Pr{0—~k<0}=\p[l-p ], b1 (19)
qe(k_]-)

when the uniform case is considered.

A key issue should be pointed out. Equation (18) (as
well as Eq. (14) and the analytical results obtained in [5])
holds for a range of parameters to be accurately deter-
mined. This requires a mathematical analysis, carried out
in the following section and assessed by a numerical vali-
dation presented in Section 4.

3. RANGE OF APPLICABILITY IN THE
MARTINGALE APPROACH

The final result of Eq. (18), as well as Eq. (14), has been
derived by assuming that the ray’s jumps, successive to
the first one, are independent and with zero mean (under
such a condition the stochastic process {r,,n=1} can be
considered a martingale with respect to {x,,n=1}). More-
over, accuracy of the Wald approximation increases if the
mean and the standard deviation of the ray’s jump x,
tend to zero and if the ray’s jumps are identically distrib-
uted. Accordingly, we expect that Eq. (18) holds true when
such properties are verified with reasonable accuracy.
Hence, to evaluate the range of applicability of the pro-
posed solution, we make some considerations on the dis-
tribution of x,,.

Before providing the mathematical formulation, we re-
mind that the jump x,, starts at level r,_;, where the nth
reflection takes place, and ends at level r,, where the
(n+1)th reflection occurs. Since each jump can be either
in the positive or negative direction, with probability
Pr{x,=x} and Pr{x, =x,}, respectively, it follows that

Pr{x, = 0lx, =x}}Prix, =x;}
+Pr{x, =0|x, =x,}Pr{x,=x,}, i=0
Prix, = i} = o T
Prix,=ilx,=x}Pr{x,=x}}, >0
Prix, =ilx, =x}Pr{x, =}, <0
(20)
Concerning the case x, =0, the ray hits a cell within the
same level where the previous reflection has taken place.

By means of the same arguments leading to Eq. (9), it
turns out that
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Prix,=0lx,=x}}=q . (21)
T(n-1)
The probability Pr{x,=0|x,=x} can be easily obtained in
the same way by taking into account that the horizontal
face encountered by the ray, which proceeds toward level
7(n-1) With negative direction, is occupied with probability
Qriy-1- Accordingly,

tan 6-1
tan 0

—_ —_ S
Prix, =0, =x;}=q, 20 Py P,
-

=1-p2tpr, a=1l-p; =q; (22)

"(n-1) "(n-1)

where pe_r(
n-1)

to be freely crossed, given that the ray travels in the nega-
tive direction.

As far as remaining cases (x,#0) are concerned, we
note that the ray crosses the generic level s either with
probability p;, if it is moving in a positive direction, or
with probabilisty P, , if it is proceeding in a negative direc-
tion. Thus, with similar mathematics as for Eq. (10) we
obtain

is the effective probability of the level r(,_j,

r(n_1)+i—1
Prix, =i,i > Ox,=x}=q IT »:, (@3
n ’ n n er(n—l)” ey’
S=r(y_1)
and
T(n-1)
Prix,=i,i <Olx,=2,}=q, 11 p., (24)
(-1 821 (poq)titl
respectively.

The evaluation of Pr{x,=x;} is now in order. Since the
ray changes its direction of propagation only if it hits an
horizontal face (Fig. 1), the ray travels with positive di-
rection if an even number of the n total reflections occur
on horizontal faces of the lattice. Accordingly, we obtain

n n—i+l n-i+2

Priv,=x;}= > X X

i=0,even ay=1 ag=a;+1

> X Prc,)

a;=a;_1+1 ¢,

n

<] &lagra, 1l I1
s=1

b=1,b#ay,..,a;

&b, rp-1]. (25)

In Eq. (25) the indices a, (s=1,...,i) and b can have any
value between 1 and n and indicate the reflection number.
The index ¢, ={r¢,r1, ..., (,-1)} represents the sequence of
levels where the n reflections take place. In Eq. (25)
&nlas,rq 1)) is the probability of hitting an horizontal face
at reflection a; and at the corresponding level r(, _y), while
&[b,rp-1)] is the probability of hitting a vertical face at
reflection b and at the corresponding level r(;,_y). Both lev-
els T'(a-1) and r_y) are specified by the combination c,,.

