
An Overview of Triangulation Algorithms for Simple Polygons

Marko Lamot
Hermes Softlab, Kardeljeva 100, 2000 Maribor, Slovenia

Borut Zalik
Faculty of Electrical Engineering and Computer Sciences, Smetanova 17, 2000 Maribor, Slovenia

Abstract

Decomposing simple polygon into simpler components
is one of the basic tasks in computational geometry and its
applications. The most important simple polygon
decomposition is triangulation. Different techniques for
triangulating simple polygon were designed. The first part
of the paper is an overview of triangulation algorithms
based on diagonal inserting. In the second part we present
algorithms based on Delaunay triangulation. The basic
ideas and approach for each algorithm are presented in
this paper. The last part of the paper some representative
algorithm by its efficiency are compared.

1. Introduction

Polygons are very convenient for computer
representation of the boundary of the objects from the real
world. Because polygons can be very complex (can include
a few thousand vertices, may be concave and may include
nested holes), there is many times the need to decompose
the polygons into simpler components which can be easily
and faster handled. There are many ideas how to perform
this decomposition. Planar polygons can be, for example,
decomposed into triangles, convex parts, trapezoids or
even star-shaped polygons. Computing the triangulation of
a polygon is a fundamental algorithm in computational
geometry. It also seems to be the most investigated
partitioning method. In computer graphics, polygon
triangulation algorithms are widely used for tessellating
curved geometries, such as those described by spline.

The paper gives a brief summary of existing
triangulation techniques and comparison between them.
We will try to cover all techniques for triangulating simple
polygons. It is organized into five sections. The second
chapter introduces the fundamental terminology, in the
third chapter a diagonal inserting algorithms are
considered. Fourth section explains the constrained
Delaunay triangulation, together with the approaches which
introduce Steiner points. The last fifth section contains the
comparison of mentioned triangulation methods. For each

algorithm, the basic idea and worst time complexity
estimation is given. The quality of triangulation is also
considered.

2. Background

Every simple polygon P (polygons with edges crossing
only in its endpoints) with n vertices has a triangulation.
The key for proving of existence of triangulation is the fact
that every polygon has a diagonal which exists if the
polygon has at least one convex vertex. We can conclude
that [17]:

- every polygon has at least one strictly convex vertex,
- every polygon with n = 4 vertices has diagonal,
- every polygon P of n vertices may be partitioned into

triangles by adding the diagonals.
There is a large number of different ways how to

triangulate a given polygon. All these possibilities have in
common that the number of diagonals is n – 3 and the
number of the triangles being generated is n – 2. See for
details and proofs in [17].

Following the fact of existence of diagonal a basic
triangulation algorithm can be constructed as follows: find
a diagonal, cut the polygon into two pieces, and recurs
each. Finding diagonals is simple application which repeats
until all diagonals of polygon are determined. For every
edge e of the polygon not incident to either end of the
potential diagonal s, see if e intersects s. As soon as an
intersection is detected, it is known that s is not a diagonal.
If no polygon edge intersects s, then s is a diagonal.

Such direct approach is too inefficient (it takes O(n4)
time) and therefore many authors proposed much faster
triangulation algorithms.

As mentioned above, there is a large number of
different ways how to triangulate a given polygon (see
figure 1). For some applications it is essential that the
minimum interior angle of a triangle of the computed
triangulation is as large as possible what defines a quality
measure. The way that algorithm triangulates a simple
polygon is dependent on technique used in algorithm. In
figure 1a, for example, the triangulation can be considered

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357256420?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as a low quality, because there exist a lot sliver triangles.
The algorithms based on Delaunay triangulation ensure
better quality triangulation (figure 1b). The quality can be
significantly improved by using so-called Steiner’s points
(figure 1c).

a) b) c)

Figure 1: a) Low quality triangulation; b) High quality
triangulation; c) Triangulation with Steiner’s Points

It is also important into which class of the polygons the
input polygon can be classified. It has been shown that
monotone polygons, star-shaped polygons, spiral polygons,
L-convex polygons, edge visible polygons, intersection-
free polygons, palm-shaped polygons and anthropomorphic
polygons can be triangulated in linear time [13].

