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Abstract This article describes a system for automatically segmenting and classi-
fying accelerometer signals. The algorithm identifies three dynamic activities (biking,
walking and running) from data recorded on the shin and a second system dedicated
to walking periods detects changes in speed and in incline. The methods are tested
on a 24-subject corpus with data acquired in controlled conditions.

1 Introduction

Physical activity (PA) level has a strong impact on the risk of development of several
diseases such as cardio-vascular diseases, Type 2 diabetes and several types of
cancer. It also plays a important part in elderly’s loss of physical autonomy and in
the development of obesity. Assessing and quantifying PA is therefore crucial for
prevention of such diseases but also for the monitoring and the treatment of patients.
Even if there exist some reliable methods to evaluate the level of physical activity
(such as oxygen uptake measurement or doubly labelled water), those are often
expensive and intrusive and then do not suit for daily use. An alternative approach
for the assessment of PA involves the use of unconstrained wearable systems such
as accelerometers. The problem of PA and energy expenditure (EE) estimation from
accelerometer signals has received much attention for the latter years. Since the
posture and the nature of the movements involved in different types of PA strongly
affect the EE [1], quantitative information (raw accelerometer data) is not sufficient to
efficiently assess EE and some additional and qualitative labelling is often needed.

The final aim of this study is to identify a subject’s PA behaviour (namely, the
postures and activities performed throughout the day) in order to precisely estimate
the EE related to the PA. The process can therefore be summarized as a segmenta-
tion/classification task, where each sample or frame is to be labelled with one posture
or activity label. Several classification methods have been used in this context: some
reviews or comparisons between these methods can be found in [2, 3, 4, 5]. Most
of these works aim at detecting both static and dynamic activities and thus often use
sensors located on the waist or on the lower back, which provide useful information
on the postural orientation of the subject. In this article, we only focus on 3 dynamic
activities (Biking, Walking and Running) by using data recorded at the shin of the
subject.

Section 2 presents the context of this study. Section 3 presents the clinical proto-
col and the data acquisition details. Section 4 describes the methods and algorithms
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used for processing the data and for segmentation and classification. Results are
then presented and discussed in Section 5.

2 Context

The algorithms presented in this paper were developped as part of the SVELTE
project which was composed of several academic, clinical and industrial partners.
The objectives of the SVELTE project are to develop a device, highly wearable and
non-invasive, which has the capacity to capture the actimetry of one’s subject in the
day-to-day conditions. To do so, the device has to remain small and easy to use (to
be switched on or turned off, battery life, . . . ). An emphasis has been put during
the project on the effective validation of the data treatment chain and its applicability
in the real-life conditions. To do so, a number of databases and experiments were
conceived and implemented in laboratory conditions to reach the design of a tool,
with a high confidence in the analysed data [6]. In this framework, the Centre de
Recherche en Nutrition Humaine (CRNH) organised, coordinated and validated the
databases necessary for the project development, while the CEA-LETI designed and
implemented the main data treatment chain.

This article describes some preliminary results obtained during the SVELTE project
for the classification and segmentation of dynamic activities. While the objective of
the SVELTE project is to keep the analysis based on one sensor, worn at the waist,
in an arbitrarily orientation, and to deliver a physical activity analysis very robust for
daily-life conditions, the present work explores the potential of an alternative data
treatment chain, with the aim to focus on a different sensor and a specific subtask.

3 Data acquisition

Twenty-four healthy and consenting subjects were asked to perform a series of ac-
tivities for 4 hours such as lying, standing, walking, etc... The description of the
subjects’ characteristics is presented on Table 1. Note that among the 24 subjects,
8 are overweight (Body Mass Index (BMI) greater than 25 and strictly lower than 30)
and 4 are obese (BMI greater than 30). During the whole experiment, they wore sev-
eral triaxial accelerometers (MotionPodTMby MOVEA). In our study, we only used the
data output by the waist and shin sensors. The data acquisition was performed by
the Centre de Recherche en Nutrition Humaine (Rhône-Alpes) and CEA-LETI. Raw
signals were sampled at a sampling rate of 100 Hz. The speeds and intensities of
the different activities were adjusted according to the physical capacities of the sub-
ject so as to make sure the experiment is safe for the subject: in order to standardize
the activities according to the physical capacity of the subjects, a simplified exercise
tolerance test (step-test) was performed within 1 week of the series of laboratory
activities. Results of these preliminary studies were used to adapt for example the
speed of the treadmill and the resistance of the cycle ergometer.

