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Universal renormalization of saddle-point integrals for condensed Bose gases
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When treating the ground-state contribution exactly, a variant of the saddle-point method emerges that works
even for condensed Bose gases. Results thus obtained, such as canonical partition functions, differ by universal
renormalization factors from those provided by the conventional but incorrect scheme. The amended method
yields the statistical properties of ideal and very weakly interacting Bose gases with a fixed number of particles
with particular simplicity.[S1063-651X99)13012-3

PACS numbgs): 05.30.Ch, 05.30.Jp, 03.75.Fi

The saddle-point methofll] is one of the true work whereg=1/(kgT) is the inverse temperature. Hence, writing
horses of statistical mechanics. Greatly promoted by "Schrog(B,Z)/ZNHEqu_El(Z)], or
dinger’s lucid discussiof2], it serves aghe essential tool
for the comparison of different statistical ensembles. In the o *
field of Bose-Einstein condensation, however, this work Fi(z2)=(N+1)Inz+ >, In(1—ze Pev),
horse shows signs of illness, which already thwarts the at- v=0
tempt to compute canonical partition functions of ideal Bose
gaseq3]. As detailed below, the usual answer to this text-the desired\-particle partition functionzy(B) is extracted
book problem[4], probably given by generations of physi- from this serieq1) by means of a contour integral
cists, turns out to béncorrect in the condensate regime;
moreover, the standard saddle-point approximation does not
yield the correct fluctuation of the number of condensate
particles[5,6]. This shortcoming is particularly painful since
there is now, in the wake of the impressive series of succesgyhere the path of integration encircles the origin of the com-
ful experiments on atomic Bose-Einstein condens§@s plex z plane counterclockwise. The saddle pamtis then
enhanced interest in the statistical mechanics of mesoscoptetermined from the requirement that the logarithm of the
cally sme}ll, isolated samples of Bosdigs-11] W.hiCh cannot integrand becomes stationary, i.e., fr<51rﬁl(z)/(9z|Z=Z =0.
be described by the customary grand canonical ensemble.__ .~ | . 1

In this paper we discuss the reason for the failure of theThIS yields the relation
standard approach, and modify the saddle-point approxima-
tion such that it works fomll temperatures. The correct ca- - 1
nonical N-particle partition functions will then allow us to N+1:VZO 2 leBe, 1’ ©)
demonstrate the largd-equality of grand canonical and ca- 1
nonical occupation numbers also in the condensate regime ) ) ) )
and to assess the sharpness of the onset of Bose—Einsté’lei','Ch looks I_|ke a grand canonical equat!on for the fugacity
condensation in a gas with a fixed, finite number of particlesZz I @ gas witiN+1 bosons. Now one relies on the fact that
Comparing the results of the standard saddle-point scheme {8f 'arge N the main contribution to the integré®) is col-
those provided by the properly amended one, it is found tha€cted in the neighborhood of the saddle pgRy leads the
the error of the former isiniversal that is, independent of contour parallel to the imaginary axis over the saddle, and
the system’s single-particle spectrum, so that correct result¢su@lly employs the Gaussian approximation
can be obtained even from the standard scheme by means of

1 —_
Z(8) =5 § dzexi—Fy(2)], @

a simple, multiplicative renormalization. ~ 1 fatie =0 1—(2) )
We start from the familiar expansiof#] of the grand INB= 5 - dzexp —F1"—5F1"(z=2)

canonical partition functiori£(8,z) of an ideal Bose gas

with single-particle energies, (v=0,1,2...) interms of =(—27F?) exp —F), (4)

the canonical partition functiongy (),

whereF{" is thenth derivative ofF; atz,, so that

T 1 < o
=62l ey & e oy _me o
=0 (12467 o)

T

*Present address: LMU Miechen, Sektion Physik, Theresien- Within this approximatior(4), the logarithm of the canonical
stralRe 37, D-80333 Mchen, Germany. N-particle partition function reads
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from which the canonical occupation numier,), of the

single-particle state with energy, is obtained by differen- 0.0
tiating once with respect te- B¢,
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FIG. 1. Complementary error function erﬁ_y)(\/f) appearing in
For temperatures above the onset of Bose condensation, tHi€ canonical partition functiofL0), for gases of 19(short dashes
second sum on the right-hand side of Ef) can be ne- 10° (long dashes and 16 (full line) ideal Bosons in a three-
. . =~ . dimensional isotropic harmonic trap.
glected against the first. Thenn Zy/dz; vanishes as a con-

sequence of the saddle-point equatigh so that proximation. Since the saddle point remains pinned below

