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We report on near-turbulent thermal convection of a nematic liquid crystal heated from
below in a cylindrical cell with an aspect ratio (diameter/height) equal to 0.50 for
Rayleigh numbers 2 × 107 . Ra . 3 × 108 and a Prandtl number of about 355. The
Nusselt number Nu as a function of Ra did not differ significantly from that of an
isotropic fluid. In a vertical magnetic field H , we found Nu(H)/Nu(0) = 1 + a(Ra)H2,
with a(Ra) = 0.24Ra0.75 G−2. We present a model that describes the H dependence in
terms of a change of the thermal conductivity in the thermal boundary layers due to a
field-induced director alignment.
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1. Introduction

In the study of thermal convection, experiments and simulations have focused
primarily on isotropic Newtonian fluids that are confined by a warm horizontal plate
from below and a colder parallel plate at a distance L from above (Rayleigh–Bénard
convection (RBC)) – for reviews addressing a broad audience, see Kadanoff (2001)
and Ahlers (2009), and for more specialized reviews, see Ahlers, Grossmann &
Lohse (2009) and Lohse & Xia (2010). However, recently a significant interest has
developed in turbulent convection of complex fluids, including, for instance, dilute
polymer solutions (Ahlers & Nikolaenko 2010; Benzi, Ching & De Angelis 2010;
Boffetta et al. 2010; Benzi, Ching & Chu 2011; Wei, Ni & Xia 2012) and nano-fluids
(Ni, Zhou & Xia 2011). Here we contribute to this emerging field by reporting on
RBC of a nematic liquid crystal (NLC) (Chandrasekhar 1992; Khoo 2007) at large
Rayleigh numbers and on the effect of a vertical magnetic field H upon this system.
It turns out that the field enhances the heat transport. We were able to describe this
enhancement in terms of the field-induced preferred orientation of the NLC molecules
in the thermal boundary layers (BLs) adjacent to the top and bottom confining plates.
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An NLC consists of elongated or discoidal molecules, which, primarily due to
steric hindrance, tend to align their long axes locally relative to each other (see e.g.
Chandrasekhar 1992). The local alignment direction is described by a director field
n̂. An NLC is Newtonian in the sense that its viscosities are independent of the
applied shear, but it is anisotropic, and many of its properties, including the thermal
conductivity λ, depend on the orientation of n̂ relative to the direction of measurement.
The conductivity λ‖ parallel to n̂, for instance, is larger than λ⊥ perpendicular to n̂
(Ahlers et al. 1994; Ahlers 1995). In the presence of H , the director tends to align
in the direction of H because of the anisotropy of the diamagnetic susceptibility. For
H = 0 we found that the heat transport by turbulent RBC does not differ noticeably
from that of an isotropic fluid. This is not surprising, given the stirring effect of the
turbulent flow and the large cell dimensions in comparison to the short length scale of
the spontaneous local ordering of the fluid molecules – which occurs on lengths of the
order of a micrometre (see e.g. Khoo 2007). However, when a vertical magnetic field
was applied, an increase of the heat transport was observed. We propose a model that
describes this enhancement in terms of an increase of the thermal conductivity inside
the thermal BLs due to a partial alignment of the director parallel to the magnetic
field. Thus, this work also helps to illuminate the role of boundary layers in the heat
transport by turbulent RBC.

We note that the thermal boundary layer is significantly thinner than and well
embedded in the viscous boundary layer (see e.g. Ahlers et al. 2009). This is so
because the kinematic viscosity of the liquid crystal used here is much larger than the
thermal diffusivity. Thus, the stability of the thermal boundary layer and the plume
emission rate are decoupled from the turbulent fluid in the bulk and only depend on
the thermal gradient close to the plates.

