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Abstract 

This paper describes the design and 
implementation of a model-reference adaptive motion 
controller for a diflerential-drive mobile robot. This 
controller uses absolute position information to modify 
control parameters in real time to compensate for 
motion errors. Robot motion errors are classified into 
internal and external errors. Cross-coupling control 
method is used to compensate for the internal errors that 
can be detected by wheel encoders. The adaptive 
controller provides compensation for external errors. 
The adaptive controller is analyzed, and its stability and 
convergence are discussed. Experiments are conducted 
to evaluate the control system and the results show 
significant improvements over conventional controllers. 

1. Introduction 
Currently most mobile robot research has 

concentrated on the application of mobile platforms to 
perform intelligent tasks, rather than on the development 
of methodologies for analyzing, designing, and 
controlling mobile systems. However, improved motion 
control systems will enable the application of mobile 
robots to tasks requiring accurate trajectory tracking 
even in unstructured environments [I]. 

In this paper, we introduce an adaptive controller 
with the following two improvements over a 
conventional motion controller: 
1. Adaptation to the changes of robot parameters and 
environment [2]. Some robot parameters change with 
robot operation, e.g., the drive wheel diameters change 
with the load and load distribution. 
2. Direct control of the most significant error [3]. In this 

The basic idea of adaptive control is to eliminate 
the effects of variations in the controlled system 
parameters by estimating these parameters in real time 
and using the estimates in the control process, or by 
generating correction signals to compensate for errors 
[4]. Adaptive control has been used to accurately control 
robot manipulators in the case where their parameters 
are not precisely known or they change with robot 
operation [5, 61. However, application of adaptive 
control in mobile robot has not been widely studied. A 
self-tuning navigation algorithm has been suggested by 
Banta [2]. His algorithm is aimed at correcting motion 
errors caused by miscalibration, uneven tire wear and 
wheel misalignment. Banta's algorithm employs a least- 
square method for the parameter estimation and the 
estimates are used to adjust the control of the robot. 

Our paper will concentrate on the problem of 
adaptive motion control of a mobile robot in the case 
where the physical model that describes the motion of 
the robot is not well known or it changes with robot 
operation. The proposed controller dynamically adjusts 
its parameters according to the robot's operating and the 
environmental conditions. In addition, Cross-coupling 
control is used to control the orientation error by 
coordinating the motion of the two drive loops. In the 
following discussion, we limit us to the case of a 
differentialdrive mobile robot, although the 
methodology is applicable to other robot types. 

In the next Section, we will discuss error sources in 
robot motion and introduce a model for the vehicle- 
environment system. In Section 3, we will discuss the 
adaptive motion control for mobile robot. In Section 4, 
the performances of the proposed controller will be 
evaluated by experiments. Finally, conclusions are 
drawn in the Section 5. 

paper, we will introduce the most significant error, 
which is defined as the error that has the largest impact 
on the motion accuracy. our controller controls the most 

2* Motion Error 
and Robot-environment System Modeling 

for 

significant error directly in addition to control errors in 
individual drive loop. 
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We can classify error sources into internal and 
external errors. Internal errors are the efzors that can be 
detected by wheel encoders. External errors are the 
errors that only become apparent when robot wheels 
interact with the environment and can only be detected 
by absolute robot motion measurements [7]. External 
errors can be further divided into systematic e m s  and 
non-systematic errors. Systematic e m  exist over a 
long period of time without changing their 
characteristics. Non-systematic emrs happen in a 
random fashion and can only be described in a statistical 
sense at best. 

2.1 Motion error sources 

The main internal error soutces are: (1) Different 
drive Zoop parameters, e. g., different time constants and 
loop gains. (2) Different disturbances acting on the 
diflerent drive loops, e. g.. different bearing friction. 

The main external systematic error soutces are: (1) 
Diflerent wheel diamelers. When the two drive wheels 
have different diameters and same angular speeds, the 
robot will follow a circular instead of a straight line 
path. A difference in the wheel diameters can be caused 
by load or its distribution changes and uneven wear of 
the wheels. (2) Wheel nrisalignment. The effect of the 
misalignment of the drive wheels is the robot constantly 
pulling to one side. Causes for this error include 
manufacturing tolerance and load distribution. (3) 
Contact area. When the wheel contact with the floor, 
there is a contact area, rather than a contact point. This 
causes an uncertainty about the wheelbase. 

