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Abstract— This paper proposes both time and frequency
domain design of functional filters for linear time-invariant
multivariable systems where all measurements are affected by
disturbances. The order of this filter is equal to the dimension
of the vector to be estimated. The time procedure design
is based on the unbiasedness of the filter using a Sylvester
equation; then the problem is expressed in a singular system
one and is solved via Linear Matrix Inequalities (LMI) to
find the optimal gain implemented in the observer design.
The frequency procedure design is derived from time domain
results by defining some useful Matrix Fractions Descriptions
(MFDs) and mainly, establishing the useful and equivalent form
of the connecting relationship that parameterizes the dynamic
behavior between time and frequency domain, given by Hippe
in the reduced-order case. A numerical example is given to
illustrate our approach.

I. INTRODUCTION

The problem of functional filter design is equivalent to find

a filter, that estimates a linear combination of the states of a

system using the input and output measurements. The filter

has the same order as the functional to be estimated. It has

been the object of numerous studies in time domain since

the original work of Luenberger [17], [18], first appeared. In

most case it is related to the constrained or unconstrained

Sylvester equations, see [20] and [19]. In addition [1], [10],

[11] and [12] give different procedures for designing time

domain functional observers, where one can view how the

Sylvester equation was solved.

In frequency domain, there is less literature although it is

the basis for most analysis performed on control systems [4],

[5], [9]. It is well known that both linear optimal state feed-

back and optimal linear filtering problems can be formulated

and solved in the frequency domain. A first solution for the

filter transfer matrix was presented by MacFarlane [21], and

it was demonstrated in [22] that optimal state feedback low

and the optimal filter can be characterized by polynomial

matrix that directly parameterize the state feedback control

and the observer in the frequency domain.

In this framework, a time and frequency domain design

procedure of functional filters is proposed. In fact, after

using the unbiasedness condition, we propose a new method
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versité, IUT de Longwy, 186 Rue de Lorraine, 54400 Cosnes
et Romain, France souley@iut-longwy.uhp-nancy.fr,
darouach@iut-longwy.uhp-nancy.fr

H. Messaoud is with Ecole Nationale d’Ingénieurs de
Monastir, Avenue Ibn El Jazzar, 5019 Monastir, Tunisie
hassani.messaoud@enim.rnu.tn

to treat the error dynamics where in order to avoid the

time derivative of the disturbance w in this error (see [2]),

we transform the problem into a singular one problem.

Then a LMI approach is used to find the optimum gain

implemented in the observer design. Then, based on time

domain results, we propose a new functional filter with the

aid of polynomial approach. The main reason of formulating

the results of the time domain in the frequency one is the

advantages that it presents for the observer-based control

[23]. In fact, in this case, the compensator is driven by

the input and the output of the system. So only the input-

output behavior of the compensator (characterized by its

transfer function) influences the properties of the closed-

loop system. The additional degrees of freedom given by the

frequency approach can then be used for robustness purpose

for example [23].

The organization of this paper is as follows. Section

II gives assumptions used through this paper and states

the functional filtering problem that we propose to solve.

Section III, presents the first contribution of the paper by

giving the design procedure of a functional filter in the

time domain. Using the unbiasedness condition, the problem

is transformed into a singular problem one in order to

avoid to have the derivative of the disturbance in the error

dynamics. A LMI approach is then applied to optimize the

gain implemented in the observer . Then section IV presents

the second result of the paper by giving a frequency domain

description of the time domain functional filter designed in

section III using useful polynomial MFDs. We mainly estab-

lish the equivalent connecting relationship between time and

frequency domain approach that will be useful for functional

filter design. This can be viewed as a generalization of that

of [7] given for the reduced order case . Section V gives

a numerical example to illustrate our approach and finally

section VI concludes the paper.

