
Network Management Traffic Optimization

C. Jagadish
1
, S. Thanga prakash

1
 and Timothy A. Gonsalves

2

1
Midas Communication Technologies Pvt. Ltd., Chennai, India

2
Computer Science and Engineering Department, IIT Madras, India

Email: {cja@midascomm.com, thanga@midascomm.com, tag@tenet.res.in}

Abstract - Network Management Systems (NMS) are of

paramount importance to manage large and complex telecom

networks from a central place. To provide interoperability, these

NMS systems are usually based on standards. Simple Network

Management Protocol (SNMP) is the most widely deployed

management standard. SNMP is simple but has limitations in terms

of bandwidth overheads. High object identifier (OID) overhead,

single request single response, no filtering capability are the typical

limitations of SNMP which make the response time of a poll request

high, especially over a low speed network. In this work, we propose

a few extensions to SNMP to optimize the traffic and response time

with minimal changes in the managed devices. From the

implementation and experiments carried on corDECT networks, we

show that there is considerable reduction in bandwidth

requirements and response time for the management operations

especially over dialup and low speed links.

I. INTRODUCTION

Data and telecom networks are becoming increasingly

complex in terms of both geographical spread and heterogeneity.

To aid interoperability, centralized NMS is based on network

management standards. Among the various management

standards, SNMP [1] is the most widely deployed. Owing to this,

one cannot rule out the usage of SNMP in small and medium

range data and telecom networks.

The messages supported by SNMPv1 are get-request, set-

request, getNext-request and trap. Additionally, SNMPv2c

supports getBulk-request and inform-request [2]. Both SNMPv1

and SNMPv2c are weak in terms of security, while elaborate

security mechanisms have been built into SNMPv3 [3]. One of

the major limitations of SNMP often criticized in literature is its

traffic overheads and consequent large response times. Traffic

overhead is mainly due to OID overhead and the lack of filtering

capability. Owing to these limitations of current SNMP getNext

and getBulk services, it is usually necessary to retrieve all the

rows of a Management Information Base (MIB) table even

though only some of them are needed.

Apart from this the SNMP protocol is based on single

request and single response. Traditional SNMP managers use

stop-and-wait mechanism for request-responses. Due to this,

response times and latencies become high for large table

retrievals. Some JAVA managers implement multiple parallel

threads. However, for performance reasons there is an upper limit

on the number of parallel threads. The majority of the SNMP

traffic consists of getNext/getBulk requests [4]. The next request

in case of a getNext or getBulk request depends on the previous

response. Due to this reason it is not possible to have parallel

threads for getNext/getBulk requests. All this makes SNMP quite

inefficient especially over a low speed link.

In this paper we propose a few simple extensions to the

SNMP protocol which makes it suitable for low speed links. By

making these extensions both at manager and agent, we find that

there is considerable reduction in both bandwidth requirements

and response times for management operations over dialup and

other low speed links.

In section 2 we give a brief survey of the SNMP traffic

optimization methods in the literature. In section 3 we describe

the proposed techniques and protocol extensions. Section 4

covers our implementation. Experimental results and discussion

are presented in section 5. The paper concludes with conclusions

and scope for future work in section 6.

II. BACKGROUND

There is a rich literature on mechanisms to optimize SNMP

response time and bandwidth overheads. We classify

optimization techniques as “techniques to reduce the number of

request-responses”, “techniques to reduce packet overheads”,

“techniques to effectively use the network bandwidth” and

“techniques to reduce the amount of data retrieved (filtering)”.

A. Techniques to reduce the number of request responses

In SNMPv1, to retrieve a table getNext message is

provided. To improve the performance over getNext, SNMPv2

has getBulk. The efficiency of retrieving bulk data using SNMP

getBulk depends on the maximum supported packet size. The

maximum packet size depends on the implementation of agent

and manager. Although the maximum message size supported by

SNMPv2c and SNMPv3 is 2
31

-1 bytes, it is seen that in practice

the maximum SNMP message size is less than 1500 bytes [4].

B. Techniques to reduce packet overheads (OID Optimization)

One of the major limitations of SNMP is the OID naming

overhead. The length of an OID reflects the depth of the attribute

in the MIB tree. There are a number of techniques proposed for

OID optimization such as ObjectID Delta Compression (ODC)

[5] and ObjectID Prefix Compression (OPC) [6]. The average

compression obtained in retrieval of MIB-II data is nearly 25%

using OPC [7]. The OID suppression technique proposed by EOS

suggests retrieval of all columns of a row [6]. This becomes

inefficient when the number of columns in a table is high and

only a small set is relevant to the manager. Both algorithms

require implementation of new PDU and compression algorithms

at both agent and manager.