3. Polygon triangulation algorithms based
on diagonal inserting

History of polygon triangulation algorithms begins in
the year 1911 [14]. That year Lennes proposed an
“algorithm” which works by recursively inserting diagonals
between pairs of vertices of P and runs in O(n2) time. At
that time mathematicians have been interested in
constructive proofs of existence of triangulation for simple
polygons. Since then, this type of algorithm reappeared in
many papers and books. Inductive proof for existence of
triangulation was proposed by Meisters [16]. He proposed
an ear searching method and then cutting them off. Vertex
vi of simple polygon P is a principal vertex if no other
vertex of P lies in the interior of the triangle vi-1, vi, vi+1 or
in the interior of diagonal vi-1, vi+1. A principal vertex vi of
simple polygon P is an ear if the diagonal vi-1, vi+1 lies
entirely in P. We say that two ears vi, vj are non-
overlapping if interior [vi-1, vi, vi+1] ∩ [vj-1, vj, vj+1] = 0.

 Meisters proved another theorem: except for triangles
every simple polygon P has at least two non-overlapping
ears [16]. A direct implementation of this idea leads to a
complexity of O(n3). But in 1990 it was discovered that
prune and search technique finds an ear in the linear time
[11]. It is based on the following observation: a good
subpolygon P1 of a simple polygon P is a subpolygon
whose boundary differs from that of P in at most one edge.
The basic observation here is that a good subpolygon P1

has at least one proper ear. Strategy now is as follows: split
polygon P of n vertices into two subpolygons in O(n) time

such that one of these subpolygons is a good subpolygon
with at most n/2 + 1 vertices. Each subpolygon is then
solved recursively. The worst case running time of the
algorithm is T(n) = cn + T(n/2 + 1), where c is a constant.
This recurrence has solution T(n) ∈ O(n). That leads to
implementation of Meisters’s algorithm with the
complexity of O(n2):

Garey, Johnson, Preparata and Tarjan proposed a
divide and conquer algorithm which first broke O(n2)
complexity [10]. Algorithm runs in O(n log n) time. Their
approach includes two steps: the first one decomposes
simple polygon into monotone sub-polygons in O(n log n).
The second step triangulates these monotone sub-polygons
what can be done in a linear time. Different divide and
conquer approach by Chazelle also achieves O(n log n)
running time. Very complicated data structures are used in
Tarjan and Van Wyk algorithm that runs in O(n log log n)
time. However, the same complexity was introduced by
Kirkpatrik using simple data structures.

Next improve of speed were algorithms with time
complexity O(n log*n). Such algorithms were not just
faster but also simpler to implement. They all have in
common a randomized (“Las Vegas”) approach. The most
well-know algorithm has been suggested by Seidel [19].
His algorithm runs in practice almost in linear time for the
majority of simple polygons. The algorithm has three steps:
trapezoidal decomposition of polygon, determination of
monotone polygon’s chains, and finally, the triangulation
of these monotone polygon’s chains. The efficiency of
Seidel’s algorithm is achieved by very efficient trapezoidal
decomposition: first a random permutation of edges is
determined and then these edges are inserted incrementally
into trapezoidal decomposition. With two corresponding
structures containing current decomposition and search
structure presented algorithm runs in O(n log*n) time.

Some researchers designed adaptive algorithms that run
fast in many situations. Hertel and Mehlhorn described a
sweep-line based algorithm that runs faster the fewer reflex
vertices it has [12]. Algorithm’s running time is O(n + r log
r) where r denotes the number of reflex vertices of P.

Chazelle and Incerpi also presented an algorithm which
time complexity depends on shape of the polygon [4]. They
describe a triangulation algorithm that runs in O(n log s)
time where s < n. The quantity s measures the sinuosity of
the polygon representing how many times the polygon’s
boundary alternates between complete spirals of opposite
orientation. In practice, quantity s is very small or a
constant even for very winding polygons. Consider the
motion of a straight line L[vi, vi+1] passing through edge vi,
vi+1 where 0 < i < n. Every time L reaches the vertical
position in a clockwise (counter-clockwise) manner we
decrement (increment) a winding counter by one. L is
spiraling (anti- spiraling) if the winding counter is never
decremented (incremented) twice in succession. A new

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

polygonal chain is restarted only when the previous chain
ceases to be spiraling or anti-spiraling.

Toussaint proposed in [20] another adaptive algorithm
which runs in O(n(1+ t0)); t0 < n. The quantity t0 measures
the shape-complexity of the triangulation delivered by the
algorithm. More precisely, t0 is the number of triangles
contained in the triangulation obtained that share zero
edges with the input polygon. The algorithm runs in O(n2)
worst case, but for several classes of polygons it runs in the
linear time. The algorithm is very simple to implement
because it does not require sorting or the use of balanced
tree structures.