II. PROBLEM STATEMENT

Consider the following linear time-invariant multivariable

system

ẋ(t) = Ax(t) +Bu(t) +D1w(t) (1a)

z(t) = Kx(t) (1b)

y(t) = Cx(t) +D2w(t) (1c)

where x(t) ∈ ℜn and y(t) ∈ ℜm are the state vector

and the measured output vector of the system, w(t) ∈
ℜq represents the disturbance vector, u(t) ∈ ℜp is the

control input vector of the system and z(t) ∈ ℜmz is the

unmeasurable outputs to be estimated. A, B, D1, K, C and

D2 are known constant matrices of appropriate dimensions.
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Further, it is assumed through the paper that :

Assumption 1: rank K = mz and rank C = m

Problem :

We intend in this paper, to give a time and a frequency

domain design of functional filters, that generates an estimate

ẑ(t) and ẑ(s) for z(t) and z(s) , using the input and output

measurements u(t) and y(t). The order of these filters (mz)
is equal to the dimension of the vector to be estimated.

III. TIME DOMAIN DESIGN

Our aim is to design a functional filter of order (mz) for

system (1) , of the form :

ϕ̇(t) = Nϕ(t) + Jy(t) +Hu(t) (2a)

ẑ(t) = ϕ(t) + Ey(t) (2b)

where ẑ(t) ∈ ℜmz is the estimate of z(t).
The estimation error is given by

e(t) = z(t) − ẑ(t) (3a)

= ψx(t) − ϕ(t) − ED2w(t) (3b)

with

ψ = K − EC (4)

So, its dynamics can be written as

ė(t) = ψẋ(t) − ϕ̇(t) − ED2ẇ(t) (5a)

= Ne(t) + (ψA− JC −Nψ)x(t) + (ψB −H)u(t)

+ (ψD1 − JD2 +NED2)w(t) − ED2ẇ(t) (5b)

The problem of the filter design is to determine N , J , H

and E such that [1], [2]

i) the filter (2) is unbiased if w(t) = 0

ii) the filter (2) is stable, i.e N is Hurwitz.

The unbiasedness of the filter is achieved if and only if

the following Sylvester equation holds

ψA− JC −Nψ = 0 (6)

with

H = ψB (7)

The Sylvester equation (6) can be written by taking into

account (4) as

−NK + (NE − J)C +KA− ECA = 0 (8)

Let

L = J −NE (9)

Then, equation (8) can be transformed as

[N L E]





K

C

CA



 = KA (10)

For the resolution of (10), let set

[N L E] = X (11)





K

C

CA



 = Σ (12)

KA = Θ (13)

therefore (10) becomes

XΣ = Θ (14)

This equation has a solution X if and only if

rank

(

Σ
Θ

)

= rank Σ (15)

and a general solution for (14), if it exists, is given by

X = ΘΣ+ − Z(I − ΣΣ+) (16)

where Σ+ is a generalized inverse of matrix Σ given by (12)

and Z is an arbitrary matrix of appropriate dimensions, that

will be determined in the sequel using LMI approach.

Once matrix X is determined, it is easy to give the

expressions of matrices N , L and E. In fact,

N = X





I

0
0



 = A11 − ZB11 where (17)

A11 = ΘΣ+





I

0
0



 (18)

B11 = (I − ΣΣ+)





I

0
0



 , (19)

L = X





0
I

0



 = A22 − ZB22 where (20)

A22 = ΘΣ+





0
I

0



 (21)

B22 = (I − ΣΣ+)





0
I

0



 , and (22)

E = X





0
0
I



 = A33 − ZB33 (23)

where

A33 = ΘΣ+





0
0
I



 (24)

B33 = (I − ΣΣ+)





0
0
I



 . (25)
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Hence all filter matrices are determined if and only if the

matrix Z is known.

So, the dynamics of the estimation error (5b) reads

ė(t) = Ne(t) + αw(t) + βẇ(t) (26)

with

α = ψD1 − JD2 +NED2 = α1 − Zα2 (27)

where

α1 = KD1 − ΘΣ+





0
D2

CD1



 (28)

α2 = (I − ΣΣ+)





0
D2

CD1



 (29)

and

β = −ED2 (30)

= β1 − Zβ2 (31)

where

β1 = −A33D2 (32)

β2 = −B33D2 (33)

Notice that the error dynamics (26) contains the derivative

of w(t). This problem is generally solved by adding an

additional constraint on the filter matrices (see [2]) or by

choosing a new type of norm for the system. Here we

propose another method which consists in rewriting the error

system into a descriptor (singular) form. Then the following

descriptor system is given from equation (26):