There are a number of publications on chaotic patterns that occur in electro-
hydrodynamic convection of NLCs (see e.g. Kai et al. 1990; Kai, i Hayashi & Hidaka
1996; Hidaka et al. 1997; Park, Clark & Noble 2005; Zhou & Ahlers 2006). In
the experiments presented there, an alternating voltage is applied to a thin layer of
the NLC. Above a certain threshold voltage, the director field can become chaotic
in space and time for certain parameter ranges. These states have been referred
to by some as ‘phase turbulence’ or ‘soft-mode turbulence’. Notwithstanding this
terminology, these states are not turbulent in the usual fluid-mechanical sense and
are described more appropriately as ‘spatio-temporal chaos’. Even though the director
field is coupled to the velocity field, the velocity field is laminar and there is no
energy cascade with a well-defined energy spectrum. Thus, this phenomenon has no
relationship to the problem reported on in our present paper. A number of papers
have also been published on the interesting topic of Rayleigh–Bénard convection in
nematics near onset (for a review, see Ahlers 1995). However, to our knowledge, there
are no previous publications that investigate how a nematic liquid crystal behaves in
a hydrodynamically turbulent (or near-turbulent) flow that exists at larger Rayleigh
numbers, i.e. a flow where energy is injected on a large scale and dissipated on a
smaller scale.

From the values for the Rayleigh number Ra, the Prandtl number Pr and the Nusselt
number Nu (all to be defined explicitly below in § 2), we can calculate a volume-
averaged coherence length l/L ≈ 10Pr1/2/[(Nu− 1)1/4 Ra1/4] (see e.g. Grossmann &
Lohse 1993). This length describes the largest coherent structure that is expected to
prevail in the system, and the system is considered ‘turbulent’ when l/L is well below
unity. For our sample one finds l/L ' 1.26 for the smallest Ra (Ra = 2.5 × 107) and
l/L ' 0.59 for the largest Ra. Thus, for the smallest Ra, one expects that the flow did
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not really lose its coherence over the height of the cell and should not be considered
turbulent. For the largest Ra, the flow reached a small degree of turbulence. Clearly
a study at larger values of Ra (and thus smaller l/L) would have been desirable.
However, this could be achieved only by increasing L, and at constant aspect ratio the
fluid volume would increase as L3. The fluid contained in our sample (which had a
volume of about 1400 cm3) was acquired at a cost of about $5000. Decreasing l/L by
a factor of 2, for instance, would require an increase of Ra (and the fluid volume) by
about a factor of 8, leading to a cost of about $40 000 for the fluid. One sees that
there is a practical limit to the maximum Ra and minimum l/L values accessible to
experiments in this field.

The remainder of this paper is organized as follows. In § 2 we define the parameters
relevant to this system. Then, in § 3, we give a brief description of the apparatus used
for the measurements. The results in the absence of a field are presented in § 4, and
those for H > 0 are discussed in § 5. The boundary-layer model that describes our
experimental findings is explained in § 6, and a brief summary of the work is given in
§ 7.

2. Relevant parameters

For isotropic Newtonian fluids and a given sample geometry, the state of the system
depends on two dimensionless variables. The first is the Rayleigh number Ra, a
dimensionless form of the temperature difference 1T = Tb − Tt between the bottom
(Tb) and the top (Tt) plate. It is given by

Ra= gα1T L3

κν
. (2.1)

Here, g, α, κ and ν denote the gravitational acceleration, the isobaric thermal
expansion coefficient, the thermal diffusivity and the kinematic viscosity, respectively.
The second is the Prandtl number Pr = ν/κ . For the NLC one needs to use ν = α4/2ρ,
where α4 is the fourth Leslie coefficient (see e.g. Ahlers 1995) and ρ is the
density. The vertical heat transport from the bottom to the top plate is expressed
in dimensionless form by the Nusselt number

Nu= λeff
λ
, (2.2)

where

λeff = QL/(A1T) (2.3)

and where Q is the heat flux and A is the cross-sectional area of the cell.