E x t e d  nonsystematic e m  include: (1) Wheel 
slippage. Slippage is a big problem in dead-reckoning, it 
is not a biased error and it can bappen in a very short 
time period. However, slippage normally bappens only 
when a robot moves on a curved path and when a robot 
accelerates or decelerates. (2) FZoor roughness. When a 
robot travels over a rough floor, the wheels move up and 
down over bumps. Part of the motion recorded by wheel 
encoders is the vertical distance required to clear bumps. 
Surface roughness causes the traveled distance to be 
overestimated. 

Under normal conditions, motion error is largely 
due to systematic external errors. External nonsystematic 
errors are random in nature and there are no good ways 
to qualitatively predict these errors. 

2.2 Error Decomposition 

Mobile robot motion errors can be decomposed as 
shown in Fig. 1: The first is the orientation error e& 
which is defined as the difference between the real robot 
orientation and the desired robot orientation. It is the 

most sigdficant error because it will result in a contour 
emr, which grows with the distance traveled without a 
bound. The contour e m  e, is defined as the distance 
between the actual robot position and the desired robot 
position in the direction perpendicular to the direction of 
travel. The contour error is the direct result of the 
orientation error. The third error is the tracking error et, 
which is the distance between the actual position and the 
desired position in the direction of travel. The tracking 
e m r  does not have a very significant effect on robot 
motion accuracy. 

The main 
problem with robot 
motion errors is 
that they can grow 
without a bound, 
and that they 
increase 
nonlinearly with 
the distance 
traveled because of 
the acMunulation 
of the orientation 

error. The key task is therefore to conrrol the growth of 
the orientation error. The unbounded growth of motion 
e m  is in most part caused by systematic external e m  
under normal conditions. 

2.3 Robot-Environment System Modeling 

A fundamental characteristic of adaptive motion 
conrrol is that both the robot and its environment are 
included in the system model. A dead-reckoning model 
aimed at improving path following accuracy by 
introducing e m r  terms was introduced by Banta [2]. In 
Banta's work, robot position (r&, y&) and orientation 
at time k are given by: 
xk  = X&-l + hk f l ) + p x h k  (1) 
Y& = yk-1 + hk + e&-l)/2)e8y&& (2) 
e& = e&-, + Ae& +fl#L\U, (3) 
Where Ani and An: are the measured angular 
displacements of the left and right wheels in each 
sampling period, A u k  =(Ant +An:)R is the distance 
traveled by the robot in each sampling period, 
A0, = (An; - AV: ) / b, is the orientation change during 
a sampling period, and p,, f ly ,  and Be are the error 
coefficients. The errors are assumed to be proportional 
to the distance traveled by the robot. 

Although this model is very simple, it is able to 
represent very important error sources and it has been 
experimentally proved to provide good results [2]. This 
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model will be used in our adaptive motion control. The 
error model given by Eq. (3) indicates that the 
orientation error is a linear function of the distance 
traveled by the robot. Our experimental results support 
this assumption. We can think of the composite effect of 
all the error sources as an effective difference in wheel 
diameters. 

3. Adaptive Motion Control 

F;e. 2 A modcl-rrfrrmoc sdapti control system 

In a model-reference adaptive control (MRAC) 
system (Fig. 2), there are four main components: (1) a 
reference model that specifies desired performances; (2) 
an adjustable system whose performances should be as 
close as possible to that of the reference model; (3) a 
comparator that forms the error between the states or the 
outputs of the reference model and of the adjustable 
system; (4) an adaptation mechanism that processes the 
error in order to modify accordingly the control or the 
parameters of the adjustable system. 

The fust implementation of MRAC in robotics was 
done by Dwbowsky et. al [83, where a parametric 
optimization technique was used and stability was 
investigated for the uncoupled, linearized system model. 
Most of the recent research efforts have been focused on 
stability based methods, particularly, the hyperstability 
theory [5]. Craig included nonlinearity compensation 
along with a feedback portion and parameter 
identification features [9]. In Craig's approach, the plant 
model does not have to be the same as the real plant and 
only performance convergence is needed instead of 
parameter convergence. 