(

I −β
0 0

)(

ė(t)
ρ̇1(t)

)

=

(

N α

0 −I

)(

e(t)
ρ1(t)

)

+

(

0
I

)

w(t) (34a)

e(t) = (I 0)

(

e(t)
ρ1(t)

)

(34b)

where e(t) is the estimation error and ρ1(t) is such that

ρ1(t) = w(t).
Before continuing, let us recall the following result on

descriptor systems:

Lemma 1: [13]

Consider a singular system of the form

Fẋ = Ax+Bw (35)

z = Cx (36)

where x is the state, w is the exogenous input and z is a

controlled output; matrices F , A, B and C are known. The

pair (F, A) is admissible and ‖G‖∞ < γ (G = C(sF −
A)−1B) if and only if there exists X ∈ ℜn×n such that

1)

FTX = XTF ≥ 0 (37)

2)

ATX +XTA+ CTC +
1

γ2
XTBBTX < 0 (38)

Before applying this result on the singular system (34),

we consider that the gain matrix Z satisfies the following

relation

Zβ2 = 0 (39)

in order to avoid an unknown (to be designed) gain matrix

Z in the singular matrix

(

I −β
0 0

)

of system (34).

So it exists a matrix Z1 that satisfies

Z = Z1(I − β2β
+
2 ) (40)

Setting

ρ20 =

(

I −β
0 0

)

=

(

I −β1

0 0

)

(41)

A20 =

(

N α

0 −I

)

=

(

A11 − ZB11 α1 − Zα2

0 −I

)

(42)

β20 =

(

0
I

)

(43)

and

χ(t) =

(

e(t)
ρ1(t)

)

(44)

the singular system (34) reads

ρ20 χ̇(t) = A20 χ(t) + β20 w(t) (45a)

e(t) = (I 0) χ(t) (45b)

Now, a LMI approach is used in the following theorem to

get the gain matrix Z which parameterizes the filter matrices

Theorem 1: The pair (ρ20, A20) is admissible and

‖W (s) = (I 0)(sρ20 −A20)
−1β20‖∞ < γ

if and only if there exist X1 ∈ ℜmz×mz , X2 ∈ ℜq×q and

Y ∈ ℜ(mz+2m)×mz such that the following LMIs hold

1)
(

X1 0
−βT

1 X1 0

)

=

(

XT
1 −XT

1 β1

0 0

)

≥ 0 (46)

2)








P11 P12 0 I

P13 P14 XT
2 0

0 X2 −γ2I 0
I 0 0 −I









< 0 (47)

with θ0 = (I − β2β
+
2 )T and

P11 = AT
11X1 +XT

1 A11 −BT
11θ

T
0 Y − Y T θ0B11

P12 = XT
1 α1 − Y T θ0α2

P13 = αT
1 X1 − αT

2 θ
T
0 Y

P14 = −X2 −XT
2

Then the gain Z1 is given by Z1 = (Y X−1
1 )T .
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Proof 1: Using lemma 1 and the Schur lemma [14] on the

singular system (45) yields to

1)

Φ1 = ΦT
1 ≥ 0 with Φ1 = ρT

20X (48)

2)




Φ2 + ΦT
2 ΦT

3 (I 0)T

Φ3 −γ2I 0
(I 0) 0 −I



 < 0 (49)

with

Φ2 = AT
20X (50)

Φ3 = βT
20X (51)

By taking X =

(

X1 0
0 X2

)

and using (41), (48) is

equivalent to (46). Then, replacing A20 and β20, from (49),
by their expressions (42), (43) and using (40) , the LMI (47)
holds, with θ0 = (I − β2β

+
2 )T and Y = ZT

1 X1.

Design of the time domain functional filter

The different steps of the filter computation in the time

domain are summarized in the following design method:

1) Compute Σ and Θ from (12), (13).

2) All known matrices implemented in LMIs i.e. A11,

B11, α1, α2, B33, β2 , A33 and β1 are computed using

respectively (18) , (19), (28), (29), (25), (40), (24),
(32). So, θ0 is known.

3) Resolution of the LMIs ((46), (47)) gives the gain Z1,

so from (40), Z is known.

4) Compute the filter matrix N from (17).