C. Techniques to effectively use the network bandwidth

One research work [8] proposes splitting of a table retrieval

walk query into multiple threads of sub-walk queries to optimize

the response time, where each thread retrieves a portion of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357256206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

table. The shortcomings of this approach are addressed by

another proposal by introducing a new getsubtree request [9].

This allows the agent to return multiple related responses for a

single request. However the manager is forced to retrieve the

entire subtree, irrespective of the actual rows of interest.

D. Techniques to reduce the amount of data retrieved

Various techniques were published for traffic optimization

by filtering. In a mobile/intelligent agent proposal [10], a JAVA

based mobile agent migrates to the device, for retrieving bulk

data with a predefined filter. The mobile agent collects the

responses through multiple getNext queries and returns a JAVA

object containing responses that match the filtering criteria. This

technique naturally requires the device to have support for JAVA

execution and mobile agent implementation. In the paper [11] the

author proposes, a new PDU getRows an extension to getBulk,

where the request PDU carries the filter criteria. The response

carries only the rows matching the filter criteria. The author

shows significant improvement over getBulk and getNext. The

paper focuses more on the filtering aspect and less on the single-

request-single-response limitation affecting low speed links.

One proposal for filtering could be defining a MIB for

filtering. The manager sets the required filter criteria before

making the getNext / getBulk request. The response will take into

account the filter set. Here the limitation is that if multiple

managers are there then separate filters should be available for

each manager and the manager should remember to clear the

filter after the getNext/getBulk request is completed. Also, as

SNMP is UDP based a get has to be done to ensure that the

previous filter set/reset is successful.

III. PROPOSED TECHNIQUES AND PROTOCOL EXTENSIONS

This section describes the proposed techniques and

extensions to SNMP protocol.

A. Get/set response time optimization based on sliding window

approach

In the proposed solution, a single threaded manager sends N

independent get/set-requests to the agent without waiting for

response, where N is the window size. Subsequently, on receipt

of each response, the next request is sent. The manager thus

always maintains upto N outstanding requests. In turn the agent

will always have a request for processing. Requests are sent to

the device in the order of their arrival.

One important aspect is time-out handling. Normally,

timeouts are kept high and are increased exponentially. In this

approach if one response gets delayed or lost then the effective

window size reduces to N-1. We have optimized this with the

consideration that though the underlying protocol is UDP, as

normally there is only one path between the manager and the

device reordering of packets is not expected. Based on this, if we

receive response for sequence number K+1 before response for

K, then we assume that the response for K is lost. However this

will work even if packets come out of order. At this time we

simulate timeout for the request K. In case if two duplicate

responses are received (with the same sequence number) then the

earlier response is accepted and the later one is rejected. This

requires no change at the device.

B. The getNext/getBulk optimization

Often the requirement is to get the rows of a table in a given

range, rather than getting a count number of rows as provided by

max-repetitions of getBulk request. We introduce a new message

called getRangeTable, a simple extension to SNMP

getNext/getBulk message. The packet structure includes lower

and upper range fields. Conventions, such as default lower range

as the first instance in the table, and default upper range as the

last instance in the table are defined.

The agent implements this as a series of getNext/getBulk

requests locally for the given range. It sends the responses

individually in multiple responses. The manager receives these

multiple responses and processes them sequentially. This reduces

one-side latency, as only one request is sent and responses are

received back to back. The responses are chained with a

sequence number called link id starting from 1. The last response

contains negative value of the last sequence number indicating

the end. The manager can detect the loss of a response by

watching the link ids. In case of loss of a response, manager

retrieves the lost packet by a getNext/getBulk request using the

previous link id response packet. On receipt of each response

packet, timeout is set for receiving the next response packet. In

case of a timeout, the manager increments the retry count and

reissues the getRangeTable request with the lower range updated

with the instance number of the last received response packet.

The getRangeTable is very useful when the table index is a

meaningful instance attribute for the table as in case of

“subscriber table” where subscriber number is the index,

“equipment table” where equipment id is the index etc. A typical

query could be, “get the list of subscribers having subscriber

numbers from 1 to 500”. With this single query, upto 500

chained responses are sent from the agent back to back to the

manager, one response for each available subscriber.