The MRAC scheme was chosen for our system for 
the following reasons: 
1. It requires performance convergence rather than 
parameter convergence. The objective is to achieve 
desired performance. Normally parameter convergence 
can only be realized when some additional conditions 
are satisfied [lo]. 
2. The reference model is used to specify the desired 

performunce and to monitor the state of the robot. The 

reference model itself can be adjusted according to the 
operating conditions and the environment. 
3. Small computational load. The on-line identification 
and design procedures of a self-tuning system can be 
computational intensive and stability problems often 
occur when the number of the variables to be estimated 
becomes large [ 1 11. 

3.1 Cross-Coupling Control 

F& 3 Outxo.@ingmdioncudrdk 

The objective of cross-coupling (CC) control is to 
reduce the orientation error by coordinating the control 
of both drive loops [12]. For example, if a differential- 
drive mobile robot must follow a straight-line path, then 
the speed of the two drive wheels should be identical 
(assuming there are no extemal errors). In CC control 
(Fig. 3). in addition to the two conventional proportional 
control loops for controlling error in each drive loop, 
there is a proportional and integral controller that is used 
to control error e, which is proportional to the robot 
orientation error and is calculated in real time. If there 
exists Orientation error, a correction signal will be 
generated in addition to the corrections in each drive 
loop. A thorough analysis of the cross-coupling method 
was presented in [3] and the conclusions are summarized 
below: 
1. Cross-coupling control directly reduces (or 
eliminates) the orientation error by coordinating the 
velocities of the two drive control loops. The most 
important advantage of cross-coupling control is that it 
directly controls the most significant error (orientation 
error), while conventional controllers attempt to reduce 
the individual errors in each drive loop. The .other 
advantage of cross-coupling is that the corrections occur 
in both control loops simultaneously, and the result is 
short settling time as well as excellent disturbance 
rejection. 
2. A t  steady state, & / @=& / c? and the steady state 
orientation error caused by the continuous disturbances 
is eliminated. 
3 .  Combined cross-coupling and encoder compensation 
gain. Dual compensation gains allow the robot to travel 
on curved paths and to compensate for known extemal 
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errors. The crosscoupling gains qL and qR. allow the 
robot to follow curved paths. For mobile robots, 
complicated curved paths can often be constructed from 
linear and circular segments. The encoder compensation 
gains c: and c:, are used to compensate for known 
external errors (e. g., different drive wheel diameters). If 
the left drive wheel diameter, d L  is larger than that of 
the right drive wheel, dR and we give the same speed 
commands to both control loops, then the result is a 
circular path. However if we set ci= 1 and 
cf = dL I dR,  the error is compensated for. 

The encoder compensation gains are used as the 
adjustable parameters in the adaptive controller. Since 
there are many factors affecting motion errors and many 
of them changes with the robot operation and its 
environment, a fixed set of encoder compensation gains 
can not provide satisfactory performance over a wide 
range of operating conditions. An adaptive controller is 
needed to adjust the compensation gains to compensate 
for the motion errors. The final dual compensation gain 
values are the product of the cross-coupling and encoder 
compensation gains, i. e., cL = $6 and cR = c,%f. 

In our motion controller, CC control is employed to 
compensate for internal errors, while adaptive control is 
used to compensate for extemaI errors by adjusting 
encoder Compensation gains (Fig. 4). Sonars are used to 
measure the actual robot orientation with respect to a 
reference (e.g., a section of straight wall). 