Kong, Everett and Toussaint algorithm is based on the
Graham scan. The Graham scan is a fundamental
backtracking technique in computational geometry. In [13]
it is shown how to use the Graham scan for triangulating
simple polygon in O(kn) time where k – 1 is the number of
concave vertices in P. Although the worst case of the
algorithm is O(n2), it is easy to implement and therefore is
useful in practice.

Finally, in 1991 Chazelle presented O(n) worst-case
algorithm [5]. Basic idea is in deterministic algorithm,
which computes structure, called visibility map. This
structure is a generalization of a trapezoidalization
(horizontal chords towards both sides of each vertex in a
polygonal chain are drown). His algorithm mimics merge
sort. The polygon of n vertices is partitioned into chains of
with n/2 vertices, and these into chains of n/4 vertices, and
so on. The visibility map of a chain is found by merging the
maps of its subchains. This takes actually at most O(n log
n) time. But Chazelle improves process by dividing it into
two phases. The first phase includes computing coarse
approximations of the visibility maps. This visibility maps
are coarse enough that merging can be accomplished in

linear time. A second phase refines the coarse map into a
complete visibility map also in linear time. A triangulation
is then produced from the trapezoidation defined by the
visibility map. The algorithm has a lot of details and
therefore remains open to find a simple and fast algorithm
for triangulating a polygon in the linear time.

Table 1 shows all algorithms presented above and is
expanded table presented in [17]. Algorithms are grouped
by time complexity.

4. Polygon triangulation algorithms based
on Delaunay triangulation

Triangulation of the monotone polygons can also be
achieved by well-known Delaunay triangulation of a set of
points (figure 2a). Namely, the vertices of polygon can be
considered as individual input points in the plane. When
computing the Delaunay triangulation we have to consider
that some line segments (edges of polygon) must exists at
the output. That problem is known as a constrained
Delaunay triangulation (CDT).

Let V be a set of points in the plane and L set of non-
intersecting line segments having their extreme vertices at
points of V. The pair G = (V, L) defines constraint graph.

Two vertices PiPj ∈ V are said to be mutually visible if
either segment PiPj does not intersect any constraint
segment or PiPj is a subsegment of a constraint segment of
L.

Now the visibility graph of G is pair Gv = (Vv, Ev); Vv =
V and Ev = {(Pi, Pj) | Pi, Pj ∈ Vv and Pi,Pj are mutually
visible with respect to set L} (see figure 2b).

An edge in Ev joins a pair of mutually visible points of
V with respect to all straight-line segments belonging to L.

Time complexity Author Year Technique/Algorithm

O(n2) Lennes 1911 Recursive diagonal insertion

O(n3) Meisters 1975 Ear cutting

O(n2) ElGindy, Everrett, Toussaint 1990 Prune and search

O(n log n) Garey, Johnson, Preparata, Tarjan 1978 Decomp. into monotone polygons

O(n log n) Chazelle 1982 Divide and conquer

O(n + r log r) Hertel & Mehlhorn 1983 Sweep – line

O(n log s) Chazelle & Incerpi 1983 -

O(n (1 + t0)) Toussaint 1988 -

O(kn) Kong, Everett, Toussaint 1990 Graham scan

O(n log log n) Tarjan, Van Wyk 1987 -

O(n log log n) Kirkpatrik 1990 -

O(n log*n) Clarkson, Tarjan, Van Wyk 1989 Randomized incremental

O(n log*n) Kirkpatrik, Klawe, Tarjan 1990 Using bounded integer coordinates

O(n log*n) Seidel 1990 Randomized incremental

O(n) Chazelle 1990 -

Table 1: Algorithms for computing triangulation of simple polygon.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

So, a triangulation of V constrained by L is defined as a
graph T(V; L) = (Vt, Et); Vt = V and Et is a maximal subset
of Ev ∪ L such that L ⊆ Et, and no two edges of Et

intersect, except at their endpoints.

t

a) b) c)

Figure 2: a) Empty circle property; b) Visibility map; c)
Constrained Delaunay triangulation

A CDT T(V; L) of set of points V with respect to a set
of straight-line segments L is a constrained triangulation of
V in which the circumcircle of each triangle t of T does not
contain in its interior any other vertex P of T which is
visible from the three vertices of t. (see figure 2c) Another
characterisation of CDT is given by the empty circle
property: a triangle t in a constrained triangulation T is a
Delaunay triangle if there does not exists any other vertex
of T inside the circumcircle of t and visible from all three
vertices of t (see figure 2a). See details in [9].