Let us consider &[j,r;_1)] and &][j,r;_1)], i.e., the prob-
abilities that the jth reflection takes place on a horizontal
and vertical face, respectively. Since at level r(;_;) the ray
can hit at most one horizontal face [with occupancy prob-
ability either Trjgpl OF Grjy-1s depending on the direc-
tion] and tan 6 vertical faces [with occupancy probability
qr(],_l)], we can assume that
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qr(];l)+1 +
> X(-1) = X(-1)
. tan aqr(]-_l) + qr(]-_l)+1
&lirg-nl=
qr(j—l)_l _
> X(-1) = X(i-1)
tan 6Qr(]»71) + Qrufl)—l
(26)
In a similar way,
tan qu(ifl) x xh
) (-1 = -1)
tan eqruil) + qu—1)+1
gv[i’r(j—l)] =
tan 6q,(]__1) N -
5 (-1 =XG-1
tan aqr(jfl) + qu—l)_l
(27)

In Egs. (26) and (27) the direction that the ray is coming
from depends on the previous jumps. Moreover, &,[;,r;_1)]
and &[j,r(_1)] depend on the occupancy probability at lev-
els rj_1, rg-y+1, and r;_;)—1. Accordingly, we cannot
conclude that in general x,’s are independent of each
other.

However, let us consider the situation where the occu-
pancy probability between adjacent levels varies without
abrupt changes. Under such an assumption, the approxi-
mation Uriy) =Ty 1 =r_gy-1 holds true and Egs. (26)
and (27) take the form

1
', . = = , 28
&lj,ri-n)] ton 0+ 1 & (28)
tan 6
o] = ———— = &, 29
&) ton 0+ 1 ¢ (29)

It follows that the probability of hitting a horizontal or a
vertical face is constant everywhere and every time being
independent from the level where the reflection takes
place and from the direction of propagation (and thus
from the previous jumps). By substituting Eqs. (28) and
(29) into Eq. (25), we obtain

n n-i+l n-i+2

Pr{x,=x;}= 2 E‘},é’f‘i 2 2

1=0,even a1=1 ag=aq+1

> > Pric,,

a;=a;_1+1 ¢,

(30)

which reduces to

" n\. .1 .
Pr{xn = x;} = E . glhgg_l = _[1 + (gv - gh)n]zan’
i=0,even l 2
(31)
since EcnPr{cn}z 1. Due to mutual exclusivity,
Prix,=x}=1-a,. (32)

Accordingly, Eq. (20) can be written as
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+ - .
anQer + (1 - an)qer ) 1=0
(n-1) (n-1)
T(p-1)*i-1
+ + ;
. ~< ay e, i H pes5 I’>0
Prix, =i} = (AP
T(n-1)
(1-a)g, p,, 1<0
T-1)* . s
L S—r(n_1)+L+1

(33)

Thereafter, the x,’s distribution depends on n and 6,
through a,, and on the level r,_;) where the nth reflection
occurred, as well as on the i adjacent levels.

At this point, a little thought shows that when 6 is near
to 45° or a large number of reflections n occur,
Prix,=x,}=Pr{x,=x,}=1/2. Thus, if the additional condi-
tion ¢} =q,, i,j=1, holds true, it is easy to verify that in
the first af)proximation the hypothesis of independent,
identically distributed, and zero-mean jumps is satisfied.
Moreover, as far as the condition on the standard devia-
tion is concerned, it is easy to observe that given an inci-
dence condition, the standard deviation decreases as the
occupancy probability g; for all j increases.

According to above mathematical considerations, we
conclude that Eq. (18) faithfully describes the propagation
process when (1) the incidence angle is not too far from
the optimal value (i.e., 6= 6,,;=45°) or a large number of
reflections take place (i.e., n — ), (2) the grid is dense, (3)
the density profile does not present discontinuities and a
significant variation in the levels of the lattice.

