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ABSTRACT 

 

We have introduced a discrete time prey-predator model with Generalized Holling type interaction. 

Stability nature of the fixed points of the model are determined analytically. Phase diagrams are drawn 

after solving the system numerically. Bifurcation analysis is done with respect to various parameters of the 

system. It is shown that for modeling of non-chaotic prey predator ecological systems with Generalized 

Holling type interaction may be more useful for better prediction and analysis. 
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1. INTRODUCTION 
 

Among all mathematical models, prey-predator  model have  received  much attention during the 

last few decades due to its wide range of application. The dynamic relationship between predators 

and their preys have long been(and will continue to be) one of the dominant theme due to its 

universal prevalence and importance. Firstly, the prey-predator  interaction model has been 

described by Lotka[1] and Volterra[2]. After them, more realistic prey-predator model was 

introduced by Holling[3]. Moreover, there are many different kinds of prey-predator models in 

mathematical ecology. All the research studies have mainly focused on continuous time prey-

predator  models with differential equations. But sometime the discrete time models governed by 

difference equations are more  appropriate than the continuous time models to describe the prey-

predator relations. Recent works showed that the dynamics of discrete time prey-predator  model 

is much richer than the continuous time model. Therefore it is reasonable to study discrete time 

prey-predator models. Again generalization is at the heart of many aspects of ecology, since 

natural populations are not perfectly homogeneous. Generalized models help us to analyze the 

influence of the exact mathematical formulation of the functional responses. Therefore the 

functional responses should be of general type[11] for constructing a real food chain model, since 

in real world predators of different species may feed on preys in different types of consumption 

ways.  
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Now study of controlling chaos in dynamical system become an active research area of great 

attention. Z. Jing and J. Yang[16] discuss the chaotic dynamics of a discrete time predator-prey 

system. Z. He and X. Jiang[17] study the chaotic behaviour of a discrete dynamical system. T. K. 

Kar and K. Chakraborty[18] analize the dynamics of a prey-predator model with harvesting 

tecnique. S. Vaidyanathan[19, 20] successfully designed controller and synchronizer for different 

hyperchaotic dynamical system.  

 

Now it is very common that scholars[4-10] have a tendency to study the interaction between two 

species with Holling type functional responses. Danca et al. [12] study the chaotic dynamics in a 

simple discrete time prey-predator model with Holling type-I relation. Y. H. Fan and W. T. Li[13] 

establish sufficient conditions for the permanence in a delayed discrete prey-predator model with 

Holling type-III functional response. Y. G. Sun and S. H. Saker[14] drive a discrete analogy of 

continuous three level food chain model of Holling type-II response and establish the conditions 

for the existence of positive periodic solutions with strictly positive components by using 

continuation theorem in coincidence degree theory. Agiza et al. [15] investigate a discrete time 

prey-predator model with Holling type-II functional response and analyze the existence and 

stability of the fixed points. They also calculate the fractal dimension of strange attractor of the 

model. In the present work, we have introduced a discrete prey-predator model with Generalized 

Holling type  interaction. We discuss the dynamics of the system analytically as well as 

numerically. Our works showed that this type of model is very useful to describe prey-predator 

dynamics. Our model is more realistic and the result is very meaningful and different from Agiza 

et al. [15]. 

 

We start by formulating a prey-predator model of Generalized Holling type interaction in section-

III. In section-IV we are determined the fixed points of our system. The dynamic characteristics 

of the model are discussed in section-V. Stability nature of the fixed points are fully discussed in 

section-VI. The results of the system are studied in section-VII using the phase diagrams and 

bifurcation diagrams with respect to various parameters of the system. Finally the discussion is 

concluded in section-VIII. 

 

2. RELATED WORK 
 

Using actual functional relation is more important in prey-predator model dynamics. If the idea of 

using generalized functional relation is a new topic, but some meaningful research studies were 

done on this topic. Gross et al.[11] discuss prey-predator model with the idea of generalized 

Holling interaction function. B. Sahoo[21] studies a prey-predator model with general Holling 

type interaction in presence of additional food. Leeuwen et al.[22] study an ecological model with 

a generalized functional response for predators. Su et al.[23] investigate the dynamic complexities 

of a predator-prey model with generalized Holling type III functional response. 
 

