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Abstract

This thesis demonstrates the possible cutoff sample size point that balances goodness of es-

timation and study expenditure by a practical cancer case. As it is crucial to determine the

sample size in designing an experiment, researchers attempt to find the suitable sample size

that achieves desired power and budget efficiency at the same time. The thesis shows how

simulation can be used for sample size and precision calculations with survival data. The pre-

sentation concentrates on the simulation involved in carrying out the estimates and precision

calculations. The Kaplan-Meier estimator and the Cox regression coefficient are chosen as

point estimators, and the precision measurements focus on the mean square error and the stan-

dard error.
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Chapter 1

Introduction

1.1 Simulation and Sample size

Sample size estimation is an integral part of planning a statistical study. Usaully, a trade-off

between accuracy of estimation and study cost is made in sample size decision. An adequate

sample size is important to yield statistically significant results. A large sample size, however,

may run over budget. Thus, a sample size that satisfies both aspects is required. Besides sample

size, the follow up time, where careful thought is also given in medical research, is taken into

consideration in this thesis. The longer the follow up time, the more information we know about

the life expectancy. The right censoring, referring to the time of an obersvation’s occurrence

for the event greater than the specified study time, is often present in survival data due to the

insufficient follow-up.

Statisticians calculate the required sample size based on the purpose of the study, the level

of confidence, and the level of precision. The sample size analytic fomulas is one method to

determine the sample size and the alternative way to estimate the sample size is simulation.

Zhao and Li (2011) infered in their article that, the simulation technique, accommodating more

complicated statistical designs, has increased use in sample size specification. The availability

of computer simulation tools has driven the extensive use of computing intensive methods. The

Monte Carlo simulation (referred as simulation in this thesis) can deal with uncertainty and it

attempts to mimic the procedure samples collected from the population, which supports its use

in sample size and parameter estimation (Efron and Tibshirani, 1986).

The motivation for this thesis is to demonstrate the use of simulation in precision and sam-

ple size estimations by example. By simulating on concrete data, I intend to illustrate practical
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results, confirming the theoretical analysis. For simplicity, the survival data used in this mo-

tivating example is regarded as the target population, where samples are drawn from. In this

situation, the population parameter can be determined. With different sizes of samples taken

from the population, statistical inferences are conducted, including sample statistics and preci-

sion estimation. The simulation plays a role as a procedure for evaluating the performance of

different sample sizes. The multiple follow up time plans lead to multiple situations to repeat

the analysis. The longer the follow-up, the greater number of events. It is easy to expect that as

the sample size gets larger, the estimations will get more accurate and the same result applies

to longer follow up time. However, it is of interest that of which cutoff sample size point or

sample size region that we reach a certain desired precision, that we get dramatic performance

improvement of the specified estimator, and that we do not have to sacrifice an increased sample

size and thus increased cost to achieve a corresponding precision. It is possible to evaluate the

effects of longer follow up time as well. The similar procedures are done in some pilot studies

to estimate sample size required, but generally, these pilot studies are either more parametric

oriented, assuming certain probability distribution to simulate from, or dependent on analogous

previous studies. Teare et al. (2014), in their paper, compared the precision (the width of confi-

dence interval) when sample sizes are different and suggested the recommended sample size in

randomized controlled trials by sampling from distributions. In another paper, Lee et al. (2014)

presented an real data example, whether the pilot 3 month data for 40 patients would proceed

to main study of 233 patients at certain significant levels. The virtual scenario in my thesis may

result in less adaptive but more detailed findings.

In this thesis, I outline the simulation method and report the results from the simulation

study of statistics when applied to the Kaplan-Meier estimation and the Cox regression. In the

final part, I make some conclusion remarks and a brief discussion. The simulation and analysis

are implemented in software R.

1.2 Background

In this study, the population is generated based on the data that was reported by Kardaun (1983).

In Kardaun’s study, survival time of 90 males with laryngeal cancer who were diagnosed and

treated during the period 1970-1978 was studied. Analogous to the original data of Kardaun’s,

a made-up population of 994 patients, including stage of cancer, year of diagnosis, month in
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which the patient was diagnosed, patient’s age at diagnosis, and the survival time (measured in

months), is used to conduct the simulation study. The male patients in this ficticious population

(hereafter referred to as population) were diagnosed with laryngeal cancer during 1990-1998.

There are four stages of cancer, among which stage 4 is of the highest severity and stage 1 is of

the lowest severity.

All patients died within 9 years after the end of diagnosis year (i.e.within 9 years from

1998) in the population. To investigate follow up time effects on the study, I assume two

study termination dates, Jan 2004, and the day when the last survivor died. Thus respectively,

there are two populations with different study termination date. In population 1, the so-called

censoring is detected; while in population 2, following all patients untill death occurs to every

individual, complete survival time is recorded.