C. Filtering Support – getFilteredTable

This is an extension to the getRangeTable. Here in addition

to the range input a generic filter input is added to the packet. In

the getFilteredTable request agent interprets both the range input

and the filter criteria. The filters are simple but powerful having

provision for both logical and arithmetic operators. Multiple

filter criteria are combined with logical operators. Similar to

getRangeTable, agent simulates continuous getNext/getBulk

requests internally for the given range and sends the filtered

responses back to back. The packet loss handling and timeout

handling at the manager is similar to the one explained for

getRangeTable. This gives substantial improvement in both

traffic and response time. Some typical requests of this type are

“get the routing entries from the router having the destination

port as interface 3”, “get the list of wireless subscribers between

1 to 5000 having receive signal strength below the threshold

value 30dbm” etc.

D. Enterprise OID Optimization

Normally each product development company registers for

a Private Enterprise Number (PEN) with IANA [12] and places

its proprietary MIB under the Enterprise branch of MIB. The

PEN allotted for Midas communication [13] is 3794. The MIB

for the corDECT product of Midas starts at 1.3.6.1.4.1.3794.1.

The corDECT system is a wireless telecom switch based in

DECT technology. Standard SNMP MIB is not available for

most of the MIB needed for corDECT. From the usage statistics

we see that more than 95% of MIB access happens to corDECT

Enterprise specific MIB. From this we see that each OID access

has a constant overhead of 8 bytes (one byte for first two oids, 2

bytes for 3794) i.e. “1.3.6.1.4.1.3794.1”. The table OID in

corDECT MIB has the following additional sub-oids

“group.table.entry.attribute.instance”, similarly a group has the

following additional sub-oids “group.atribute.instance”.

Effectively the length of a table OID = 13 bytes and length

of a group oid is 11 bytes. To reduce this overhead we re-

registered the corDECT MIB under “iso” branch of the SNMP

MIB i.e., “iso.corDECT” having OID 1.39. Effectively the

corDECT MIB is registered twice in the MIB with two different

module names, which is allowed. With this the agent responds to

both 1.39 as well as to 1.3.6.1.4.1.3794.1. This is to ensure

compatibility with the external standard managers. With this, our

EMS manager can access the corDECT MIB with prefix 1.39

instead of 1.3.6.1.4.1.3794.1. With this, the number of bytes

needed for a table OID = 6 bytes and for group OID = 4 bytes.

This gave us an effective constant reduction of 7 bytes per

OID, which is 54% optimization for tables and 63% for groups.

Also, from the statistics [14] it is seen that major processing time

at the agent and manager are for OID parsing and processing.

With this optimized OID, we have seen considerable reduction in

processing time. This is done only with an additional MIB

loading and with no code change at both manager and agent.

E. Computation of expected gain in response time

We denote the propagation delay of a request from manager

to agent by Tm, the processing time of the request at the agent by

P and the propagation delay for response from agent to manager

by Ta. Then the response time or Round Trip Time (R) of a

request is given by R = Tm + P+ Ta

For the sake of simplicity, let us consider the link speed in

both directions and the packet size of request and response to be

the same. By this the propagation delay of request and response

becomes equal. Thus, R = 2T + P. This is illustrated in Fig-1.

 Fig-2 shows Improved Response Time (Ri) under two

conditions Ri = T where T >P and Ri = P where T < P. We can

prove that the improved response time of the sliding window is

the same as that of the multiple responses. The gain improvement

is equal to the ratio of R and Ri, Gain Improvement GI = R / Ri.

In other words the gain improvement depends on the ratio of

processing time (P) and transmit time (T). This ratio is referred as

PTR. Gain increases as the PTR approaches 1 and reduces as

PTR digresses from 1.This is shown in Fig-3.

IV. IMPLEMENTATION

Ease of implementation and minimal modifications to the

current SNMP implementations are the key considerations of this

proposal. No changes are needed at agent for the sliding window

optimization or OID optimization. For the getNext and filter

optimizations, we added three new “wrapper PDU” types

GetRangeTable-PDU, GetFilteredTable-PDU and

MultiResponse-PDU encapsulating the existing SNMP PDU. The

new PDU contains an additional header on top of the existing

SNMP PDU. This support is needed both at the manager and at

the agent.

For easy implementation we developed a proxy at the agent

side that receives the new request PDU, extracts the encapsulated

SNMP request PDU and additional information i.e., lower range,

upper range and filter details from the header. The proxy

validates that all the requested varbinds belong to the same table

else it returns an error. Then the proxy queries the actual agent

in a loop for the given range and sends the responses back to

back, which match the filter criteria, using MultiResponse-PDU.