3. THE MODEL 
 
The classical prey-predator model with Holling type interaction is as follows: 

 
dx

dt
 = ax(1 - x) -  

bxy

1+cx
  

                       
dy

dt
  = 

bxy

1+cx
  - y                                                                                                      (1) 
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                           x(0)  0, y(0) 0 

 

where x, y represent the prey and predator density respectively; a, b, c are the positive parameters 

that stand for  prey intrinsic growth parameter, half saturation parameter, limitation of the growth 

velocity of the predator population with increase in the number of prey respectively; and ,   0 

are the conversion and predator‟s death rate respectively.  

 

Now to understand the complex dynamics of prey-predator relations, we propose the following 

discrete time prey-predator model with Generalized Holling type interactions: 

 

                 xn+1 = axn(1 - xn) - 
bxn

p
yn

1+cxn
p   

                 yn+1 =  
dxn

p
yn

1+cxn
p - yn, p > 0                                                                                             (2) 

 

         where a, b, c, d,  are the non-negative parameters. 

 

4. FIXED POINT OF THE MODEL 
 

Fixed points of the system are determined by solving the following non-linear system of 

equations: 

 

      x = ax(1-x) - 
bx

p
y

1+cx
p  

      y = 
dx

p
y

1+cx
p  - y       

                                                                                                                                      (3) 

 By simple calculation, we get three non-negative fixed points as follows: 

 

(i) E0(0,0) is origin, 

(ii) E1(
a - 1

a
 ,0) is the axial fixed point in the absence of predator(y = 0) exists for a > 1, and 

(iii) E2(x
*
, y

*
) is the interior fixed point, where 

 

x
*
 = 

(1+)
1

p
 

{d - c(1+)}
1

p
 
  

y
*
 = 

d

b
 

(1+)
1 - p

p
 

{d - c(1+)}
1

p
 
 [(a - 1) - 

a(1+)
1

p
 

{d - c(1+)}
1

p
 
 ]                                                       (4) 

exists if and only if d > (1+)[c + (
a

a - 1
 )

p
. 
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5. DYNAMIC BEHAVIOUR OF THE MODEL 

 
 The Jacobian matrix of the model at the state variable is given by- 

 

 J(x,y) =                                                                                                                                                        (5) 
 

 

 

 

 

Where  

 

A11 = a(1 - 2x) - 
bypx

p - 1

(1 + cx
p 
)

2   

 

 A12 = - 
bx

p

1+cx
p  

 

  A21 = 
dypx

p - 1

(1+cx
p
)

2   

 

   A22 = 
 dx

p

(1+cx
p
)
  -  

 

The characteristic equation of the Jacobian matrix can be written as 

 

   
2
 - Tr.J(x,y). + Det.J(x,y) = 0                                                                                      (6) 

 

Where Tr.J(x,y) is the trace and Det.J(x,y) is the determinant of the Jacobian matrix J(x,y) which 

is defined as 

 

Tr.J(x,y) = a(1 - 2x) - 
bypx

p - 1

(1 + cx
p 
)

2  + 
 dx

p

(1+cx
p
)
  -  

 

 and  

 

Det.J(x,y) = a(1 - 2x)[ 
 dx

p

(1+cx
p
)
  - ] +  

bypx
p - 1

(1 + cx
p 
)

2       

                                                                                                                                          (7) 

Hence the model is a dissipative dynamical system if  

 

│Det.J(x,y)│ 1, conservative dynamical system, if and only if │Det.J(x,y)│= 1, and is an 

undissipated  dynamical system otherwise. 
 

 

 

 

A11              A12 

A21         A22    

 

 

A21        A22 
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6. STABILITY OF THE FIXED POINTS 

 

Let  1 and  2 be the two roots of Equn. (6), which are called eigen values of the fixed point (x, 

y). A fixed point (x, y) is called a sink  if │1│ 1 and │2│ 1, so the sink  is locally 

asymptotically stable. The point (x, y) is called a source  if │1│ 1 and │2│ 1, so the  source  

is locally unstable. The point (x, y) is called a saddle if │1│ 1 and │2│ 1 ( or │1│ 1 and 

│2│ 1). And the point (x, y) is called non-hyperbolic if either│1│ = 1 or │2│ = 1. 