Censoring comes in the form of right censoring in this case, an observation terminated

before the event occurs. In the laryngeal cancer data, if a patient’s survival time (in months)

T is greater than the study follow up time, namely, a survivor at the end of the study. This

is marked as a censored observation. We do not obtain the survival time information after

the follow-up. In the right-censored data, an observation’s time on study is the time interval

between diagnosis and either death or the end of the study, and the associated indicator of death

(indicator of 1) or of survival (indicator of 0) are included.

The two populations have been set up. In population 1, the number of events is 915 (approx-

imately 8% censoring); while in population 2, the number of events is 994 with no censoring.

The two simulation pools will affect the information the samples inherit. Samples drawn from

population 1 are anticipated to carry less information than samples from population 2.
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Chapter 2

Method

To find out the possible threshold sample size value, we estimate the precision of inferences

and specify a certain level of precision that is likely to achieve both estimation accuracy and

cost efficiency. The measurements used to realize the evaluation are the mean squared error

that incorporates the variability and bias of an estimator, and the standard error that is a typical

measurement of precision. The mean squared error and the standard error are simple but useful

performance measurements, which are also essentially associated with the simulation in the

thesis. The particular simulation methodology used is the bootstrap method introduced by

Efron (1979). The basic idea to estimate the standard error is that we generate a number of

bootstrap samples of the same size by drawing randomly from the known observations, and

calculate the estimator of interest for each bootstrap sample. When we derived a number of

estimates of the estimator from bootstrap samples, we can estimate the standard error with

respect to the estimator of interest. Efron and Tibshirani (1986) has shown that the boostrap

estimate of standard error approaches to the true standard error as the simulation times are

sufficient. The same idea can be adopted when calculating the mean squared error.

In terms of the estimators, the thesis considers models for survival analysis which have the

following three main characteristics: (1) time-to-event data features; (2) censored observations;

(3) the effect of explanatory variables on the death time. The Kaplan-Meier estimator, accom-

modating characteristics (1) and (2), and the Cox regression, accommodating characteristics

(2) and (3), are selected to analyse the survival data. The ability of Kaplan-Meier method to

summarize survival probability intuitively when there is censoring and to offer further implica-

tions in survival analyses is the prominent reason to devote effort to evaluate the Kaplan-Meier

estimator. While the Kaplan-Meier method focuses more on the basic shape of survival func-

5



tion, the Cox regression proceeds to further complicated analysis of the relationship between

survival time and explanatory variables. Since the Cox regression is also the main model used

in Kardaun’s study for analysis and the made-up population is ground on the data from Kar-

daun’s study, the thesis continues to use the Cox regression to model the survival data. The

survival models used are based on the following basic definitions.

2.1 Survival function and Hazard function

In survival analysis, it is common to employ survival function to describe the time-to-event

phenomena (Klein and Moeschberger, 1997). The survival function is defined as

S(x) = Pr(X > x). (2.1)

If the event of interest is death, the survival function models the probability of an individual

surviving beyond time x. S(x) is bounded between 0 and 1 as a probability. A closely related

function is the cumulative distribution function of a random variable X , which is defined as the

probability that X will be less than or equal to x.

F (x) = P (X ≤ x). (2.2)

If X is a continuous random variable, S(x) = 1−F (x), and S(x) is non-increasing mono-

tone function.

For continuous survival data, we want to quantify the risk for event occurrence at exactly

time t (Klein and Moeschberger, 1997), and hence the hazard function is defined by

h(x) = lim
∆x→0

P [x ≤ X < x+ ∆x|X ≥ x]

∆x
. (2.3)

The hazard function, or simply hazard rate, is nonnegative. It can be written as

h(x) = − d

dt
logS(x). (2.4)

2.2 Kaplan-Meier method

The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, is widely used

in estimating survivor functions. Kaplan and Meier (1958) gave a theoretical justification to the
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method by showing that the KM estimator is a nonparametric maximum likelihood estimator.

The estimator is defined as:

Ŝ(t) =

1 if t < t1,∏
ti≤t[1−

di
Yi

] if t1 < t.

(2.5)

where t1 is the first observed failure time, di is the number of individuals who died at time t,

and Yi is the number of individuals who are at risk of the event of interest. The KM estimator

also takes censoring into account. When there is censoring, being at risk means that individuals

have not experienced the event nor have they been censored prior to time ti. Thus Yi is the

number of survivors substracting the number of censored observations.

Figure 2.1 and 2.2 shows the graph of the Kaplan-Meier estimates of survival function for

population 1 and population 2 respectively.

Figure 2.1: Kaplan-Meier survival function for population 1. The small verticle tick-marks indicate

censoring
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Figure 2.2: Kaplan-Meier survival function for population 2

The Kaplan-Meier method produces estimates of survival function at the various death

times. In this thesis, special interest is given to the survival probabilities associated survival

time (months) - the quartile estimates (point estimate on survival probability of 75%, 50%, and

25%). The summary parameters of the two populations for time is illustrated in Table 2.1. As

the survival time gets greater, the survival probability declines. The survival times of the two

populations at each of the three probability points are in register. Sample estimates will be

obtained to compare with the following true parameters.