~ efeo, there is a gap wider thanef®1—ePeo~
(Noen= AURAY — 1 _ (8) (81_—§0)/(kBT) betwgenzl and the de_cisive singularity. For
“ I(—Pe,) z; lefea—1 sufficiently largeN, this gap hosts an interval on the order of
the inverse square root ef F{?) aroundz,, which is what is
Thus, for the largeN considered these occupation numbersrequired to validate the approximation. Doing the integral
equal their grand canonical counterpda$ [12,13, one arrives at
However, in the condensate regime the situation is quite
different, since there the sum in E@) is dominated by the 1 1 ;
ground-state contribution, so thaf'ef*0—1 is on the order ZN(ﬁ):eXF< Beo—F—1+ > UZ)EeffC T) (10)
of 1/N. Then both sums in Eq6) are of thesameorder 2
O(InN), and the neglect of the second is no longer justified. — , .
Even worse, the entire saddle-point approximatiérbreaks ~ With 7= (ef*0—2y) V—Fi” and = »n—1/5. This approxi-
of the exact partition functiori2) only if F,(z) is free of peratures. Th? slpemﬁl treatrgent of the groun%—sta;te cﬁornLnbu-
singularities in those intervals where the approximation gath'Elon Is essential in the an ensate regime, but for hig
: i o ) =12) wherez, stays away frone”?°, it does not matter whether or
ers its major contributions, that is, for thosevhereF;"(z ot it is included in the Gaussian approximation. Indeed,
—2,)? is on the order of unity. SincE{?=0(N?) by Eq.

. ; since bothy and; are large for highr, Eq. (10) then actu-
(5), the familiar saddle-point schengé) can produce correct

L= . ) ) ally reduces to the familiar result), Zy(8)~Zn(B) in the
resultsonly if F4(z) remains regular at least in an interval of high-T domain[13]. The most characteristic feature of the
orderO(1/N) aroundz,. But it does not: Again by E(3), it

ore i ) 4 artition function(10) now is the appearance of the comple-
is just the very hallmark of Bose-Einstein condensation thapentary error function erfc: Its argument drops from large

the saddle-poinz, approaches the ground-state singularity atpositive numbers at higff to large negative numbers in the
z=eP®o within orderO(1/N). With this diagnosis, the work-

. - ) condensate regime, so that the steepness of this function
horse really is seriously ill. _ _quantifies the sharpness of the onset of Bose-Einstein con-
Fortunately, there is a cure which almost suggests itselfgensation within the canonical ensemble. This finding is il-

Since it is only the ground state which is causing trf troubley,strated in Fig. 1 for idealN-particle Bose gases with
one has to exempt the ground-state contributior{¢z) “small” and “large” N in a three-dimensional isotropic har-
from the Gaussian approximation, and to treat that contribumonic oscillator potential. In this and the following figures,

tion exactly. More precisely, defining the reference temperaturdssTo=%w[N/{(3)]Y® corre-
o spond to the condensation temperatures in the IBrdjenit;
F1(z)=Fy(2)—In(1—ze Pe0), (99 o is the oscillator frequency.
In the condensate regime, whewne=0, one finds

the partition functiong2) acquire the still exact form
Zn(B)=exp(Beo—F{—1), (1D)

1 exf —Fi(2)]

INB) =5 fﬁ dzTgﬁEo' so that the treacherous E@) is replaced by

[

If one now lets the dangerous denominator stand as it is, and _ . _ o A Be,
expands only the ground-state-amputated functiorfz) N Zy(B)=Beo=1=(N+1)inz, ;1 In(1=2zye 7).
guadratically around;, then the singular point produced by

the first excited state a=eP*1 decides the fate of this ap- Evaluatingd In Zy/dz;, the amended Ed7) then reads
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1.1 - - - - Generalizing, we now introduce the quantities
| 1 q exd —F,(2)—(o—1)Beo]
' T 2 - — e Beo)o
NZ =. (1—ze F?o)
-~ 1.0 f . e
< i with positive integero, and
&zNZ .
F(2)=(N+2—0)Inz+ >, In(1—ze Pev),
u v=1
0.9 : : :
0.0 O.ST/T 1.0 1.5 so thatZy(B)=I1,; moreover,{ng)., is exactly equal to
0 I,/1,. The corresponding saddle-point equations
FIG. 2. Ratio of the proper saddle-point approximatidr®) o o 1
(heavy full line and of the standard “approximation(4) (dashed N+2—0o= T + . , (13
line) to the exact partition functions, for iGdeal Bosons in a z, efto—1 =1 z, efer—1

three-dimensional isotropic harmonic trap. The thin line indicates = . ) )
the universal factor B~ 1.08444, by which the standard formula Mimic grand canonical systems willi+2— o particles and
fails in the condensate regime. The approximations are denoted a5-fold degenerate ground states: The best possible saddle-
Z$P: the exact data foiZy have been computed recursively point calculation ofng)c,, more accurate than the approxi-
[8-10. mation (12), formally involves ground-state doublifd3].