3. Apparatus and procedure

The experiments presented here were conducted using the NLC 4-cyano-4′-pentyl-
biphenyl (5CB) at a mean temperature Tm = (Tb + Tt)/2 = 27.00 ◦C where Pr = 355.
Even for the measurements with the largest temperature difference, the bottom-plate
temperature was significantly lower than the clearing-point temperature TNI = 35.2 ◦C.
The relevant fluid properties were compiled by Ahlers (1995). We used the ‘small
convection apparatus’ (SCA) described in detail by Weiss & Ahlers (2011). A
cylindrical sample cell with L = 190.5 mm and a circular cross-section of diameter
D = 95.3 mm, giving an aspect ratio Γ = D/L = 0.500, was used. It was confined by
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FIGURE 1. (a) The normalized magnetic field magnitude H/H(z/L = 0) along the vertical
axis of the solenoid. Measurement errors are smaller than the symbol size, and H(0) = 353 G.
(b) The normalized magnetic field magnitude H/H(x/D = 0) along the diameter at the mid-
height of the solenoid. For these measurements, H(0) = 78.7 G. In both panels, the vertical
dashed lines denote the boundaries of the sample.

thick copper plates from below and above, and had a 3.2 mm thick sidewall made
of Lexan. The bottom plate was heated by a film heater from below and the top
plate was in thermal contact with a temperature-controlled circulating water bath. Each
of the two copper plates was equipped with two thermistors for precise temperature
measurements. In contrast to convection experiments in smaller cells (Ahlers 1995),
the surfaces of the top and bottom plate were not treated in order to align the director
in a specific direction. The directors at the top and bottom boundaries are therefore
expected to be randomly distributed. In any event, surface director alignment would
not have a significant influence in a sample as large as ours.

As described by Weiss & Ahlers (2011) (see especially figure 1 therein), the
convection cell was located in an air- and foam-filled container, which in turn was
surrounded by cooling water for the top plate at a temperature nearly equal to Tt. Even
though the cell was insulated, there was still a small but significant heat loss from
the sidewall and the bottom plate to the container. This heat loss, together with the
conduction through the sidewall, was measured while the cell was filled with air and
foam. For the measurements of Nu, it was subtracted from the heat input to the bottom
plate.

Only non-ferromagnetic materials were used to build the apparatus in order to avoid
disturbances of the magnetic field. Four coils, designed to provide an exceptionally
homogeneous field over a large volume, surrounded the main apparatus and were used
to generate a vertical field. Their axes coincided with the axis of the convection cell
and their vertical positions were such that the centre of the field coincided with the
horizontal mid-plane of the sample cell. We used a gaussmeter (Lakeshore, 421) with
two different Hall probes (Lakeshore, MMT-6J08-VH and MMA-2508-VH) in order
to measure the magnetic field variation in the vertical (i.e. along the cylinder axis)
and in the radial direction (i.e. vertical to the cylinder axis). These measurements
were done for the empty magnet, i.e. without the convection apparatus present. While
measurements along the cylinder axis were straightforward, a small hole at mid-height
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between the magnetic coils was used in order to introduce the Hall probe from the
side and thus measure the radial dependence of the magnetic field. Figure 1(a) shows
the magnetic field magnitude H along the cylinder axis of the cell. The vertical dashed
lines mark the locations of the top and bottom plates. As shown, there is a small
variation of H along the z-axis, so that at z = 0, H is approximately 2 % smaller
than at the top and bottom plates. The variation of H in the horizontal direction at
z = 0 is shown in figure 1(b). There H was slightly higher in the middle of the cell
than at the sidewall. However, the variation was less than 1 %. Overall, we do not
expect the small field inhomogeneity to have a significant effect on the outcome of the
measurements.

During a typical experimental run, the temperatures of the top and bottom plates
were held constant and the power dissipated at the bottom plate was measured. The
temperature of all thermistors as well as the power were recorded every 4 s for about
24 h.