Survival probability 75% 50% 25%

population 1 4.20 8.95 51.20

population 2 4.20 8.95 51.20

Table 2.1: Quartile estimates of survival times (months)
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2.3 Mean squared error

The mean squared error (MSE) measures the mean squared difference between the estimator

and the parameter and it evaluates the error made by the estimator, which serves as a mea-

surement of goodness of an estimator (Casella and Berger, 2002, chap. 7). The MSE has the

interpretation

MSE(t̂) = E(t̂− t)2 (2.6)

the MSE can be decomposed into a sum of bias and variance

MSE(t̂) = E(t̂− t)2 = V ar(t̂) +B(t̂)2 (2.7)

the variance measures the precision of the estimator, while the bias - the difference between

the true survival time and the mean of estimated survival times, measures the accuracy of the

estimator.

2.4 Cox regression

Survival analysis is typically concerned with examining the relationship of the survival distri-

bution to some covariates. Cox regression modelling is a modelling approach to explore the

effects of variables (so-called covariates) on survival, as Fox (2002) described in his article.

The prediction idea in survival regression is similar to that in ordinary regression (Klein and

Moeschberger, 1997). The non-parametric strategy that leaves the baseline hazard h0(t) un-

specified is used here to regress the survival times on the explanatory variables. The model,

also called proportional hazards model, was proposed by Cox (1972) as follows

hi(t) = h0(t)exp(β1 ∗ xi1 + β2 ∗ xi2 + · · ·+ βk ∗ xik) (2.8)

where h0(t) is an arbitrary baseline hazard rate; that is when all covariates are set to zero

at time t. Xi = (xi1, · · · , xik) are the covariates (risk factors) for the ith individual, and

β = (β1, · · · , βk) are regression coefficients that predict the proportional change in the hazard.

The covariates (β1 ∗ xi1 + β2 ∗ xi2 + · · · + βk ∗ xik) form the model linearly. Suppose two

individuals i and i′, the associated linear parts are as follow

ηi = β1 ∗ xi1 + β2 ∗ xi2 + · · ·+ βk ∗ xik
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and

ηi = β1 ∗ xi′1 + β2 ∗ xi′2 + · · ·+ βk ∗ xi′k

The hazard rates in the Cox model are proportional, as the quantity 2.7 demonstrates.

hi(t)

hi′(t)
=
h0(t)expηi

h0(t)expηi′
= exp(ηi − ηi′) (2.9)

which is a constant. An individual with risk factor Xi experiencing the event as compared to

an individual with risk factor Xi′ is exp(ηi − ηi′).

The explanatory variables of interest in this thesis are stage, age, and year of diagnosis.

Using the Cox model, the hazard at time t is expressed as

hi(t) = h0(t)exp(β1 ∗ stage+ β2 ∗ age+ β3 ∗ yearofdiagnosis)

or, equivalently,

log hi(t) = log h0(t) + β1 ∗ stage+ β2 ∗ age+ β3 ∗ yearofdiagnosis

Tables 2.2 and 2.3 show the parameter estimates of the Cox regression after fitting the model

to population 1 and population 2. All three covariates have statistically significant coefficients.

The regression coefficients of the two populations have nuances and the standard errors of

the coefficients for population 2 are slightly smaller than those for population 1 due to the

censoring in population 1. The exponentiated coefficients represent the multiplicative effects

on the hazard. For instance, as shown in Table 2.2, with an additional stage of the cancer

and other covariates held constant, the hazard (risk of dying at the next instant) increases by

a factor of 1.344 or 34.4 percent. Holding other covariates constant, an additional year of

diagnosis reduces the hazard by a factor of 0.935 or 6.5 percent.

coef1 exp(coef)2 se(coef)3 z4 p5

stage 0.2959 1.344 0.03296 8.98 0.0e+00

age 0.0166 1.017 0.00331 5.02 5.3e-07

year6 -0.0668 0.935 0.01556 -4.30 1.7e-05

Table 2.2: The Cox regression on population 1

1coefficient
2exponentiated coefficient
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The coefficients for population 2 are similar to those for population 1. However, the pres-

ence of 8% censoring in population 1 causes some differences. Viewing at the exponential

coefficients from two tables (Table 2.2 and 2.3), we find that the hazards of population 1 are of

greater increase or decrease than the hazards of population 2. Taking the covariate - stage as

the example, the hazard of population 1 increases 34.4 percent, while the hazard of population

2 increases 33.6 percent with an additional stage of the cancer and holding other covariates

constant. The observation is also true for the covariate - age, though the difference is tiny. For

the covariate - year of diagnosis, the hazard of population 1 (6.5 percent) reduces more than

the hazard of population 2 (4.7 percent), which interpreting in another way, we may conclude

that the impact of year of diagnosis is inflated. It seems that the risk of dying is overestimated

in population 1 due to censoring, comparing with population 2.

coef exp(coef) se(coef) z p

stage 0.2895 1.336 0.0317 9.13 0.0e+00

age 0.0159 1.016 0.0032 4.98 6.4e-07

year -0.0478 0.953 0.0147 -3.25 1.2e-05

Table 2.3: The Cox regression on population 2

3standard error of coefficient
4Z-score
5P-value
6year of diagnosis
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Chapter 3

Simulations: Kaplan-Meier Estimation

In the following two chapters, simulation procedures and results are discussed. This chapter

presents estimates of survival function, with different sample sizes drawn from the population.