The whole experiment consists of more than 30 different activities of the daily life,
but the scope of this article is limited to three dynamic activities: Biking, Walking
and Running. Some of these labels are in fact hybrid: for instance the Walking

label is composed of 4 or 5 successive walking periods on a treadmill at different
speeds and inclines, each of them with an approximate duration of 5 minutes, the
Biking state is composed of 1 or 2 successive biking periods on an exercise bike at
different intensities, each with a duration of 5 minutes, etc... We therefore developed
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Table 1: Subjects’ characteristics.

Parameter Mean ± SD Range
Sex (M/F) 15/9

Age (yr) 38 ± 12 19-54
Weight (kg) 74 ± 15 53.1-99.7

Height (m) 1.70 ± 0.07 1.58-1.85
Body Mass Index (kg.m−2) 25.4 ± 4.4 19.2-33.6

Table 2: Typical sequence of treadmill walking

Activity Start time End time
Level walking at 3.3 km/h 10:56:00 11:01:00
Level walking at 4.4 km/h 11:01:00 11:06:00
Level walking at 5.5 km/h 11:08:00 11:13:00

Slope walking at 4.4 km/h with 5% incline 11:14:30 11:19:30
Slope walking at 4.4 km/h with 10% incline 11:19:30 11:24:30

a second specific system only dealing with Walking periods, which segments the
data according to changes in speed and incline. Table 2 shows an example of what
composed a sequence of treadmill walking. Note that all results presented in this
study are limited to data recorded in controlled conditions (treadmill and exercise
bike)

4 Algorithms and methods

Our aim is to segment and label the data recorded on the shin with the three labels
previously described, and then to segment the walking periods.

4.1 Calibration

In order to compare and process our signals, we need to insure that the sensors have
the same position and orientation for all subjects and activities. We also need the
three accelerometer components to be identifiable: in our study, we assume that the
x, y and z axes record respectively the medio-lateral, vertical and antero-posterior
acceleration. Yet, all signals are originally provided in the sensor coordinate system
(fx, fy, fy): our aim is to change this coordinate system into a person coordinate
system (ex, ey, ez), which is common to all sensors and subjects. This coordinate
system is defined as follows:

• ez gives the direction and the norm of the gravity vector when the subject is
lying

• ey gives the direction and the norm of the gravity vector when the subject is
standing

• ex is defined as ex = ey ∧ ez

3

Segmentation and classification of dynamic activities from accelerometer signals
Laurent Oudre, Maeva Doron, Chantal Simon

68



Figure 1: Calibration process: person and sensor coordinate systems.

With this definition and in the person coordinate system, the accelerometer outputs

are





0
0
−1



 when the subject is lying and





0
−1
0



 when he is standing. Figure 1

displays both coordinate systems for a lying and standing subject. By recording the
direction and the norm of the gravity vector in the sensor coordinate system when

the subject is lying





glx
gly
glz



 and standing





gsx
gsy
gsz



, it is possible to compute a matrix

of the change-of-coordinates between (fx, fy, fz) and (ex, ey, ez) which allows us to
assume that all signals lie in the same coordinate system:

P =





gsyg
l
z − gszg

l
y −gsx −glx

gszg
l
x − gsxg

l
z −gsy −gly

gsxg
l
y − gsyg

l
x −gsz −glz



 . (1)

4.2 Features

The dynamic activities Biking, Walking, Running inherently have a periodic struc-
ture, which suggests to work in the frequency domain. Preliminary results on our
database showed the most relevant component when dealing with dynamic activities
on the shin sensor was the antero-posterior. This component is therefore processed
in the frequency domain through a Short-Time Fourier Transform (STFT) calculated
on 1024 samples (10.24 sec) with an overlap of 75% (which gives a new frame every
2.56 sec). Since the frequencies of most walking, running and biking movements
are approximately ranged from 0.6 Hz to 2.5 Hz [7], we only consider the frequency
bins between 0.5 Hz and 5 Hz. We are therefore considering 92 frequency bins. The
spectrogram is then normalized so that every column vector sums to 1. Figure 2
presents an example of spectrogram recorded during these periodic activities.
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Figure 2: Example of Short-Time Fourier Transform of the antero-posterior compo-
nent recorded on the shin. The three major zones respectively correspond to Biking,
Walking and Running. The dotted lines represents the changes in incline and speed.