4. NUMERICAL VALIDATION

In order to assess the validity of the proposed solution
and its range of applicability, as well as to provide a com-
parison with the MKV approach detailed in [3], an ex-
haustive set of numerical tests has been carried out. As a
reference, results obtained by computer-based ray launch-
ing experiments, as described in [5], are reported.

In order to quantify the prediction accuracy of the pro-
posed models with respect to the simulation, the values of
the prediction error &, the mean error (9), and the maxi-
mum error S, [3] are computed and compared. More-
over, in order to analyze the mean behavior when differ-
ent density profiles are considered, the following figures
are introduced as well:

1

(&) 2 ;E (8,);, (Global Prediction Error), (34)
i-1

1 Kmax
(o) 2 % > (&), (Global Mean Error), (35)
max k=1

where (8,); are the values of the prediction error of the ith
profile and I is the total number of considered cases. Fi-
nally, to quantify the amount of variation of the density
profile, let us introduce the slope factor, defined as
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|gmax — gmN]
S=——, (36)
4j
where qyax and gy are the maximum and the mini-
mum value of the occupancy probability, respectively, and
Aj is the number of levels over which such a variation oc-
curs.

A. Role of the Obstacles’ Density

In this section, we analyze the effect of the obstacles’ den-
sity in the performance of the model [see condition (2),
Section 3]. The incidence angle is fixed, 0= 6,,,=45°, and
uniform density profiles, having g;=q for all j, are consid-
ered.

With reference to Fig. 3, it is clear that, as expected, ac-
curacy of the MTG approach increases when dense ran-
dom lattices are taken into account. As a matter of fact,
the mean error ranges from 0.59% when ¢=0.35 to up to
4.65% when ¢=0.1. It is worth noting that
(8)q=0.4>(8)¢=0.35- This can be easily explained by taking
into account that when g=1-p=0.4, the probability that
a site is free is approaching the percolating
threshold p,=0.59275 [1]. It is well known that at this
value the lattice suddenly changes its properties, and for
q>q.=1-p, propagation is inhibited.

As far as the MKV approach is concerned, it provides
more reliable predictions when sparse grids are consid-
ered. This allows us to conclude that the two approaches
are complementary. As a matter of fact, when ¢—0 the
MKYV approach evidently outperforms the MTG approach
(e.g., [(Mmra/{OMrv]g=01=9), while when ¢=0.3 the
MTG approach allows a more faithful prediction (e.g.,
[(Omrv/(Omrcli=035=4).

B. Role of the Variation in the Density Profile

This section gives a quantitative meaning to the condition
(3) in Section 3, according to which lower variation in the
density profile leads to more accurate results. We fix the
incidence angle = 6,,;=45° and we take into account sev-
eral decreasing linear density profiles,

gi=q-a(j-1), (37)

g being equal to 0.35. The values of the parameter «,
which in this case correspond to the slope factor S, are re-
ported in Table 1.

With reference to Table 1 and to Fig. 4, it can be noticed
that, as expected, the prediction accuracy of the MTG ap-

MTG approach

oach ==

<8>

0.1 0.15 0.2 0.25 0.3 0.35 0.4
q

Fig. 3. (Color online) Uniform random lattices. Mean error (5)
for different g values when #=45°.
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Table 1. Linear Density Profiles”

Profile L1 L2 L3 14 L5 L6
a [X1073] 1.61 3.23 4.84 6.45 8.06 9.68
(e 0.35 0.73 1.26 1.75 2.34 2.88
(OMKRY 2.12 2.09 1.98 1.95 1.84 1.82
“Parameter a and mean error (J) values when #=45°.
MTG approach MKYV approach

4 T

0 4 8 12 16 20 24 28 32

4 T

0 4 8 12 16 20 24 28 32
k

Fig. 4. Linear density profiles, g;=q-a(j—1), ¢=0.35; a values specified in Table 1. Prediction error &, versus £ when #=45°. Left, MTG

approach; right, MKV approach.

proach decreases as S grows. In particular, (§) ranges
from 0.35% when S=1.61X1073 to up to 2.88% when S
=9.68 X 1073. Such a behavior points out the sensitivity of
the MTG approach with respect to the slope factor S
(max(8)/min({8)=8). On the other hand, it is evident that
the performance of the MKV approach is not affected by
the slope factor (max(8)/min(8§)=1) as pointed out in [3].
Thus, while the MTG approach outperforms the MKV ap-
proach in describing propagation in the dense slowly vari-
able profiles (i.e., L1, L2, L3, and L4), the MKV approach
gives better predictions for high S values.