4. Results for the Nusselt number in the absence of a magnetic field

First we measured Nu as a function of Ra for H = 0. Without field alignment, a
coherent director would exist only over a length of the order of a micrometre or so
(Chandrasekhar 1992; Khoo 2007), which is much smaller than any length scales of
the system. We note that the thermal BL thickness was about 2 mm for the largest Nu
and thus ∼103 times larger than the distance over which molecules were aligned in the
absence of a field. Thus, we assumed that n̂ was randomly distributed throughout the
sample, and computed Ra and Nu as defined by (2.1) and (2.2) using averaged values,

λ0 ≡ (2λ⊥ + λ‖)/3 (4.1)

and κ = λ0/ρcp. Here cp is the heat capacity at constant pressure per unit mass. The
data were corrected for the heat flux through the sidewall. By using model 2 of Ahlers
(2000), the large thermal gradients in the sidewall but close to the thermal boundary
layers in the fluid were taken into consideration.

Figure 2(a) shows Nu as a function of Ra for 5CB (solid circles, red online) on a
double logarithmic plot. In order to display more detail, the reduced Nusselt number
Nu/Ra0.3 is plotted on a linear scale as a function of Ra on a logarithmic scale in
figure 2(b). A fit of the power law Nu ∝ Raγeff to the data gave γeff = 0.309, which
is in excellent agreement with the effective exponent γ GL

eff = 0.307 derived from the
Grossmann–Lohse (GL) model (Grossmann & Lohse 2001) (dotted line) for this Pr
and the same Ra range. For comparison, we show data for isotropic fluids with
Pr = 205 (open circles, green online) and Pr = 396 (open squares, purple online) from
Xia et al. (2002). Inspection of figure 2(b) shows that they are consistent with the
γeff = 0.309 of the 5CB data. The differences by a few per cent between the various
data sets and the GL model at the same Ra can be attributed in part to the differences
of Pr and Γ , and in part to systematic errors in the fluid properties and the sidewall
corrections (Ahlers 2000). Thus, as expected, we conclude that there is no measurable
difference between Nu(Ra) for the isotropic fluids and the anisotropic NLC when the
average conductivity given by (4.1) is used to evaluate Nu and Ra.

In the next section we only present measurements for which l/L . 1. We note
also that in the chaotic regime just below the turbulent state (see, for instance,
the supplementary material provided by Bosbach, Weiss & Ahlers (2012)) there
is vigorous mixing in the sample interior, and the boundary layers central to our
discussion already exist.
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FIGURE 2. (a) The Nusselt number as a function of the Rayleigh number on logarithmic scales.
(b) The reduced Nusselt number Nu/Ra0.3 on a linear scale as a function of Ra on a logarithmic
scale. Solid circles (red online): this work, 5CB, Pr = 355, Γ = 0.50. Open squares (purple
online): Xia, Lam & Zhou (2002), Pr = 396, Γ = 1.00. Open circles (green online): Xia et al.
(2002), Pr = 205, Γ = 1.00. Solid line (red online): the power-law fit to the 5CB data, which
gave Nu = 0.103Ra0.309. Dotted line: Grossmann–Lohse model (Grossmann & Lohse 2001) for
Pr = 355 and Γ = 1.

5. Effect of a magnetic field on the heat transport

In a second set of experiments we applied a vertical magnetic field and studied its
influence on the heat transport. The field has an influence on the director alignment
and thus on the fluid properties, in particular on λ and κ . Owing to the dependence
of Ra and Nu on these properties, they are no longer useful as control and response
parameters. Instead, we used the effective thermal conductivity λeff as defined by (2.3)
as a measure for the heat transport and

R0 = αgρcpL31T

λ0ν
(5.1)

as the control parameter (the dimensionless temperature difference). We then have
Ra= R0 λ0/λ.