The responses are chained with incremental link ids. The last

response contains the negative value of the last sequence number.

The proxy can be placed on a standalone server outside the

device. The ASN details for the new GetRangeTable-PDU,

GetFilteredTable-PDU and MultiResponse-PDU are given

below. We see that the overhead for GetRangeTable-PDU is 21

bytes and that of GetFilteredTable-PDU is 43 bytes, which are

sent only once. The overhead with each MultiResponse-PDU is

12 bytes compared to standard SNMP response.

Extended-SNMP-PDUs ::= CHOICE {

getRangeTable getRangeTable-PDU,

getFilteredTable getFilteredTable-PDU,

multiResponse multiResponse-PDU,

snmpPDU PDU }

-- PDUs

Fig. 1 Round Trip

Time (R)

Fig. 3 Gain vs. P/T

Fig. 2 Improved Response Time (Ri)

getRangeTable-PDU ::= [9] IMPLICIT GetRangeTable-PDU

getFilteredTable-PDU ::= [10] IMPLICIT GetFilteredTable-PDU

multiResponse-PDU ::= [11] IMPLICIT MultiResponse-PDU

GetRangeTable-PDU ::= SEQUENCE {

 request-id INTEGER,

 lower-Range OCTECT STRING,

 upper-Range OCTECT STRING,

 snmpPdu PDU }-- getNext / getBulk

GetFilterTable-PDU ::= SEQUENCE {

 request-id INTEGER,

 lower-Range OCTECT STRING,

 upper-Range OCTECT STRING,

 filterList FilterList,

 snmpPdu PDU } -- getNext / getBulk

MultiResponse-PDU ::= SEQUENCE {

 request-id INTEGER,

 linkId INTEGER,

 snmpPdu PDU } -- SNMP Response PDU

FilterList ::= SEQUENCE (SIZE (1..max-bindings)) OF FilterCondition

FilterCondition ::= SEQUENCE {

attribute ObjectName,

operatorValue INTEGER,

value ObjectSyntax }

V. EXPERIMENTAL RESULTS AND DISCUSSION

We have taken various performance readings with the new

agent and manager for different network bandwidths ranging

from 38 kbps to 10 Mbps. A dialup connection was used to

establish a 38 kbps link. For N x 64 connectivity we used a router

and DSL modem pair at both ends of the connection. The

modems are configurable for various link speeds in steps of 64

kbps. Ethernet is used for 10 Mbps link. Readings are taken for

different SNMP messages (standard and proposed). Each request

message has 10 attributes. The same experiment set is repeated

for various network bandwidths. The aim of the experiment was

to measure the round trip delay, processing time at the agent,

bytes transmitted and bytes received. Table-1 summarizes

different techniques used and possible optimizations.

A. Performance of get/set optimization

Fig-4 shows the average get/set response time with sliding

window for different window sizes. It is seen that the response

time decreases with increase in window size up to an extent and

then stabilizes. Let us call this as the Stabilized Window Size

(SWS). We see that for the dialup line SWS is 9. In the N x 64

kbps setup we see that SWS is 3 for 64 kbps link and increases

gradually up to 8 for 2 Mbps link. SWS for 10 Mbps LAN again

drops to 3. With the sliding window the response time obtained

with 2 Mbps link is equal to the response time with 10 Mbps link.

This is because for higher speed links the agent processing time

becomes the bottleneck rather than the network latency.

From the theoretical calculations we see that SWS should

be ≤ 3 for networks of all speeds. However, due to additional

delay experienced in the real networks, the SWS increases upto

9, this is explained in section E. The proposed mechanism has

better response time upto 3 times for dialup, 6 times for 2 Mbps

link and 1.5 times for 10 Mbps link compared to the stop and

wait protocol. This improvement is more than the improvement

computed theoretically, which is explained in section E.

B. Performance optimization for getNext/getBulk

Fig-5 shows the improvement in the response time with

getRangeTable compared to standard SNMP getNext. The OID

optimization gives further improvement in the response time. It

has additional advantages like only the required range of entries

are retrieved from the table.

C. Performance optimization for getNext/getBulk with filtering

This is an improvement over the getRangeTable having a

generic filter using the getFilterTable request. Readings are taken

considering different percentages of filtered output of 5000 entry

subscriber table at various link speeds and the same is shown in

the Fig-6. The first column indicates the round trip time with the

existing standard SNMP with no filtering.