C. Role of the Density Profile Type

In this section, we analyze the dependence of the predic-
tion accuracy on the type of density profile. According to
the considerations drawn at the end of Section 3 and the
results obtained in the previous test case, we expect that
the MTG approach satisfactorily performs for all density
profiles characterized by a low S value and with high oc-
cupancy probability throughout the whole lattice. The in-
cidence angle is fixed, 6= 6,,,=45°, and two slowly varying
dense profiles, having 0.3<¢;<0.4 for all j and S=6.25
X 1073, are considered, namely a double-exponential (DE)
density profile,

{aexp[(j—L)], j=<L
q;=

wexp[(L-j)7, j>L (38)

having a=0.4, L=K,,,,/2=16, and 7=17.98x 1073, and a
pseudo-Gaussian (PG) density profile,

(-L)?
qj= aexpy - p s (39)

having @=0.4, L=K,,,/2=16, and 0=29.83.

Mean error () and maximum error &,,, values ob-
tained by applying the MTG approach and the MKV ap-
proach are reported in Table 2. As expected, the MTG ap-
proach allows reliable predictions and outperforms the
MKV approach ({O)yrv=[JOmaxImTa). Moreover, as far as

Table 2. Double-Exponential (DE) and
Pseudo-Gaussian (PG) Density Profiles®

Profile DE Profile PG
MTG MKV MTG MKV
(5 1.35 2.42 1.31 2.16
Smax 2.17 2.96 2.26 2.87

“Mean error (&) and maximum error &,,, values when §=45°.

MTG approach

approacl)

A
@
Vv
v
15 30 45 60 75
6
Fig. 5. (Color online) Uniform random lattices with

q={0.3,0.35,0.4}. Global mean error ((8)) for different incidence
angles 6.

the MTG approach is concerned, it is interesting to ob-
serve that (9) values are comparable with respect to each
other and with respect to the (8) value obtained for the de-
creasing linear profile L4, (see Table 1), that is character-
ized by a slope factor of the same magnitude (S14=6.45
x1073). This further confirms that the MTG perfor-
mances are affected by the variation in the density pro-
file, pointing out as well their independence of the com-
plexity of the obstacles density profile in hand.

D. Role of the Incidence Angle
Finally, an analysis of the dependence of the prediction ef-
fectiveness on the incidence angle 6 has been carried out
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Fig. 6. Uniform random lattices with ¢={0.3,0.35,0.4}. Plots of the global prediction error (8,) versus % for different incidence angles 6.

Left, MTG approach; right, MKV approach.

Table 3. Nonuniform Density Profile
L1, DE, and PG*

0 15° 30° 45° 60° 75°
{Mmre 5.26 3.56 1.01 1.84 1.79
{Mmkv 4.62 4.06 2.23 4.12 4.10

“Global mean error ((8)) values obtained for different incidence angles 6.

[condition (1), Section 3]. We consider dense profiles with-
out abrupt discontinuities and without high variation
along the lattice depth [i.e., obstacles density profiles sat-
isfying conditions (2) and (3), Section 3].