Figure 3(a) shows the normalized effective heat conductivity λeff (H)/λeff (0)
for different R0. One sees that λeff (H) increases with H. The relative increase
λeff (H)/λeff (0) at a given H is largest for the smallest R0. In order to quantify the
relative increase, we fit the parabola

λeff (H)

λeff (0)
= 1+ aH2 (5.2)

to the data points with the coefficient a(R0) depending only on R0. In figure 3(b) we
plot a(R0) versus R0. The data can be represented by a simple power law

a= mRn
0 (5.3)
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FIGURE 3. (a) Reduced thermal conductivity λeff (H)/λeff (0) as a function of the applied
magnetic field H for R0 = 4.9 × 107 (squares, red online), 9.8 × 107 (bullets, blue online),
1.5 × 108 (diamonds, green online), and 2.5 × 108 (triangles, purple online). The black stars
are for the isotropic phase (Tm = 40.00 ◦C) and R0 = 2.8 × 108. Solid lines are fits of (5.3).
(b) Fitting parameter a as a function of R0. The solid line shows the power law a = mRn

0 with
m= 0.24 G−2 and n=−0.75 (the inset shows the same data on double logarithmic scales).

with m = 0.24 ± 0.06 G−2 and n = −0.75 ± 0.01. In the remainder of this article, we
show that the above experimental findings can be fitted well by a simple model of the
thermal BLs.

6. A simple model for the magnetic-field effect

In RBC at large Ra one can distinguish a bulk region where, due to turbulent
mixing, the vertical temperature gradient nearly vanishes in the time average (see,
however, Tilgner, Belmonte & Libchaber 1993; Brown & Ahlers 2007; Ahlers et al.
2012), and thermal BLs with large vertical thermal gradients. A simple model
(Malkus 1954; Zocchi, Moses & Libchaber 1990) assumes that the temperature
gradient really vanishes in the bulk, and that half of 1T is sustained over each of
the BLs. It is assumed that the heat transport within the BLs is by conduction only,
and that the BLs adjust their thickness δ so that they are marginally stable. Since the
heat flux through the BLs is equal to the flux from the bottom to the top of the cell,
one has

λeff
1T

L
= λ1T

2δ
(6.1)

and thus

λeff = λ L

2δ
. (6.2)

In the following we extend this model to describe the behaviour of λeff (H)/λeff (0) as
a function of H and R0 in terms of the change of the ordering of the director and of
the associated change of the thermal conductivity λ(H) in the thermal BLs due to the
applied magnetic field.
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Since δ corresponds to marginal stability of the BLs, it can be expressed in terms of
a critical Rayleigh number RaBL

c = gα(1T/2)δ3/(κν) for the BLs by

δ =
(
RaBL

c ν

gαcpρ

2λ
1T

)1/3

(6.3)

= L

(
RaBL

c

R0

2λ
λ0

)1/3

. (6.4)

The exact value of RaBL
c is not important for the further analysis; it only matters that

it is a constant. The assumption of a constant RaBL
c leads to Nu ∝ Ra1/3, which differs

slightly from the experimental result Nu ∝ Ra0.309. This small difference is of little
consequence for the model, and using a constant RaBL

c makes the model simpler and
conceptually more appealing. Substituting (6.4) into (6.1) gives

λeff =
(

1
2

)4/3(R0λ0

RaBL
c

)1/3

λ2/3. (6.5)

The thermal conductivity λ(H) in the BLs is unknown since it depends on the extent
of the alignment of n̂ in the BLs by H. For very large H, the director will be aligned
parallel to the magnetic field and thus limH→∞ λ(H) = λ‖. As we argued above, and
as is borne out by the zero-field measurements of Nu(Ra), without a magnetic field
the director is randomly distributed and thus λ(H = 0)= λ0. It is reasonable to assume
that λ depends not only on H but also on the dimensionless temperature difference
R0. In fact, for large R0 the flow is more turbulent, which disturbs the magnetic-field-
induced director alignment in the thermal boundary layers due to an applied shear and
an increase in the plume emission rate. Therefore we consider λ as a function of the
ratio H/Rb