Triangulation of simple polygon can be in generally
computed as follows: first step computes CDT of edges of
simple polygon and second step removes triangles which
are in exterior of simple polygon. The information that
input is simple polygon (not just general constraint graph)
could be useful in step one and therefore algorithms for
building a CDT can be subdivided into two groups:
algorithms for computing the CDT when the constraint
graph is a simple polygon and algorithms for computing a
CDT for general constraint graph.

4.1 Constrained Delaunay triangulation
algorithms for simple polygons

Lewis and Robinson describe an O(n2) algorithm based
on divide-and-conquer approach with internal points [15].
The boundary polygon is recursively subdivided into
almost equally sized subpolygons that are separately
triangulated together with their internal points. The
resulting triangulation is then optimize d to produce CDT.

A recursive O(n2) algorithm for CDT based on
visibility approach is described by Floriani [8]. The
algorithm computes the visibility graph of the vertices of
the simple polygon Q in O(n2) time and the Voronoi
diagram of set of its vertices in O(n log n). The resulting
Delaunay triangulation is built by joining each vertex Q of
P to those vertices that are both visible from Q and
Voronoi neighbours of Q.

Another O(n log n) algorithm describe Lee and Lin [9].
Algorithm is based on Chazelle’s polygon cutting theorem.
Chazelle has shown that for any simple polygon P with n

vertices, two vertices t1 and t2 of P can be found in linear
time such that segment t1t2 is completely internal to P. Each
of the two simple subpolygons resulting from the cut of P
by t1t2 has at least n/3 vertices. Lee’s and Lin’s algorithm
subdivides the given polygon Q into two subpolygons Ql

and Qr and recursively computes the constrained Delaunay
triangulations Tl and Tr. The resulting triangulation T of Q
is obtained by merging Tl and Tr. They proposed also
similar algorithm for general constraint graph which runs in
O(n2) time.

4.2 Constrained Delaunay triangulation
algorithms for general constraint graphs

Chew describes an O(n log n) algorithm for the CDT
based on the divide-and-conquer approach. The constraint
graph G = (V, L) is assumed to be contained in a rectangle,
which is subdivided into vertical strips [6]. In each strip
there is exactly one vertex. The CDT is computed for each
strip and adjacent strips are recursively merged together.
After last merge we got final CDT which is CDT for input
graph. The major problem here is merging such strips that
contains edges which crosses some strip having no
endpoint in it.

Algorithm for computing CDT which includes pre-
processing on the constraint segments is proposed by
Boissonnat [3]. By pre-processing CDT problem is
transformed into standard Delaunay problem on set of
points. The idea is to modify the input data by adding
points lying on the constraint segments in such a way that
resulting Delaunay triangulation is guaranteed to contain
such segments. Constraint segment e is a Delaunay edge if
the circle having e as diameter does not intersect any other
constraint segment. If the circle attached to e intersect
some other segment, then e is split into a finite number of
subsegments such that none of the circles attached to those
segments intersect any constraint. When two constraint
segments intersect at an endpoint, one new point is inserted
into both segments. The circumcircle of the triangle
defined by the common endpoint and by the two new
points does not intersect any other constraint segment. This
algorithm takes at most O(n log n) time and generates at
most O(n) additional points.

All mentioned algorithms for CDT demand that all
points are defined at the beginning of triangulation.
Algorithm proposed by Floriani and Puppo [9] resolves
CDT problem by incrementally updating CDT as new
points and constraints are added. The problem of
incrementally building of CDT is reduced to the following
three subproblems: computation of an initial triangulation
of the domain, insertion of a point, insertion of a straight-
line segment.

An initial triangulation of the domain can be obtained
by different approaches. For example, we can determine a

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

triangle or rectangle (made of two triangles) which contains
the whole domain. In the following incrementally points
and line segments are inserted. After each insertion we got
new CDT which has more elements than the previous one.
After inserting last point or line segment, the bounding
triangle is removed. Algorithm runs at most in O(ln2)
where n is number of points and l number of straight-line
segments in final CDT.

4.3 Delaunay refinement algorithms

Finally we have to mention the algorithms which cares
also about the quality of triangulation. That is the
algorithms allow to determine the minimum interior angle
of triangles in outputting triangulation. Generally, that
feature is possible only if the use of so-called Steiner points
is allowed. In that case the number of output triangles is
increased regarding the minimum number of triangles in
output triangulation. In other words, we want to provide
shape guarantee (minimum interior angle is as high as
possible) with minimum size triangles in output
triangulation (size guarantee).