With reference to Fig. 5, which plots the global mean
error ({(&)) versus 0 for uniform profiles having g equal to
0.3, 0.35, and 0.4, several observations can be drawn.
First of all, it is evident that while for §=15° the perfor-
mances of the two approaches are comparable, for the
other 0 values the MTG approach evidently outperforms
the MKV approach. Moreover, as expected, both ap-
proaches lose accuracy when 6 deviates from the optimal
value 6,,,=45°. However, it is interesting to observe that
while the MKV performances evidently depend only on
the distance |- 6/, the MTG approach is affected by the
current 6 value. In particular, for a fixed distance value,
we observe that the mean error returned by the MTG ap-
proach is lower in correspondence with the higher 6 value
(for instance, when |6-6,|=30°, ((8))=4.49% when 6
=15° and {(8))=1.68% when #=75°). This can be easily
explained by taking into account that to ensure reliable
predictions, the MTG approach requires either the inci-
dence angle to be near the optimal value 6,,;=45° or a
large number of reflections to take place [condition (1),
Section 3]. Now, for fixed k£ and g values, when 6— 90° the
average number of reflections n is expected to be larger
and condition (1) tends to be satisfied even if |6— 6, is far
from zero. This is further confirmed by Fig. 6, where plots
of the global prediction error (&,) are shown. Let us focus
on the MTG approach and the case |0— 6,4/ =30°. While in
the first levels the values () y—75- and () -15° are compa-
rable, by increasing k, (&,)¢-75c reduces with respect to
() p=15° and turns out to be comparable with (5,)s_45e-.

The same considerations outlined by taking into ac-
count uniform density profiles hold true when dense non-
uniform profiles are considered, as confirmed by the glo-
bal mean error ((5)) values obtained for profiles L1, DE,
and PG (see Table 3).

5. CONCLUSIONS

The problem of ray propagation in a nonuniform random
lattice has been addressed. The present contribution
builds upon the companion paper [3], where an approach
based on the theory of the Markov chains has been pre-
sented and compared with the result in [5] and to its ex-
tension to the nonuniform case, referred to as the Martin-
gale approach. Here, the whole theory concerning the
Martingale approach, including a detailed analysis on its
range of validity, has been presented, along with a modi-
fication, which leads to improved results. Numerical ex-
periments have confirmed the feasibility of the proposed
approach in dealing with ray propagation in nonuniform
random lattices and revealed its limitations.

With reference to the results presented in both the
present contribution and in the companion paper, we con-
clude that the Markov and the Martingale approaches are
complementary when dealing with ray propagation in
random lattices. Specifically, the Martingale approach is
to be preferred when dense, slowly variable density pro-
files are taken into account, while the Markov approach
returns better predictions when sparse or highly variable
profiles are at hand. As far as the incidence angle 6 is con-
cerned, both approaches lose accuracy when the incidence
angle deviates from 45°, although the MTG approach re-
turns reliable predictions also for high 6 values, provided
that £ and the obstacles density are high enough.

APPENDIX A

This section is devoted to proving that, under the assump-
tion of independent and zero-mean jumps, the process
{r, ,n=1} is a Martingale with respect to {x,,n=1}.

According to the definition provided in [6], in order to
be considered as a Martingale random process, {r,,n=1}
must satisfy the following conditions:

(raly <ee (A1)

<r;1+1|xn?xn—17 v ,.’)C1> = r;’l (A2)

As far as condition (Al) is concerned, we observe that

(raly < X iy,
i=1

and



Martini et al.

(il < (A5,

where |xEVIAX\ is a geometric random variable of parameter
M with M= 1—p£v[AX, p?’Iszmaxj +,p,}. Therefore,
J J

it turns out that

B = e
9.

If pMAX <1, then

n n pMAX
e
(raly < 2 (el < 20 (™) = =z < .
i=1 i=1 e

Otherwise, ifin[AX=1 to avoid trivialities (i.e., ¢;=0, V),
it is needed that

> ) < 2 (MAX),
i=1 i=1

and consequently,
(Il < oe.

Concerning condition (A2), by considering the assumption
of independent and zero-mean jumps, then
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<rr’L+l‘xn’xn—17 v ’x1> = <r;L +xn+1|xn7xn—17 e ’x1>
= <rr/L|xn’xn—l7 e yx1>
+ <xn+1‘xmxn—17 “ee >x1>

=r,+ @) =7

Note: In our companion paper [3] there was a typo-
graphical error in Eq. (26). The correct equation should
read

qi1, L=O
Prirg=i}={ o« . ._ ..
’ pa;]lpl, i=1
j=1
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