The mean-square condensate fluctuations then become

dlnzy — zy 92y (8%ng)en=l2/11—(13/17)%+215/1;. (14)
A —PBea) zylefro—1 d(—Pe,)’

<na>cn:
Here, the third term acts as a switdh7I,~(ng)2, for tem-

etin 1 e Be peratures above the condensation point, so that then
Now one has to dl_stmgwsh two cases: Sinzg=eP?o {PN0)erm (Nodent (No)2., a5 in the grand canonical en-
+O(1/N), one may justly neglect the second term on the 0/¢cn 0/cn 0/cn» ) g
right-hand side, as one did in the incorrect reasoning baseMple [4]. In contrast, 25/I;—N°—N, and therefore

2 .
on Eq.(7), only for a#0, and then recovers, and thus vali- {9 No)en—0, for T—0. Following the same amended
dates, Eq(8). In the case of the ground state, however, thesaddle-point strategy that has already led to the canonical

second term igssential yielding partition function(10), the integrald , can be expressed in
terms of parabolic cylinder functiorj42,13. In the conden-
z; l(_eﬂso) 1 sate regime, we find
Ng)en=—1— = . 12 o
(Mol z;'effo—1  z;lefo-1 " | o “exp(Beo—F )~ )
7 | efro—g, (o=

This is, of course, an expected result — lafgequality of
grand canonical and canonical occupation numbers holdgiffering again by universal renormalization factors
also for the ground state — but it is enlightening to see how

the previously ill-famed saddle-point method, if executed R,=\2moo? e ’/(c—1)!

roperly, manages to do the job: Although the result ob- . .
|toain|?ad iyn Eq.(lg) ks similarjto Eq.®) vﬁth a=0, the from the results provided by the standard saddle-point

underlying reasoning is distinctly different. scheme. Stirling’_s formula for€¢—1)! now impliesR,—1
A surprising discovery is made upon trying to reconcilefor large o: The incorrect standard scheme becorheter

the proper approximatiofL1) with the standard formulgd). ~ When the ordetr of the ground-state pole iacreased This
Utilizing the definition (9), and exploiting thatF)~ seemingly paradoxical result — after all, it is the ground-
_(eﬁ%g_z )-2in the conde,nsate o i?ne thge r ht-hgnd sid state pole which spoils the standard scheme — finds its ex-
of E£q (11)1bec0mes gime, 9 ®lanation in the saddle-point equatitiB): In a system with

a o-fold degenerate ground state, each individual state takes

N only (1/0)-th of the population that a non-degenerate state
Zu(B) = (eF0—z)exp —FP— 1)~ —WZN(B), would have to carry. Therefore, the distance fre?ﬁo to the
€ saddle pointz,, is of the orderfO(a/N), so that increasing

drivesz,, away from the singular point, thereby lessening the

so that that the standard formuld, while correct at higi, error.

fails in the condensate regime by merely the temperature- |t one naively uses the standard scheme for evaluating
independent factoR, = y27/e~0.92214, regardless of the condensate fluctuations, disaster strikes: Then the “approxi-
system’s single-particle spectrum, that is, of the trapping pomations” to the three terms on the right-hand side of Eq.
tential which confines the gas. This finding, verified in Fig. 2(14) are off by factorsR; /R, (R;/R,)2, andR;/Rs, re-

for N=1000 ideal Bosons in an isotropic harmonic trap, eX-spectively, wrongly suggesting théd?n,)., does not vanish
plains why — fortuitously — correct results can be obtainedpropeny for T—0, but rather approaches 0.02488—

by taking derivatives of the incorrect Ha(B): The error,  which, for largeN, is huge. In contrast, our amended scheme
committed unknowingly, drops out whéhis large enough. works with utmost accuracy. Figure 3 shows the rms fluctua-
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1500 with 7=kgT/(fhw)>1, which can be derived under the as-
sumption of an infinite reservoir of condensate particles for
this particularly simple trag6,14]. The strength of the
saddle-point approach, of course, lies in the fact that it works
with the same simplicity also for every other trap geometry,
and that it can easily be adapted to the microcanonical en-
semble[13].

Experimentally realized condensates in harmonic traps are
weakly interacting, i.e., they satisfy(a/L)3<1, wherea is

1000

<8r]0>cn

500

00_0 05 1.0 the swave scattering length of the atomic species with mass
T/T0 m and L= JA/(mw). In addition, one usually habla/L

>1, placing the system in the Bogoliubov regifd®]. Spin-

FIG. 3. Heavy full line: Canonical rms fluctuation of the polarized hydrogen atonj46], with their rather low scatter-
ground-state occupation number for a gas dfitiéal Bosons in an ing length a=0.0648 nm[17], form an exception that
isotropic harmonic trap, computed with the amended saddle-poingomes closer to the ideal gas: Taking a shallow trap with
method. The dashed line corresponds to only the leading term of thg — 109 ! one hadNa/L~1 even forN=400000. Thus
approximation(15); the thin line, visible only in the upper right . - . . s ) ’
corner, to the full Eq(15). Even in the inset, the heavy and the thin !t Is possible to preparg systems Intermediate between. t.he
: T ideal gas and the Bogoliubov gas. If one assumes the validity
line remain indistinguishable. . . ", .

of first-order perturbation theory, the partition function of
such a very weakly interacting gas can be expressed in terms
of partition functions of ideal gasd,18]. Hence, for ex-
%‘Ioring the non-trivial crossoverl5] from the ideal gas to
the Bogoliubov gas, the techniques sketched here should
(8%ng)en=728(2)+ 72(1.5In7+3.7609 — 0.5  (15) prove invaluable.

tion (8ng)en=( 8%ny) &2 for 10° ideal Bosons in an isotropic
trap, and compares the saddle-point result to the approxim
tion
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