The nonparametric Kaplan-Meier estimator is used here. As stated in the previous chapter,

quartiles of KM estimates when the survival probabilities are 0.75, 0.50, and 0.25 are the pri-

mary consideration for each simulation.

3.1 Simulation design

The simulation steps are shown below

1. Generate random index of size n with replacement.

2. Draw a sample X of n observations from population 1, according to the index generated

in step 1.

3. Calculate KM estimators from the drawn sample, extract the quartiles estimates, and

store these three estimates.

4. Repeat steps 1 to 3 for 5000 times.

5. Each simulation has 5000 estimated survival time at each survival probability and calcu-

late the mean , variance, and bias of the estimates at each quartiles.

6. Repeat steps 1 through 5 for a range of different sizes (n = 30, 40, 50, 60, 75, 100, 125,

150, 200, 250, 300, 350, 400, 450, 500).
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7. Repeat the above procedures using population 2.

In each simulation, the associated time t1, t2, t3 to S(t1) = 0.75, S(t2) = 0.50, S(t3) = 0.25

are stored. To capture the average performance of the estimator, we consider the MSE. The

variance of survival times at each targeting survival probability point, the average bias and the

MSE are computed in the simulation.

3.2 Results

Implementing the above procedures, the resulting estimates appear in Tables 3.1 and 3.2. First,

take a close look at the results from population 1 shown in Table 3.1. When comparing the bias,

horizontally (at the three probability points when sample size is the same), the high survival

probability point is more likely to have lower bias, although there are a few exceptions at the

50% survival point; and vertically (at different sample size points), the main trend is that the

greater the sample size, the smaller the bias. The difference between bias, however, is quite

insignificant. In this simulation study, the main source of bias seems to arise from the non-

representative sample. With greater sample size, the sample could be more representative.

But since all biases are small, we may assume that the simulation setting actually plays a role

in sampling representative samples. The remarkable difference lies in variance. Vertically,

larger sample sizes indicate lower variance, which is most notable in the 25th percentile point.

Horizontally, the variance soars up as survival time gets longer. One possible explanation for

this phenomenon could be censoring. In population 1, the censored observations are gathered

after survival time of 60 months, which corresponds to survival probability below the 25 percent

(as shown in Figure 2.1 in the previous chapter). In the 25th percentile survival probability

point, the less information about death is known, leading to less accurate estimation of survival

time. Another reason may be that there is smaller number of observations at longer survival

time. As patients die or get censored, less and less information is available, which leads to a

larger variance.

The results derived from the population 2 in Table 3.2 share consistent trend with results

from the population 1. The changing pattern of the performance in bias, variance and MSE is

similar to Table 3.1. Comparing the two tables, it is hard to conclude any major difference due

to the degree of censoring. There is probably one noteworthy exception, however, and that is

the MSE or the variance at the 25 percent probability point. The differences of the variances

13



sa
m

pl
e

si
ze

75
%

B
ia

s
75

%
V

ar
75

%
M

SE
50

%
B

ia
s

50
%

V
ar

50
%

M
SE

25
%

B
ia

s
25

%
V

ar
25

%
M

SE

30
0.

11
52

0
1.

50
82

3
1.

52
15

0
2.

70
35

9
51

.3
00

76
58

.6
10

16
0.

68
03

7
42

0.
45

95
4

42
0.

92
24

4

40
0.

06
98

0
0.

98
18

3
0.

98
67

0
1.

98
09

3
34

.3
65

20
38

.2
89

28
0.

86
41

0
30

3.
80

03
6

30
4.

54
70

2

50
0.

07
71

2
0.

82
08

7
0.

82
68

2
1.

53
49

9
23

.7
38

17
26

.0
94

36
0.

81
21

8
26

4.
47

52
3

26
5.

13
48

6

60
0.

04
67

7
0.

65
72

4
0.

65
94

2
1.

28
00

6
20

.2
07

43
21

.8
45

99
0.

55
65

7
21

8.
89

70
4

21
9.

20
68

1

75
-0

.0
13

16
0.

52
44

8
0.

52
46

5
0.

96
49

0
13

.0
57

87
13

.9
88

90
1.

55
56

3
18

7.
39

59
5

18
9.

81
59

3

10
0

0.
01

39
0

0.
37

53
1

0.
37

55
1

0.
59

64
4

7.
21

64
2

7.
57

21
6

0.
47

29
0

13
8.