5) Matrix E is also obtained by (23). Therefore ψ is

known (4) and H is determined as (7)

6) Finally, the time domain representation of the func-

tional filter (2) is known, indeed after computing A22

and B22 from (21), (22), L can be easily calculated

from (20) and therefore matrix J implemented in time

design is computed using (9).

IV. FREQUENCY DOMAIN DESIGN

The next theorem presents the main result of this section

by giving a frequency domain description of the functional

filter designed in section III:

Theorem 2: : Consider the following Matrix Fraction De-

scriptions (MFDs)

i)
[

M0

M1

]

(sI −N)−1 = D̄−1(s)N̄x(s) (52)

where

a) M0 and M1 are arbitrary matrix of dimension

(mz × mz) and (m × mz) such that matrix
[

M0

M1

]

is of full column rank.

b) N is the filter (2) matrix of order mz , and the

two polynomial matrix D̄(s) and N̄x(s) are

of dimensions ((mz + m) × (mz + m)) and

((mz + m) × mz) respectively. They have the

specification to be left coprime . These transfer

functions can be calculated from the factorization

approach presented by Vidyasager [15].

ii)

[

M0

M1

]

(sI −N)−1H = D̄−1(s)N̄u(s) (53)

where

N̄u(s) = N̄x(s)H (54)

iii)

D̄−1(s) ˜̄D(s) = Imz+m +
[

M0

M1

]

(sI −N)−1[0 J ](55)

with D̄(s) is given by (52) and the polynomial matrix
˜̄D(s) parameterizes the dynamics of the functional

filter (2) in the frequency domain. This left coprime

MFD is a generalization of the connecting relationship

that parameterizes the dynamics behavior between time

and frequency domain given by Hippe [7] for the

reduced order case.

Then a frequency domain representation of the functional

filter (2) of order mz , mz ≤ n, related to system (1) is

given by,

ẑ(s) = ˜̄D
−1

(s) [ ˜̄D(s)

[

M0

M1

]+

( (D̄−1(s) ˜̄D(s) − I)

×

[

0
y(s)

]

+ D̄−1(s)N̄u(s) u(s) ) +

˜̄D(s) E × y(s) ] (56)

The filter denominator matrix ˜̄D(s) satisfies

˜̄D(s) = D̄(s) + N̄x(s) [0mz×mz
J ] (57)

Proof 2: : The Laplace transform of (2a) reads as

ϕ(s) = (sI −N)−1Jy(s) + (sI −N)−1Hu(s) (58)

= (sI −N)−1[0mz×mz
J ]

[

0mz×1

y(s)

]

+ (sI −N)−1Hu(s) (59)

So, the Laplace transform of the estimated vector ẑ(t)
(2b), can be written by taking into account(59) as

ẑ(s) = (sI −N)−1[0mz×mz
J ]

[

0mz×1

y(s)

]

+ (sI −N)−1Hu(s) + Ey(s) (60)
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Or, following the proposed left coprime MFDs (55), we

have

(sI −N)−1[0mz×mz
J ] =

[

M0

M1

]+

×

(D̄−1(s) ˜̄D(s) − Imz+m) (61)

and from (53)

(sI −N)−1H =

[

M0

M1

]+

× D̄−1(s)N̄u(s) (62)

the desired estimate of the functional filter reads

ẑ(s) =

[

M0

M1

]+

× (D̄−1(s) ˜̄D(s) − Imz+m)

×

[

0mz×1

y(s)m×1

]

+

[

M0

M1

]+

D̄−1(s)N̄u(s) u(s)

+ E y(s) (63)

Therefore and in view of,

˜̄D
−1

(s) ˜̄D(s) = Imz+m (64)

the frequency domain description (56) holds. The polyno-

mial matrix equation of the filter denominator (57) directly

follows from equation (55) using (52).