 

Now we discuss the stability of the fixed points by the following three Lemma: 

 

6.1. Lemma-1: The fixed point E0 is a sink  if a < 1 and  < 1; source if a > 1 and  > 1; saddle 

if a > 1 and  < 1 (or a < 1 and  > 1) and non-hyperbolic if  a = 1 or  = 1. 

 

   Proof: The Jacobian  matrix at E0 is given by 

 

 

                    a             0 

 

J(E0) =                                                                                                                            (8) 

 

                    0            - 

 

 

Hence the eigen values of  matrix J(E0) are 1 = a and 2 = -. Thus it is clear that the point E0 is a 

sink  if a < 1 and  < 1; source if a > 1 and  > 1; saddle if a > 1 and  < 1 (or a < 1 and  > 1) 

and non-hyperbolic if  a = 1 or  = 1.  

 

6.2. Lemma-2: If a > 1, then for all permissible values of parameters- 

 

(i) E1 is a sink if 1 < a < 3 and  

d < (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p   

 

(ii) E1 is a source if a > 3 and  

 d < (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p   

 

(iii) E1 is a non-hyperbolic  if a = 3 or 

 

d  = (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p   

 

(iv) E1 is a saddle for the other values of parameters except those values in (i), (ii) and 

(iii). 

 

 Proof:  The Jacobian Matrix J(x, y) at E1 is given by 
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            2 - a          a12 

J(E1) =                                                                                                                            (9)    

 

             0              a22 

 

 

Where, 

 

           a12 =  -b
(a - 1)

p

 [a
p
 + c(a - 1)

p
]
  

 

           a22 = d 

(a - 1)
p

 [a
p
 + c(a - 1)

p
]
  -  

Now, the eigen values of the matrix J(E1) are 1 = 2 – a and 2 = d 
(a - 1)

p

 [a
p
 + c(a - 1)

p
]
 - . Hence it is 

easy to say that, 

 

 E1 is a sink if 1 < a < 3 and d < (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p  ; 

 

 E1 is a source if a > 3 and  d < (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p  ; 

 

 E1 is a non-hyperbolic  if a = 3 or  

 

               d  = (1 + )
[a

p
 + c(a - 1)

p
]

 (a - 1)
p   and  

 

 E1 is a saddle for the other values of parameters.  

 

 6.3. Lemma-3: When d > c(1 + ) and c < 
1

(1 + )
 , then the interior fixed point E2(x

*
, y

*
) will 

be: 

 

(i)a sink  if a < 
A

B
  and a > 

C

D
 ; (ii)a source  if a > 

A

B
  and a <  

C

D
  ; (iii)a non-hyperbolic  if a = 

A

B
  

and (iv)a saddle  if  a > 
A

B
  , where 

 

  A = [2d+p{d - c(1+)}(1+kd)][d - c(1+)]
1

p
 
 ; 

 

  B = [p{d - c(1+)}(1+kd) - 2d][{d - c(1+)}
1

p
 
 - (1+)

1

p
 
]+2d(1+)

1

p
 
 ; 
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   C = [pk{d - c(1+)} - 1]{d - c(1+)}
1

p
 ; 

 

    D = [pk{d - c(1+)} - 1] [{d - c(1+)}
1

p
 
 - (1+)

1

p
 
]  +  (1+)

1

p
 
 . 

 

   Proof: To prove the above lemma, we use the following theorem: 

 

 Theorem: Let f() = 
2
 - P + Q. Suppose that f(1) > 0,  1 and 2 are the two roots of f() =     

0.Then, 

 

(i)│1│ < 1 and │2│< 1 if and only if f( -1 ) > 0 and Q < 1; (ii)│1│< 1 and │2│> 1 (or 

│1│> 1 and │2│< 1) if and only if f( -1 ) < 0; (iii) │1│> 1 and   │2│> 1 if and only if f( -1 ) 

> 0 and Q > 1; (iv) 1 = -1 and  2  1 if and only if f( -1 ) = 0 and P  0, 2; (v)  1 and  2 are 

complex and │1│= │2│ if and only if P
2
 - 4Q < 0 and Q = 1. 