98
89

9
13

9.
21

26
2

12
5

0.
05

39
0

0.
30

67
3

0.
30

96
3

0.
50

46
4

5.
17

27
7

5.
42

74
3

0.
16

31
0

11
2.

62
42

3
11

2.
65

08
3

15
0

0.
01

55
0

0.
25

35
8

0.
25

38
2

0.
40

56
6

3.
99

66
0

4.
16

11
6

0.
77

36
8

95
.9

42
27

96
.5

40
85

20
0

0.
00

21
0

0.
18

21
3

0.
18

21
4

0.
20

73
1

2.
11

57
2

2.
15

86
9

0.
38

24
2

70
.9

53
33

71
.0

99
58

25
0

0.
00

92
8

0.
15

33
9

0.
15

34
7

0.
17

88
1

1.
63

49
2

1.
66

69
0

0.
52

26
0

60
.4

10
12

60
.6

83
23

30
0

-0
.0

04
58

0.
11

77
1

0.
11

77
3

0.
09

62
0

1.
14

60
3

1.
15

52
9

0.
50

52
5

47
.3

88
54

47
.6

43
82

35
0

0.
00

25
4

0.
10

30
6

0.
10

30
7

0.
10

31
0

0.
91

23
7

0.
92

30
0

0.
64

59
0

41
.0

93
15

41
.5

10
34

40
0

-0
.0

02
03

0.
08

88
9

0.
08

88
9

0.
09

15
4

0.
79

34
1

0.
80

17
9

0.
65

15
5

35
.5

35
92

35
.9

60
43

45
0

-0
.0

03
64

0.
07

89
5

0.
07

89
6

0.
03

99
0

0.
64

33
7

0.
64

49
6

0.
47

35
0

32
.1

31
24

32
.3

55
44

50
0

-0
.0

01
38

0.
07

00
9

0.
07

00
9

0.
03

72
1

0.
54

95
9

0.
55

09
7

0.
42

43
1

27
.6

96
27

27
.8

76
31

Ta
bl

e
3.

1:
Th

e
qu

ar
til

es
K

M
es

tim
at

es
of

bi
as

,v
ar

ia
nc

e
an

d
M

SE
fo

r
po

pu
la

tio
n

1

14



between the two populations are relatively large, especially for some small sample sizes, such

as sample size of 30. The variances at the 25 percent point of population 1 are greater than the

variances of population 2, which may indicate less information in population 1 because of the

censoring.

Figure 3.1: MSE of survival time at the three quartiles probability points for the two population. The

vertical axis is on a logarithmic scale. The three probability points are in different symbols and the two

populations are in different colors.

Figure 3.1 shows the MSE result graphically. The bias of the estimates are quite close

(Table 3.1, 3.2) and the difference of MSE lies mainly in variance. Again, we see that the

MSE is of greater value at the lower survival probability point and the differences between two

populations are quite small in this logarithmic scaled graph1. The MSE declines as the sample

1The vertical axis is on a logarithmic scale due to the relative large range of the MSE values. The logarithms

of the MSE values produce a more decent graph to see the trend.
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size goes up, and meanwhile it is apparent that the declining rate of MSE slows down as the size

grows. Though, there is no definition of best estimator in terms of the MSE, the sample size

of 100 appears to be the threshold point of trade-off concerning all three probability points of

interest. When the sample size is smaller than 100, the MSE curves have steeper slope. When

the sample size is beyond 100, all curves are fairly flat. And the phenomenon applies to the

both population estimations.
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Chapter 4

Simulation: Cox Regression Estimation

4.1 Simulation design

The underlying distribution of the data is unknown, but the population is available. Therefore

the sampling strategy used in this research is case sampling, sampling individual cases - each

row of the data frame, to draw random samples. The simulation steps are as follow

1. Generate random index of size n with replacement.

2. Draw a sample X of n observations from population 1, according to the index generated

in step 1.

3. Regress the sampleX on the Cox regression model specified before and store the estimate

of each coefficient - stage, age, and year of diagnosis.

4. Repeat steps 1 to 3 for 5000 times.

5. After the replication, there are 5000 estimates for each coefficient, calculate mean and

standard deviation among these 5000 estimates, get the estimated mean and standard

error of each coefficient.

6. Repeat steps 1 through 5 for a range of different sizes (n = 15, 17, 19, 22, 25, 28, 32, 36,

40, 45, 50, 55, 65, 75, 85, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500).

7. Apply the above procedures to population 2.

As the population size is finite, if sample without replacement, the covariance of the different

sample values is non-zero. To rule out the dependence, I sample with replacement. Sample
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sizes are selected from small sizes as 15 to relatively large sizes as 500. In this study, if the

sample size is lower than 15, the number of events may be not enough to do regression. The

perfomance of small sample sizes may change remarkably, and hence the intervals are small

between chosen small sample sizes.