D. Enterprise OID Optimization

As discussed earlier almost all management operations on

corDECT system are on the enterprise MIB. The average size of

packet with and without enterprise OID optimization is measured

for different numbers of OID. Fig-7 shows the sizes of optimized

Fig. 4 Sliding window response time

(a) low bandwidth links

Fig. 4 (b) High bandwidth links

Fig. 5 Response time with “Multi-Responses”

and normal (non-optimized) packets. Table-2 shows the

improvement in agent processing time with OID optimization.

E. Expected gain in response time vs. actual gain obtained

Fig-8 shows the comparison of expected response time and

actual response time. From the figure we see that the pattern of

actual gain matches with the expected gain but the actual gain is

higher than the expected gain. This extra gain is obtained due to

the network delay in the real network.

In our analytical calculation for the R, the propagation time

of request, response packets and the processing time at agent are

considered. However in reality the actual propagation time is

higher than the expected propagation time due to the network

latency i.e., processing delay at the routers/switches in the

network path. Normally this network latency is significant for the

first packet in the queue. When packets are sent back to back the

network latency overlaps with the propagation delay and gets

nullified. In stop-and-wait mechanism each request and response

experiences the network latency, while in the proposed

mechanism only the first request and first response experiences

this network latency. Due to this we see that the actual gain

obtained is higher than the gain expected theoretically.

VI. CONCLUSIONS

 We have proposed techniques for optimization of network

management traffic. This includes sliding window for get/set,

multiple responses for geNext/getBulk, along with filtering and

enterprise OID suppression techniques for optimization of

network management response time and traffic. The proposed

techniques are implemented and performance readings are taken.

Analysis is done comparing the expected gain and the gain seen

from the implementation. We see that the actual gain is higher

than the expected gain due to the network latency. It is seen that

the gain is high especially for low speed networks, favouring the

needs of rural deployment. The work can be extended to do a

further study to optimize the retrieved values. The

implementation done for corDECT systems is ready for field

deployment.

References
 [1] W. Stallings, SNMP, SNMPv2, SNMPv3 and RMON 1 and 2, 3rd ed.,

Addison Wesley, 1999.

 [2] R. Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Version 2

of the Protocol Operations for the Simple Network Management

Protocol (SNMP), STD 52, RFC 3416, Dec 2002.

 [3] U. Blumenthal, B. Wijnen, “User-based Security Model (USM) for

version 3 of the Simple Network Management Protocol (SNMPv3)”,

RFC 3414, Dec 2002

 [4] J. Schönwälder. SNMP Traffic Measurements. Internet Draft draft-irtf-

nmrg-snmp-measure-00.txt, International University Bremen, May

2006.

 [5] J.Schoenwaelder, SNMP payload compression, draft-ietf-nmrg-snmp-

compression-01.txt, Apr 2001.

 [6] S.McLeod, D.Partain, and M.White, SNMP object identifier

compression, draft-ietf-eosoidcompression-00.txt, Apr 2001.

 [7] A. Pras, T. Drevers, Rvd Meent, and D. Quartel, Comparing the

Performance of SNMP and Web Services-Based Management, IEEE

electronic Transactions on Network and Service Management 1(2),

Nov 2004.

 [8] M Rose, K. McCloghrie, J Davin, Bulk table retrieval with SNMP,

RFC 1187, Oct 1990.

 [9] R. Sprenkels, J.P. Martin-Flatin, Bulk transfers of MIB data, The

Simple Times Volume 7 Number 1, Mar 1999.

 [10] D. Gavalas, D. Greenwood, M. Ghanbari, M.O. Mahony, Advanced

network monitoring applications based on mobile/intelligent agent

technology, Computer Communications, Vol. 23 (2000) pp. 720-730,

Apr 2000.

 [11] Yen-Cheng Chen and Io- Kuan Chan, SNMP GetRows – An Effective

Scheme for Retrieving Management Information from MIB Tables,

International Journal of Network Management, Volume 17 (2007) pp.

51-67, Jan 2007.

 [12] IANA, Homepage of Internet Assigned Number Authority(IANA),

http://www.iana.org.

 [13] Midas Communications Technologies (P) Ltd,

http://www.midascomm.com.

 [14] Qiang Gu and Alan Marshall, Network management performance

analysis and scalability tests: SNMP vs CORBA, IEEE/IFIP Network

Operations and Management Symposium, Seoul, Korea, Apr 2004.

Fig. 8 Expected and Actual gain improvement

Fig. 7 Packet size comparison

Fig. 6 Response time with different % of filters