V. NUMERICAL EXAMPLE

Consider the system presented in section II, where [5]

A =

[

−2 −2
0 −2

]

, B =

[

1
1

]

, D1 =

[

−4
−7

]

,

C =
[

1 1
]

, K =
[

0 0.067
]

1 - Time domain functional filter design

By applying the proposed algorithm of section III, we

obtain the following results:

1)

Σ =





0 0.0670
1 1
−2 −4



 , Θ =
[

0 −0.1340
]

(65)

2)

A11 = −0.0112, B11 =





0.9944
0.0666
0.0333



 (66)

α1 = 0.1306, α2 =





−0.2998
−0.0201
−0.0100



 (67)

B33 =





0.0333
0.0022
0.0011



 , β2 =





−0.0333
−0.0022
−0.0011



 (68)

A33 = 0.0666β1 = −0.0666 (69)

3) For γ = 12

Z1 =
[

1.0698 −80.6126 158.7342
]

(70)

and therefore

Z =
[

0.0890 −80.6783 158.7013
]

(71)

Consequently, the filter matrices are given by

N = −0.0112 , E = 0.0666 , H = −0.0663, L = 0.1333
and J = 0.1325.

So, the time domain description of the functional filter of

order 1, reads

ϕ̇(t) = −0.0112 ϕ(t) + 0.1325 y(t) −

0.0663 u(t) (72a)

ẑ(t) = ϕ(t) + 0.0666 y(t) (72b)

2 - Frequency domain functional filter design

For that, let us choose M0 = 1 and M1 = 0, so

[

M0

M1

]

is of full column rank. By using the factorization approach

given in [15] and the algorithms of [16] about realization of

RH∞ matrices satisfying the Bezout identity, we obtain

D̄(s) =

[

s+0.0112
s+2.0112

−1
s+2.0112

0 1

]

(73)

and

N̄x(s) =

[

(s+ 2.0112)−1

0

]

(74)

one can verify that (52) is satisfied. From (54), we have

N̄u(s) =

[

−0.0663(s+ 2.0112)−1

0

]

(75)

consequently, from (57) the denominator matrix of the

functional filter reads as

˜̄D(s) =

[

s+0.0112
s+2.0112

−0.8675
s+2.0112

0 1

]

(76)

Therefore, following (63) , and by taking into account

(73), (75) and (76), ẑ(s) can be rewritten as

ẑ(s) =
[

1 0
]

×

[

0 0.1325
s+0.0112

0 0

] [

01×1

y(s)1×1

]

−
0.0663

s+ 0.0112
u(s) + 0.0666 y(s) (77)

so, its readily follows that the desired frequency description

(56) of the functional filter is determined .

In other hand, we propose to draw the frequency estima-

tion error. For that, (77) reads

ẑ(s) = [
(0.0666s+ 0.1332)(2s+ 2)

(s+ 0.0112)(s+ 2)2
−

0.0663

s+ 0.0112
] u(s)

+ [
(0.0666s+ 0.1332)(s2 − 7s− 4)

(s+ 0.0112)(s+ 2)2
] w(s) (78)

therefore supposing that u = 0, and using Laplace trans-

form of (1b), the frequency estimation error satisfies the

following equation

e(s) = z(s) − ẑ(s) (79)

=
−0.0666s3 + 0.802s2 + 2.142s+ 0.5433

s3 + 4.011s2 + 4.045s+ 0.0448
w(s)
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The simulations are done with an input u = 0 . For the

time domain design, the disturbance w(t) is taken to be of

bounded energy and is given by figure 1. We take (e(0) =
2.5) as initial condition. Finally, the figures 2 and 3 show

the time and frequency domain behavior of the filter and so,

the effectiveness of our approach.

VI. CONCLUSION

A new time and frequency domain design of functional

filter for linear multivariable systems is proposed in this pa-

per. The proposed filter has the same order as the functional

to be estimated. The time domain procedure is based on the

resolution of Sylvester equation and the use of a singular

system approach in order to avoid time derivative of the

disturbance. LMI approach is then used to find the optimum

gain implemented in the observer design. An algorithm that

summarizes the different step of resolution is given. Then,

based on time domain results, the frequency domain descrip-

tion of the functional filter is derived. In fact, we define

some useful matrix fraction descriptions and mainly propose

a connecting relation between time and frequency domain

parameterizations of functional filter, which is equivalent to

that proposed by Hippe [7] in the reduced order case. The

proposed design procedure has been applied on numerical

example and it shows its effectiveness.
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Fig. 2. Evolution of the estimation error e(t) designed in time domain
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