4.2 Results

For the design described in the previous section, the estimation of mean regression coefficients

and their standard errors of varying sample sizes are derived from simulation. The selected out-

come (sample size n = 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 300, 400, 500) of population

1, follow up time terminating on Jan 2004, is shown in Table 4.1.

sample size stage se.stage age se.age year of diag se.year of diag

15 0.4373869 0.4873281 0.0196584 0.0468380 -0.1003996 0.2197601

20 0.3862809 0.3451874 0.0189307 0.0350348 -0.0874264 0.1693540

30 0.3564377 0.2447388 0.0181800 0.0257017 -0.0838596 0.1229153

40 0.3439469 0.2047557 0.0178105 0.0208841 -0.0785292 0.0992787

50 0.3327355 0.1768086 0.0173763 0.0183326 -0.0771482 0.0864128

75 0.3167494 0.1420939 0.0172394 0.0145324 -0.0728275 0.0671305

100 0.3136281 0.1148034 0.0170618 0.0119367 -0.0712902 0.0562382

125 0.3088530 0.1031355 0.0169817 0.0104599 -0.0712314 0.0496486

150 0.3071950 0.0916850 0.0171219 0.0096201 -0.0682126 0.0453214

200 0.3031681 0.0770696 0.0172510 0.0082965 -0.0686442 0.0388819

300 0.3013235 0.0635650 0.0168542 0.0066123 -0.0686322 0.0311307

400 0.2990278 0.0554107 0.0167197 0.0056633 -0.0675111 0.0270559

500 0.2989356 0.0497359 0.0169062 0.0051131 -0.0666488 0.0239313

parameter 0.2959 0.03296 0.0166 0.00331 -0.0668 0.01556

Table 4.1: The estimated regression coefficients and standard errors for population 1 with study ending

on Jan 2004

The estimated mean coefficients, on average, get closer to the population parameter (see

Table 2.2) as the sample size increases. In regression modelling aspect, the hazards are over-

estimated when sample sizes get smaller, since the samller the sample size, the greater impact
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of explanatory variables. The performance improves dramatically among small sample sizes;

while the results change slowly among large sample sizes. The standard error declines when

the sample size increases as expected and it approaches to the population standard error. The

sample size influences standard error considerablly for small sample sizes.

The similar results hold true for population 2 (see Table 2.3) with longer follow up time as

shown in Table 4.2.

sample size stage se.stage age se.age year of diag se.year of diag

15 0.4261169 0.4958081 0.0210507 0.0458473 -0.0939805 0.2163588

20 0.3722668 0.3313938 0.0187941 0.0337496 -0.0804861 0.1600106

30 0.3484987 0.2436342 0.0175071 0.0249944 -0.0723029 0.1182873

40 0.3317312 0.1984947 0.0172376 0.0206801 -0.0658672 0.0975629

50 0.3241549 0.1738218 0.0167006 0.0174436 -0.0617790 0.0834075

75 0.3130634 0.1334420 0.0167675 0.0139466 -0.0581667 0.0646893

100 0.3057838 0.1121780 0.0164154 0.0116479 -0.0560753 0.0560396

125 0.3049019 0.0986926 0.0162281 0.0102005 -0.0555682 0.0477849

150 0.2981441 0.0890423 0.0163201 0.0091576 -0.0537220 0.0435515

200 0.2968767 0.0776443 0.0160546 0.0079510 -0.0525709 0.0369441

300 0.2947015 0.0609716 0.0161918 0.0063128 -0.0516554 0.0302071

400 0.2946066 0.0524316 0.0161907 0.0054369 -0.0505546 0.0261691

500 0.2924009 0.0459512 0.0159905 0.0049064 -0.0501157 0.0228183

parameter 0.2895 0.0317 0.0159 0.0032 -0.0478 0.0147

Table 4.2: The estimated regression coefficients and standard errors for population 2 with study ending

on last death of cancer patients

Considering the two follow up time plans, Figures 4.1, 4.2, and 4.3 illustrate that as the

sample increases, estimates associated with the two follow-up plans approach their own popu-

lation parameters respectively. The censoring in population 1, which means fewer numbers of

death, results in higher values of the parameters in population 1 than those in population 2. This

further leads to the systematic estimation difference between samples drawn from two popu-

lations. The scale of the difference is fairly small, and tends to be neglectable. The standard

errors between the two time plans, as shown in Tables 4.1 and 4.2, possess slight difference.

Generally, the estimated standard errors in shorter follow-up are a little bit greater, comparing
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to the standard errors in longer follow-up, which is caused by limited death information in

shorter follow-up. The neglectable difference in this case might owe to the low degree of cen-

soring (approximately 8% censoring) difference between the two follow up time plans. We may

expect some considerable effects of longer follow up time and of higher degree of censoring

difference in other cancer studies.

Figure 4.1: Estimated mean regression coefficient for stage. The points in red are estimates for pop-

ulation 1 (population parameter βstage = 0.2959) and points in blue are estimates for population 2

(population parameter βstage = 0.2895).
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Figure 4.2: Estimated mean regression coefficient for age (population 1 parameter βage = 0.0166 and

population 2 parameter βage = 0.0159).