One of such techniques of triangulation points and line
segments is Delaunay refinement technique. Chew
presented a Delaunay refinement algorithm that
triangulates a given polygon into a mesh. In mesh all
triangles are between 30o and 120o. The algorithm
produces a uniform mesh to obtain all triangles of the
roughly the same size [7].

Ruppert extended Chew’s work [18] by giving an
algorithm such that all triangles in the output have angles
between – 2a. Parameter a can be chosen between 0° and
20°. The triangulation maintained here is a Delaunay
triangulation set of points which is computed at the
beginning. Vertices for Delaunay triangulation are in that
case endpoints of segments and possible isolated vertices.
After computing Delaunay triangulation, vertices are added
for two reasons: to improve triangle shape, and to insure
that all input segments are presented in Delaunay
triangulation. Two basic operations in the algorithm are:
splitting of a segment by adding a vertex at its midpoint,
and splitting of a triangle with a vertex at its circumcenter.
In each case, the new vertex is added to set of vertices.
When a segment is split, it is replaced in set of segments by
two subsegments. Such algorithms runs in O(M2) time,
where M is number of vertices at the output, but in practice
are very fast.

Some other algorithms which give shape guarantees are
available. They are more complicated to implement and are
not based on Delaunay triangulation. They use such
structures as grids and quadtrees. See details in algorithm
presented by Baker, Grosse and Rafferty [1] and algorithm
presented by Bern, Eppstein and Gilbert [2].

Table 2 shows algorithms for computing triangulation
of simple polygon based on Delaunay triangulation. First
part of the table shows constrained Delaunay triangulation
algorithm, last two lines shows Delaunay refinement
algorithms. First part of the table shows algorithms based
on Delaunay triangulation without use of Steiner points and
second part shows algorithms with use of Steiner points.
Parameter M is in that case the number of outputting
points.

Time com. Author Year Input

O(n2) Lewis, Robinson 1979 Simple polygon

O(n log n) Floriani 1985 Simple polygon

O(n log n) Lee, Lin 1980 Simple polygon

O(n2) Lee, Lin 1980 General

O(n log n) Chew 1987 General

O(n log n) Boissonnat 1988 General

O(ln2) Floriani, Puppo 1992 General

O(M2) Chew 1989 Simple polygon

O(M2) Ruppert 1994 General

Table 2: Delaunay based triangulation algorithms

5. Properties of some polygon triangulating
algorithms

The issue of this chapter is to briefly show the basic
properties of triangulation algorithms and difference
between them. In that matter we will take some algorithms
for triangulating a simple polygon described above.

a) b)

c) d)

Figure 3: a) Ear cutting; b) Randomized incremental c)
Constrained Delaunay triangulation; d) Delaunay refinement

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

We will try to compare its properties despite sometimes
is obvious that difference is present because of different
issues of selected algorithms. We will compare attributes as
quality of triangulation, asymptotical running time, and the
possibility of triangulating polygons with holes. We will
rely on each algorithm definitions.
We compared the following algorithms: Meister’s ear
cutting algorithm [16], Seidel’s randomized incremental
algorithm [19], constrained Delaunay triangulation [9],
Ruppert’s Delaunay refinement algorithm [18].

Algorithms based on Delaunay triangulation provides
the triangulation with the highest quality of output
triangles. Delaunay refinement algorithms are in that way
the most quality algorithms because they ensure that the
minimum interior angle is as high as possible. Of course,
that is possible only with the use of Steiner’s points.

Figure 3 shows an example how all four algorithms
actually triangulate simple polygon. For that matter we
extended the example in [18] with additional
triangulations. In figure 3a we can see that ear cutting
provides the lowest quality. A better triangulation is
provided by randomized incremental algorithm (see figure
3b). Those two algorithms have no mechanism of ensuring
quality and therefore is understandable why this low
quality. The highest quality (with no using of Steiner’s
points) provides constrained Delaunay triangulation, but

there is impossible to avoid some sliver triangles what we
can see in figure 3c. If the Steiner’s points are allowed the
quality of obtained triangulation is ensured (see figure 3d
for Ruppert’s Delaunay refinement algorithm).