4.3 Classification of dynamic activities

The general workflow for our system is summarized on Figure 3. It is described in
details in [8] but the major steps can be summarized as follows:

• The detection criterion for periodic activities is obtained by summing the spec-
trogram over the frequency range 0.5-5 Hz: it is then compared to an empirical
threshold learned on the database.

• Typical frequency templates are learned for each activity with annotated data
and a Nonnegative Factorization Matrix (NMF) algorithm.

• The templates are then compared to the data thanks to the Wasserstein dis-
tance, which offers the good property of being less sensitive to small frequency
shifts (change in speed) than classical distances such as Euclidean distance.

• For each frame of signal, we choose the activity label whose template mini-
mizes the distance with the data.

• A regularization algorithm is applied in order to smooth the results and take
into account the time persistence.

4.4 Segmentation of walking periods

We here propose to divide a continuous treadmill walking record into segments
where the speed and the incline are constant, by using some multiple change-points
detection methods. The number of desired change points is supposed to be un-
known. Mathematical details of the segmentation method are given in [9] but the
process can be summarized as follows:
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Figure 3: Workflow of the classification system

• Since the STFT calculated on walking periods tends to show a strong harmonic
structure (see Figure 2), each spectrogram frame can be modelled by peaks
located at each integer-multiple of a fundamental frequency bin f0. For each
frame, we therefore first estimate this fundamental frequency, along with the
relative amplitudes of its harmonics (only in the range 0.5-5 Hz).

• These parameters are used to synthesize a theoretical spectrogram frame,
which will serve as input for a classical change point detection algorithm. In
a sense, instead of detecting changes in the spectrogram, we are detecting
changes in the fundamental frequency (which is linked with the speed) and in
the harmonic profile (which can be associated with incline or gait).

5 Results

5.1 Classification

The confusion matrix obtained for the classification system on our 24-subject corpus
is presented on Table 3. For each subject and each step involving training, the
models are learned on the 23 remaining subjects so as to prevent overfitting.
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Table 3: Confusion matrix for the dynamic activities classification.

Detected
Non-periodic Walking Biking Running

A
nn

ot
at

ed

Non-periodic 94.4 5.5 0.1 0

Walking 0 100 0 0
Biking 6.8 0 93.2 0

Running 0.2 2.9 0 96.9

The results obtained on the shin sensor for dynamic activities are satisfactory.
Most of the confusions are due to the periodic/non-periodic detection. By examining
the confusions we found out that they only occurred for 1 subject which suffered
obesity and was therefore not able to bike with a sufficient speed.

5.2 Segmentation

As far as segmentation is concerned, we use as input only the frames belonging to
the Walking state. Since annotations sometimes have a limited precision (e.g. : a
delay may occur between two walking periods), we allow the detection to lie in an
acceptable time window (± 10 s). On our 24 subjects database, the segmentation
method obtains a precision of 0.49 and a recall of 0.79. It means that in average, the
algorithm detects twice the real number of change points but is able to locate 79% of
the changes. These performances are interesting since even though the study only
concerns treadmill walking, some changes are not trivially visible in the signals (in
particular when the changes in speed are moderate, which was often the case for
obese subjects.)

6 Conclusion and future work

We introduced a system for the segmentation and classification of dynamic activities
based on accelerometer data recorded at the shin. The preliminary results obtained
on a 24-subject corpus in controlled conditions are encouraging and the simplicity
of the algorithms make it possible to implement them in simulators. Some of these
methods, as well as other technologies are currently in trial with more subjects, more
activities and in real-life conditions as part of the SVELTE project.
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[5] K. Altun, B. Barshan, and O. Tunçel, “Comparative study on classifying hu-
man activities with miniature inertial and magnetic sensors,” Pattern Recognition,
vol. 43, no. 10, pp. 3605–3620, 2010.

[6] M. Doron, T. Bastian, A. Maire, E. Perrin, L. Oudre, H. Ovigneur, F. Gris, A.-L.
Francis, M. Antonakios, and G. R., “Svelte: Evaluation device of energy expen-
diture and physical condition for the prevention and treatment of obesity-related
diseases through the analysis of a person’s physical activities,” IRBM, vol. 34,
no. 2, pp. 108–112, 2013.

[7] M. Henriksen, H. Lund, R. Moe-Nilssen, H. Bliddal, and B. Danneskiod-Samsře,
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