Figure 4.3: Estimated mean regression coefficient for year of diagnosis (population 1 parameter βyear =

−0.0668 and population 2 parameter βyear = −0.0478).
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Figures 4.4, 4.5, and 4.6 display the estimated regression coefficients and their standard

errors in the manner of error bars. The error bars become shorter in an decelerated rate when

sample size increases. It is also evident in these figures that the two follow-up plans have

little influence in regression coefficient and standard error estimation, as the point estimator

and error bars overlap. If we would like to achieve a prespecified standard error of all three

coefficients below e.g. 0.01, a sample size of approximately 100 to 125 is needed. The cut off

point that balances the precision and cost might be found around a sample size of 100, since

the estimation perfomance improves much slower beyond size 100.

Figure 4.4: Estimated standard error of coefficient stage. The point is the mean coefficient and the error

bar represents a coefficient estimate plus one standard error above the point, minus one standard error

below the point. The red color represents samples from population 1 and the blue color from population

2 (population 1 s.e.stage = 0.03296 and population 2 s.e.stage = 0.0317).
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Figure 4.5: Estimated standard error of coefficient age (population 1 s.e.age = 0.00331 and population

2 s.e.age = 0.0032).

Figure 4.6: Estimated standard error of coefficient year of diagnosis (population 1 s.e.year = 0.01556

and population 2 s.e.year = 0.0147).
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Chapter 5

Conclusion and Discussion

Both the survival function estimator and the Cox regression coefficient estimator are investi-

gated. In chapter 3, we consider the inferential characteristics of the Kaplan-Meier estimator.

The performance of the estimator has major improvement in respect to the MSE (mainly due

to the variance) within sample sizes of up to 100 and much less change after 100. The trend

that the variance gets more drastic when survival probability decreases is rather interesting,

which may be accounted for by the censoring and the decreasing information with lower sur-

vival probability as discussed before. This trend may also be caused by another key factor - the

simulation design. The simulation design in the thesis, is crude to some degrees, which specific

needs for percentage of censoring in samples are not guaranteed. Since the simulation process

is random, the degree of censoring in each sample drawn from population 1 differs, which may

explain the large variance at low survival probability points where censored observations are

mainly found in population 1. If every sample from population 1 has 8% censoring when sim-

ulating, we may expect the changing result, although the simulation design explain little about

the trend in population 2 where there is no censoring.

In chapter 4, we consider the Cox regression coefficient estimation. The coefficient and

its precision estimates show concave-down curves, which confirm the presumption of a cut-

off sample size for some specified precision. The coefficient estimates of samll sample sizes,

compared with those of large sample sizes, indicate overestimation of death risk when sample

size is small as with an additional increase of one of the covairates level, the hazards increase

more than the hazards in population. It is likely that the degree of overestimation could be a

supplement measurement to decide the sample size when considering the regression models,

but more thoughts are required to set up the threshold for overestimations or possible underes-
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timations. If the standard error of the coefficient is controlled at 0.01, we may conclude that

the cutoff point is around sample size of 100, which is consistent with the conclusion in the

KM estimation. A very small effect of follow up time is witnessed and more meaningful re-

sults might be discovered in longer follow-up designs. Another strategy of simulation design,

when simulating from population with censoring, may improve the result about the effect of

follow-up.

Through demonstrating with practical examples, I show how to use simulation technique

to estimate parameters, precision of the estimation, and calculate sample size. Though involv-

ing intensive computing, simulation approaches are applicable to any data-generating model,

and statistical test. The flexibility of simulation enables researchers to estimate the sample

size required in the complex medical study design, which might be not available in conven-

tional sample size determination. Arnold et al. (2011) stated in their paper that it is common

to examine the treatment effect in clinical trials. With simulation technique, we can determine

the sample size required for detecting interaction effect at some significance level. Stahl and

Landau (2013) claim that the simulation requires statisticians to clearly state the analysis proce-

dures, which encourages investigators to be more realistic and more cautious about modelling

and estimation.

In this thesis, I only consider the MSE and standard error as measurements of precision.

In the Kaplan-Meier method simulation, the choice of point estimation (the quartiles survival

probability associated survival time) may be improved if survival probability is compared rather

than survival time, as the probability has better generality. It might be more reasonable to

find the quartiles survival probability points associated survival times using the population

parameter, and when we have samples, we search for the approximately corresponding survival

probability using the population survival time. The sample probability will be compared to the

population probability. In terms of standard error, we may use more statistical measurements

such as confidence intervals to draw more reliable conclusions. And more work can be done

by power analysis in determining sample size, as specifying the probability that a particular

estimate will be statistically significant is also typically adopted. Due to the real data case, the

results are only applicable to this cancer study.
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Appendix A

Appendix

R code for simulation

dat=read.csv("popdata.csv",header=TRUE)