All algorithms provide triangulating polygons with
holes except ear cutting. Ear cutting is designed as
recursive algorithm which cuts off ears and therefore can
not detect holes. Seidel’s randomized incremental
algorithm actually wasn’t expected to triangulate holes at
the beginning but the extension for holes is very simple
because of structure of the algorithm. The less problems
with holes has Delaunay based algorithms, because in basic
inputs for those algorithms are line-segments in the plane.
So after triangulation the triangles from holes are removed.

For all four algorithms is known that they are rather
simple to implement regarding to other algorithms in the
same category. If we look at the worst case time
complexity of these algorithms we notice that Seidel’s
randomized incremental gives us the best results.

If we have to choose from among those four algorithms
we will take Seidel’s randomized algorithms if we want
very fast algorithm. If we need quality in the first place,
then we will take Ruppert’s Delaunay refinement
algorithm. If we need quality but we don’t want Steiner’s
points then perhaps the best choose will be Constrained
Delaunay triangulation algorithm.

References

[1] Baker, B., Grosse, E., and Rafferty C. S., Nonobtuse triangulation of polygons. Disc. and Comp. Geom., Vol. 3, 1988, pp. 147-168.
[2] Bern, M., Eppstein, D., and Gilbert, J. R., Provably good mesh generation. In Proceedings of the 31st Annual Symposium on

Foundation of Computer Science, 1990, pp. 231-241 IEEE. To apear in J. Comp. System Science.
[3] Boissonnat, J.D., Shape reconstruction from planar cross sections, Comp. Vision Graphics Image Process., Vol. 44, 1988, pp. 1-29.
[4] Chazelle, B., Incerpi, J., Triangulation and shape complexity, ACM Transactions on Graphics, Vol. 3, 1984, pp. 135-152.
[5] Chazelle, B., Triangulating a simple polygon in linear time, Disc. Comp. Geom. 6, 1991, pp. 485-524.
[6] Chew, L. P., Constrained Delaunay triangulation, in Proceedings, Third ACM Symposium on Computational Geometry, Waterloo,

June, 1987, pp. 216-222.
[7] Chew, L. P., Guaranteed - quality triangular meshes, Technical report, Cornell University, No. TR-89-983, 1989.
[8] De Floriani, L., Falcidieno, B. and Pienovi, C., A Delaunay-based representation of surfaces defined over arbitrarily-shaped

domains, Comput. Vision Graphics Image Process. 32, 1985, pp. 127-140.
[9] De Floriani, L. and Puppo, E., An On-Line Algorithm for Constrained Delaunay Triangulation, Graphical Models and Image

Processing, Vol. 54, No. 3, 1992, pp. 290-300.
[10] Garey, M.R., Johnson, D.S., Preparata, F.P. and Tarjan, R.E., Triangulating a simple polygon, Inform. Process., Lett. 7, 1978, pp.

175-180.
[11] ElGindy, H., Everett, H. and Toussaint, G. T., Slicing an ear in linear time, Pattern Recognition Letters, Vol. 14, 1993, pp. 719-722.
[12] Hertel, S., Mehlhorn, K., Fast triangulation of simple polygons, Proc. FCT, LNCS 158, 1983, pp. 207-215.
[13] Kong, X., Everett, H., Toussaint, G. T., The Graham scan triangulates simple polygons, Pattern Recognition Letters, Vol. 11, 1990,

pp. 713-716, http: //cgm.cs.mcgill.ca/-godfried/research/triangulations.html.
[14] Lennes, N. J., Theorems on the simple finite polygon and polyhedron, American Journal of Mathematics, Vol. 33, 1911, pp. 37-62.
[15] Lewis, B.A., Robinson J. S., Triangulating of planar regions with applications, Comput. J., Vol. 4, No. 21, 1979, pp. 324-332.
[16] Meisters, G. H., Polygons have ears, American Mathematical Monthly, Vol. 82, June/July, 1975, pp. 648-651.
[17] O’Rourke, J., Computational Geometry in C, Cambridge University, Press, 1994, pp. 1-65.
[18] Ruppert, J., A Delaunay Refinemt Algorithm for Quality 2-Dimensional Mesh Generation, NASA Arnes Research Center,

Submission to Journal of Algorithms, 1994, http://jit.arc.nasa.gov/nas/abs.html.
[19] Seidel, R., A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating

polygons, Computational Geometry: Theory and Applications, Vol. 1, No. 1, 1991, pp. 51-64.
[20] Toussaint, G. T., Efficient triangulation of simple polygons, The Visual Computer, Vol. 7, No. 3, 1991, pp. 280-295.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 08:41 from IEEE Xplore. Restrictions apply.