0, with b an unknown exponent.
We write the BL conductivity as

λ(x)= λ0 + (λ‖ − λ0)f (x) (6.6)

with

x=
(

H/H0

Rb
0

)2

. (6.7)

Here f (x) is a convenient cross-over function, with f (x = 0) = 0 and limx→∞ f (x) = 1,
and H0 sets the scale of H. We choose

f (x)= x2 + x

x2 + x+ 1
, (6.8)

but that choice is of minor importance. Substituting λ(x) into (6.5) and dividing by
λeff (x= 0) one gets

λeff (x)

λeff (0)
= [1+ (λ‖/λ0 − 1)f (x)]2/3 . (6.9)

For small x, a Taylor expansion of (6.9) yields

λeff (H)

λeff (0)
= 1+ 2

3
(λ‖/λ0 − 1)x+O(x2) (6.10)

≈ 1+ 2
3

(
λ‖
λ0
− 1

) (
H/H0

Rb
0

)2

. (6.11)
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Equation (6.11) is the same as (5.2) if we set a= (2/3)(λ‖/λ0 − 1)H−2
0 R−2b

0 . Thus, the
fit parameter m in (5.3) is a ratio of a material parameter to the square of the scale H0

of H. It is given by

m= (2/3)(λ‖/λ0 − 1)/H2
0 (6.12)

= 0.243/H2
0 . (6.13)

Comparison with the experimental values m = 0.24 G−2 and n = −2b = −0.75
obtained from a fit to the experimental data in figure 2 indicates that H0 ' 1 G
and that b = 0.375. A fit of the full equation (equation (6.9) with (6.8)) to the data
gives the exponent 2b = 0.751, which shows that the lowest-order Taylor expansion
(equation (6.11)) is an excellent approximation in our range of H.

As shown above, the exact form of the cross-over function f (x) can vary. Since our
data points only cover small values of x, other functions that can be approximated by
a parabola for small x and asymptotically reach unity for large x are equally suitable.
While possible alternative functions include tanh(x), erf(x) or 1 − exp(−x), a ratio of
two linear functions such as x/(x + 1) provides only a poor fit since the second-order
term of its Taylor expansion becomes important in the range of our data.

This model focuses on the change of the heat conductivity λ due to the applied
magnetic field. One could ask whether the director orientation might also have an
effect on the viscosity and thus on the momentum dissipation (see, for instance, Feng,
Pesch & Kramer (1992) for a discussion of the equations of motion of this system).
We believe that this is not the case because the Leslie viscosity coefficients do not
depend on H, and because most of the momentum is dissipated in the bulk, where
the director orientation is randomly distributed due to vigorous fluid motion, even
when a magnetic field is present. In addition, almost the entire temperature gradient
(which determines the Nusselt number) is in the thermal BLs, which for a large-Pr
fluid like an NLC are deeply embedded in the viscous BLs where there is virtually
no flow.

7. Summary

In this paper we have reported experimental results for turbulent thermal convection
of a nematic liquid crystal in a vertical magnetic field of strength H. For H = 0 we
found that the NLC behaved much like an isotropic fluid provided that the thermal
conductivity used to calculate Ra and Nu was that of a sample with a random
director orientation (see (4.1)). In the presence of a vertical magnetic field, the heat
transport was enhanced. This increase was larger for smaller thermal driving (smaller
temperature differences). We proposed a model that assumed an increase of the heat
conductivity of the fluid in the thermal BLs due to a field-induced alignment of the
director. By only considering the thermal BLs, the model reproduced the experimental
data very well. A remaining challenge is an a priori calculation of the exponent
n=−2b' 0.75 and of the scale H0 ' 1 G of the magnetic field.

We believe that this system is well suited for further studies of the properties of
the thermal boundary layers since the properties of the fluid can easily be changed
during an experiment by changing the applied field. Measurements in the presence of
a horizontal field would also be of interest since our model is easily extended to this
case. However, generating a sufficiently large and homogeneous horizontal field over
the volume of the sample would be a significant undertaking.
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