###diagnosed during 1.Jan.1990-1.Jan.1999; The end of the study 1-Jan-2004

#identify the censored observations

censor=function(data){

n=dim(data)[1]

status=rep(NA,n)

ind=rep(0,n)

ind=data$diag_yr+(data$diag_mn+data$time)%/%12

for(i in 1:n){

if(ind[i]>=104){

status[i]=0

}

else{

status[i]=1

}

}

return(status)

}

death1=censor(data=dat) #death indicator

cdat1=cbind(dat,death1) #create new dataset with indicator

#modify the survival time of censored observations according to the

#study time span

surtime=function(data){

n=dim(data)[1]
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for(i in 1:n){

if(data$death1[i]==0){

data$time[i]=(104-data$diag_yr[i])*12+1-data$diag_mn[i]

}

}

return(data$time)

}

stime1=surtime(data=cdat1)

#my dataset to do further analysis

mydata1=data.frame(cdat1$id,cdat1$stage,cdat1$diag_yr,cdat1$age,

stime1,death1)

colnames(mydata1)=c("id","stage","year","age","time","death")

###detecting the longest time (in years) the patients survive

ls=function(data){

n=dim(data)[1]

st=rep(0,n)

for(i in 1:n){

st[i]=(data$diag_mn[i]+data$time[i])/12+data$diag_yr[i]-100

}

return(max(st))

}

ls(dat)

###The last survivor lived to June 2008

###Dataset 2

#The end of the study 1-Jan-2009; no censoring

death2=rep(1,994)

mydata2=data.frame(dat$id,dat$stage,dat$diag_yr,dat$age,dat$time,death2)

colnames(mydata2)=c("id","stage","year","age","time","death")

###

install.packages("survival")

library(survival)

###Kaplan-Meier

#population

my.surv1=survfit(Surv(time,death)~1,data=mydata1)

my.surv1

quantile(my.surv1,c(0.25,0.5,0.75))
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my.surv2=survfit(Surv(time,death)~1,data=mydata2)

my.surv2

quantile(my.surv2,c(0.25,0.5,0.75))

myfit=function(data){

f=survfit(Surv(time,death)~1,data=data)

return(f)

}

#simulation

set.seed(77)

KM=function(s,B,data){

n=dim(data)[1]

m=length(s)

index=data$id

quan=matrix(0,nrow=B,ncol=3)

avg=matrix(0,nrow=m,ncol=3)

va=matrix(0,nrow=m,ncol=3)

bias=matrix(0,nrow=m,ncol=3)

tt=matrix(0,nrow=B,ncol=3)

mse=matrix(0,nrow=m,ncol=3)

for(i in 1:m){

for(j in 1:B){

newindex=sample(index,size=s[i],replace=TRUE)

newdata=data[newindex,]

quan[j,]=quantile(myfit(newdata),c(0.25,0.50,0.75))$quantile

}

avg[i,]=apply(quan,2,mean)

va[i,]=apply(quan,2,var)

bias[i,]=avg[i,]-c(4.20,8.95,51.20)

mse[i,]=bias[i,]^2+va[i,]

}

res=data.frame(s,bias[,1],va[,1],mse[,1],bias[,2],va[,2],mse[,2],

bias[,3],va[,3],mse[,3])

colnames(res)=c("sample.size","bias75","Var75","mse75","bias50",

"Var50","mse50","bias25","Var25","mse25")

return(res)

}
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s=c(30,40,50,60,75,100,125,150,200,

250,300,350,400,450,500)

km1=KM(s,B=5000,mydata1)

km2=KM(s,B=5000,mydata2)

###Cox Regression

#population

m1=coxph(Surv(time,death)~stage+age+year,data=mydata1)

m1

summary(m1)

m2=coxph(Surv(time,death)~stage+age+year,data=mydata2)

m2

summary(m2)

#simulation

set.seed(43)

Reg=function(data){

H0=coxph(Surv(time,death)~stage+age+year,data)

H1=coef(summary(H0))

betas=H1[,1]

return(betas)

}

sim=function(s,B,data){

n=dim(data)[1]

m=length(s)

nc=3

index=data$id

reg=matrix(0,nrow=B,ncol=nc)

beta=matrix(0,nrow=m,ncol=nc)

se=matrix(0,nrow=m,ncol=nc)

for(i in 1:m){

for(j in 1:B){

newindex=sample(index,size=s[i],replace=TRUE)

newdata=data[newindex,]

reg[j,]=Reg(newdata)

}

beta[i,]=apply(reg,2,mean)

se[i,]=apply(reg,2,sd)
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}

res=data.frame(s,beta[,1],se[,1],beta[,2],se[,2],beta[,3],se[,3])

colnames(res)=c("sample.size","stage","se.stage","age","se.age",

"year","se.year")

return(res)

}

s=c(15,17,20,22,25,28,30,32,36,40,45,50,55,65,75,85,100,125,150,200,

250,300,350,400,450,500)

est1=sim(s,B=5000,data=mydata1)

est2=sim(s,B=5000,data=mydata2)
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