 

 Now, the Jacobian matrix J(x, y) at E2 is given by  

 

                                       

                a11           a12          

J(E2) =              

                                                                                                                                        (10) 

                    a21             1           

                                         

 

 where, 

 

a11 = a[1 - {
2(1+)

d - c(1+)
 }

1

p
 
] - p{1 - 

c(1+)

d
 }[(a - 1) - a{

(1+)

d - c(1+)
 }

1

p
 
], 

 

a12 = - 
b

d
 (1+), 

 

a21 = 
p

b
 {d - c(1+)}[(a - 1) - a{

(1+)

d - c(1+)
 }

1

p
 
] 

 

The characteristic equation of the Jacobian matrix J(E2) is  

 

  
2
 - [a{1 - {

2(1+)

d - c(1+)
 }

1

p
 
} - p{1 - 

c(1+)

d
 }{(a - 1) -  a{

(1+)

d - c(1+)
 }

1

p
 
} + 1] + [a{1 - {

2(1+)

d - c(1+)
 

}
1

p
 
} - p{d - c(1+) }{ (a - 1) - a{

(1+)

d - c(1+)
 }

1

p
 
 }] = 0                                     (11) 

 

Hence from the above characteristic equation (11) and the Theorem, we can easily proved 

Lemma-3 with the help of previous discussion. 
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7. RESULTS AND DISCUSSION 

 

We have solved numerically the system (2). We have choosen b = 3.0, d = 3.5 and  = 0.01. In 

Figure-1 we draw  the phase diagram of the system for different values of Generalized Holling 

parameter „p‟ with a = 3.9 and c = 0.32. For p = 0.9 system has chaotic behaviour and the system 

is chaotic for p = 1.0 also. Chaos disappears from the system and invariant closed curve appears 

in system for p = 1.2. Finally, for p = 1.3 we observe that phase path approaches to a stable fixed 

point of the system with time. It will take longer time to reach the fixed point. 

 

In Figure-2 we draw the bifurcation diagram of the predator populations with respect to „a‟ in the 

range 3.0  4.0 for c = 0.32. For p = 0.92 we observe chaotic orbits and cycles occur alternatively. 

For p = 1.0 chaotic orbits and cycles in the system. For p = 1.1 we observe stable dynamics for 

low values of „a‟ but chaotic orbits and cycles for high values of „a‟. Finally for p = 1.3 we 

observe stable dynamics behaviour of the system. Similar results are obtained for  prey 

bifurcation which is not presented here.Therefore for p = 1.3 we obtain stable co-existence of 

prey and predator in the model. 

 

In Figure-3 we draw the bifurcation diagram of the predator populations with respect to „c‟ in the 

range 0.0  1.0 for a = 3.9. For p = 0.95 we observe existence of chaotic orbits, limit cycles and 

stable dynamics. For p = 1.0 chaotic orbits and stable behaviour are observed for long range of „a‟ 

values and cyclic behaviour for very short range. For p = 1.1 we observe cycles of period 10 and 

5, chaotic orbits and stable dynamics. Finally for p = 1.3 we observe stable behaviour. Therefore 

stable co-existence of prey and predators are observed in the model. Therefore for modelling non-

chaotic predator prey ecological systems, Generalized Holling interaction may be more useful for 

better prediction and analysis. 

  
 

Figure-1:Phase diagram of the system (2) for p = 0.90, p = 1.0, p = 1.2, and p = 1.3. 
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Figure-2: Bifurcation diagram of the predator population with respect to „a‟ varying from 3.0 to 4.0 for p = 

0.92, p = 1.0, p = 1.1, and p = 1.3. 

 
 

Figure-3: Bifurcation diagram of the predator population with respect to „c‟ varying from 0.0 to 1.0 for p = 

0.92, p = 1.0, p = 1.1, and p = 1.3. 

 

8. CONCLUSIONS 
 

In the present work, we have introduced a discrete prey-predator model with Generalized Holling 

interaction. We have find the fixed points of the system and discuss their stability nature 

analytically. We have drawn phase diagrams and bifurcation diagrams of the system for different 

values of Generalized Holling parameter. Our model will be very useful for modelling a wide 

range of predator prey interactions. Modelling of non-chaotic predator prey systems with 

Generalized Holling interaction may be more useful for better prediction and analysis of a real 

world ecological systems. 
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