I I 

Measured 
robot 

motion 

Fig. 4 Roposcd adaptive motion oonlrol rptan  

3.2 Encoder Gain Adaptation by Hyperstability 
Method 

There are three basic designs for a MRAC system 
[4], local parametric optimization, Lyapunov Functions, 
and hyperstability approach. Stability problems are 
inherent in MRAC design due to their time-varying 
nonlinear characteristics. Therefore, a satisfactory 
MRAC system must fust be shown to provide stability 
for the whole system. The adaptive control design based 
on the use of hyperstability and positivity concepts, is 

the most successful approach in the design of model 
reference adaptive control systems [lo]. In our design, 
the adjustable parameters are the encoder compensation 
gains and the basic assumptions are: (1) the adaptation 
takes place only when the robot moves on a straight line 
with constant speed; (2) the adaptation occurs at a much 
lower frequency compared to the sampling rate of the 
cross-coupling control; (3) the two drive loops have the 
same parameters and there is no disturbance. 

The design procedures consist of the following 
steps [lo]: (1) Transform the MRAC system into the 
fonn of an equivalent feedback system composed of two 
blocks, one in the forward path and one in the feedback 
path as shown in Fig. 5; (2) Find solutions for the part of 
the adaptation laws which appears in the feedback path 
of the equivalent system such that the Popov integral 
inequality is satisfied, (3) Find solutions for the 
remaining part of the adaptation law which appears in 
the forward path of the equivalent system such that the 
forward path is a hyperstable block; (4) Specify the 
adaptation law explicitly for the original MRAC system. 

Lineartima 
invariant- - 

~~ 

Fig. 5 Equivplcnt foedbrk 

reference model is chosen as 

In this study, 
we concentrate on 
the orientation error 
of the robot. Based 
on the orientation 
error model given in 
Eq. (3). the 

8,(k)= 8,(k - 1 )+(AtP(k)-Ad(k))/b, (4) 
Since the adaptation occurs at a much lower frequency, 
we can assume that at each adaptation step, the cross- 
coupling loop has reached its steady state 131, i.e., 
VL =hkakbCR(RL +RR)/(l+hkakb)(cL + C R )  

vR = hkakbcL(RL + RR)/(l+ hkakb)(cL + c R )  
where RL and RR are the input velocity commands, vL 
and vR are the wheel speeds, ka is the proportional loop 
gain, 4 is the motor gain and h is the encoder gain. 
Since 

= hkakb(cL -CR)!RL + RR)At/b,(l+ hkakb)(cL +cR)  
The reference model can be rewritten as 

where uI = hkukb(RL + RR)At/bw(l + hk,kb), At is the 
sampling period of the adaptive loop, and 

(Auk - AU,")/b, ,(vR - VL)Atibw 

o m =  8,(k - l)+P,U,(M (5) 

p, = ( C L - C R ) / ( C L + C R ) .  

The controlled system can be modeled as 
8 ,(vR - vL)/b, +oe(vR +vL)/2 (6) 
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Since we are only interested in the ratio of the two 
speeds vL and vR. The effects of b, can be absorbed into 
the encoder compensation gains. The above equation can 
be rewritten as 

where 

To simplify the implementation, we can set c L 1  and 
only changes cR. Then we have 

found by c R ( k +  1) = (1 - p ( k +  1))/(1+ p ( k +  1)). 
The error is defined as e(k) = 8(k) - e,(k). The 

adaptation algorithm is chosen to be the integral 
algorithm, which is given as 

where y is the adaptation gain and e(k+l) can be 
expressed as: 

e (k)= e (k - i)+p(k + i)U,(k) 

p(k + 1) = (cL(k + 1) - CR(k + 1)) / (CL (k + 1) + CR(k + 1)). 

(7) 

p(k+l) = (l-CR(k+l))/(l-CR(k+l)) and cR can be 

P(k+1) = P(k) + ye(k+1) u,(k) 

'('+I) = (em(k)-B(k)  + (pm-p(k) ) 4 ( k ) ) / ( 1 + ~ + ~ ( ' ) )  

(8) 

In order to show the stability and convergence of 
the system, we first decompose the system into a linear 
time-invariant system plus a non-linear time-variant 
feedback system. The system can be rewritten as 
e(k+l) = Om(k+l)-8 (k+l) 
= e(k) + p ,u l (k ) -p  (k+l)u,(k)=e(k)+m(k+l) 
where 

The decomposed system is shown in Fig. 6. In order to 
prove the stability of the system, the two blocks can be 
examined separately. 

Mk + 1) = PmY (k) - P(k + l)u,(k) (9) 

hyperstability 
theorem states 
that[lO]: If the 
feedforward block 
is such that the 

Fig. 6 Resultant equivalent feedback system feedback system is 
globally (asymptotically) stable for all feedback blocks 
satisfying the Popov integral inequality, one then says 
that the feedback system is (asymptotically) hyperstable 
and that feedforward block is a hyperstable block. 

It is easy to show that the linear block, whose 
transfer function is G(z) = d(z-l), is positive real. Next 
we need to examine if the non-linear block satisfies the 
Popov integral inequality [lo], 

N 

k=O 
I@)= Cv'(k)w(k) 2 -$,(Id 2 0) 

where v is the input vector, w is the output vector of the 
feedback block, and ro2 is a finite positive constant. 

Substituting Eiq.(8) into Eq.(9), we get, 
m(k + HPO + l ) -Pm)W 

From the above analysis, we can observe that this 
system is always stable no matter what the adaptation 
gain is. However, this result is obtained by assuming that 
there is no measurement noise and other disturbances. In 
practice, a useful adaptation gain will be limited by the 
measurement accuracy and disturbances. 

4. Experimental Investigation 

Fig. 7 Exprimental vehide available differentialdrive 
LabMate platform (Fig. 
7) .  Robot orientation 
measurement is provided 
by two sonars on one side 
of the vehicle. In the 
experiments, the robot 
moved along a straight 
wall, while the two sonars 

the distance to 

Fig 8(a)Robot orientation e m  

B - with compensation 
A - without ~0mpenSati011 

I Ib 20 3b 40 50 60 70 80 
0.9 

Tim (') 

Fig. 8(b)Conv- of the 
encc&ramnpensation@s 

the wall. Based on the 
distance measurements 
and the distance between 
the two sonars, robot 
orientation can be found 
and used in error 
compensation. Each sonar 
is fired at least once every 
80 ms. Ten readings from 
each sonar were gathered 
and averaged for better 
accuracy and reliability. 
Ex-mrimental results 
show that the accuracy of 
orientation measurement 
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was about 1". while the repeatability of the angle 
measurement was within 0.2". It took about 0.7 s to get a 
valid orientation measurement. 

In the experiments, the right drive wheel of the 
robot was covered with three layers of masking tapes. In 
the first experiment, the robot was instructed to follow a 
straight lie, and the robot orientation was measured 
using sonars and used for adaptation. One experimental 
result is shown in Fig. 8. Fig. 8(a) shows the orientation 
error without (A) and with (B) the adaptive controller. 
Clearly, when CC control is used alone, it can not 
compensate for external errors since no external sensory 
information is used in the CC controller. However, the 
adaptive motion controller successfully compensated for 
external errors by adjusting encoder compensation gains 
based on the absolute orientation measurements. Fig. 
8(b) shows the convergence of the adaptation gain. The 
final value is stored. From the figures, we can observe 
that the adaptive controller works well under the 
experimental conditions, and can effectively compensate 
for motion errors. 

. .= 
.%. . 

Fig. 9 Motion contrd accuracy 

In the next 
experiment, the 
converged value of 
the encoder 
compensation gain 
was used to 
compensate for the 
motion error. The 
robot W a s  
instructed to follow 
a 2" square 
path (starting at 
(0.0)) clockwisely 

with and without the compensation. The final position 
after completing the path is shown in Fig. 9. We can 
observe that the compensation is very effective and the 
motion accuracy improved significantly. We can also 
observe that the absolute motion accuracy is also 
improved significantly if we compare the result of the 
adaptive control with the result of CC control with 
untapped wheels. The reason is that there are systematic 
errors even when the wheel is not taped, and the 
adaptive controller compensates for them as well. 

5. Conclusions 
We described the design and implementation of an 

adaptive motion controller on a differential-drive mobile 
robot. The adaptive controller is used to compensate 
systematic motion errors through "learning," i.e., it 

detects errors from absolute position measurements and 
compensate for these errors. The adaptation algorithm is 
based on tbe hyperstability theay to provide good 
convergence characteristics and stability, and it was 
found to improve robot motion accuracy significantly. 
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