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Abstract: We consider the parameter restrictions that need to be imposed

in order to ensure that the conditional variance process of a GARCH(p, q) model

remains non-negative. Previously, Nelson and Cao (1992) provided a set of neces-

sary and sufficient conditions for the aforementioned non-negativity property for

GARCH(p, q) models with p ≤ 2, and derived a sufficient condition for the general

case of GARCH(p, q) models with p ≥ 3. In this paper, we show that the sufficient

condition of Nelson and Cao (1992) for p ≥ 3 is actually also a necessary condition.

We also point out the linkage between the absolute monotonicity of the GARCH
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generating function and the non-negativity of the GARCH kernel, and use it to

provide examples of sufficient conditions for this non-negativity property to hold.

1 INTRODUCTION AND MAIN RESULTS

The Generalized Auto-Regressive Conditional Heteroscedastic (GARCH) model

(Engle, 1982 and Bollerslev, 1986) has become a popular model for modeling

volatility over the past two decades. An important problem of volatility modeling

concerns the identification of necessary and sufficient conditions for the model to

have non-negative conditional variances almost surely. Nelson and Cao (1992) de-

rived some necessary and sufficient conditions for the non-negativity of GARCH(p, q)

models with p ≤ 2 and a sufficient condition for p > 2. In this article, we show

that the sufficient condition of Nelson and Cao (1992) for p > 2 is actually also a

necessary condition (see Theorem 1).

Requiring the non-negativity of the conditional variances imposes an infinite

number of inequality constraints on the parameters. For practical purposes (e.g.

in estimation), it is necessary to reduce this to a finite number of inequalities. In

Theorem 1 (b), we derive a set of verifiable necessary and sufficient conditions for

the non-negativity of the GARCH kernel in terms of a finite number of inequalities

under the weak condition that the characteristic equation 1− β(z) = 0 (see below

for the definition of β(z)) has distinct roots and the root of the smallest magnitude

is unique. The equivalence of the absolute monotonicity of the GARCH generating

function and the non-negativity of the GARCH kernel is established in Theorem 2.

In Section 2, we prove Theorem 1, and apply Theorem 2 to derive some simple

sufficient conditions for the non-negativity of higher order GARCH models from

known results of lower order GARCH models.
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The GARCH(p, q) model is defined as

εt = σtzt, (1)

σ2
t = ω + β(L)σ2

t + α(L)ε2t , (2)

where {zt} is a sequence of iid random variables with zero mean and unit variance,

L is the backshift operator, α(L) =
∑q

i=1 αiL
i, and β(L) =

∑p
i=1 βiL

i. Under the

assumption that

(A1) all the roots of 1− β(z) = 0 lie outside the unit circle,

equation (2) can be rewritten as an ARCH(∞) form:

σ2
t = ω∗ + Ψ(L)ε2t , (3)

where ω∗ = {1− β(1)}−1ω, and

Ψ(z) =
∞∑

k=1

ψkz
k =

α(z)

1− β(z)
. (4)

We also assume that

(A2) the polynomials 1− β(z) and α(z) have no common roots,

which is needed for model identifiability, see equation (9) in Nelson and Cao (1992).

For the GARCH(p, q) model to be well-defined, having a non-negative conditional

variance almost surely for all t, it is sufficient that ω∗ ≥ 0, and ψk ≥ 0, for k =

1, 2, .... These conditions are also necessary under some mild regularity condition,

for example, if the marginal distribution of zt admits a probability density that is

positive everywhere.

Let λj, 1 ≤ j ≤ p, be the roots of 1− β(z) = 0. With no loss of generality, we

can and shall henceforth assume the following convention that

|λ1| ≤ |λ2| ≤ · · · ≤ |λp|. (5)

Let B(z) = 1 − β(z), and B(1) be the first derivative of B, then we have the

following result.
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THEOREM 1 Consider a GARCH(p, q) model where p ≥ 2. Let (A1) and (A2)

be satisfied. Then the following holds:

(a) ω∗ ≥ 0 if and only if ω ≥ 0;

(b) Assuming the roots of 1− β(z) = 0 are distinct, and |λ1| < |λ2|, then Condi-

tions (6) - (8) are necessary and sufficient for ψk ≥ 0 for all positive integer

k:

λ1 is real, and λ1 > 1, (6)

α(λ1) > 0, (7)

ψk ≥ 0, for k = 1, ..., k∗, (8)

where k∗ is the smallest integer greater than or equal to max{0, γ}, where

γ = {log r1 − log((p − 1)r∗)}/(log |λ1| − log |λ2|), r∗ = max2≤j≤p |rj|, and

rj = −α(λj)/B
(1)(λj), 1 ≤ j ≤ p.

Similar to Tsai and Chan (2007), we can characterize the non-negativity of

{ψi}∞i=1, the GARCH(p, q) kernel, in terms of its generating function (see Chapter

XI of Feller, 1968). For the kernel {ψj} defined by (3), its generating function is

given by equation (4). It is well-known that a sequence of numbers is non-negative

if and only if its generating function is absolutely monotonic (Feller, 1971, Theorem

2 of Chapter VII.2). See Chapter VII of Feller (1971) and Chapter IV of Widder

(1946) for a review of absolute monotonicity.

Tsai and Chan (2007) exploited some properties of absolutely monotonic func-

tions to derive some necessary and sufficient conditions for an ARMA model to be

non-negative. Now we state the non-negativity of {ψk} in terms of the absolute

monotonicity of its generating function in the following theorem.

THEOREM 2 Let (A1) and (A2) be satisfied. Then ψk ≥ 0 for all positive inte-

ger k if and only if Ψ(z) = {1− β(z)}−1α(z), 0 ≤ z < 1, is absolutely monotonic.

2 PROOFS AND DISCUSSION

Proof of Theorem 1. We first prove part (a). By Equation (3), ω∗ = {1 −



5

β(1)}−1ω. Furthermore, Condition (A1) on the roots of 1 − β(z) implies that

1 − β(1) > 0. Thus, ω∗ ≥ 0 if and only if ω ≥ 0. This proves part (a). For

part (b), the necessity of (8) is obvious. The necessity of (6) and (7) can be

proved as follows. By Equations (4.8) and (4.9) of Feller (1968, p. 276 and p.

277), we have, for n ≥ max{p, q} + 1, ψn =
∑p

i=1 riλ
−n−1
i ∼ r1λ

−n−1
1 , where “∼”

means that the ratio of the two sides tends to 1, as n → ∞. Thus, λ1 must be

real and > 1. Moreover, r1 = −α(λ1)/B
(1)(λ1) must be ≥ 0. Note also that

−B(1)(λ1) =
∏p

j=2(1 − λ1/λj)/λ1, and by (5), −B(1)(λ1) > 0. Hence, α(λ1) ≥ 0.

But α(λ1) 6= 0 by Assumption (A2). This proves the necessity of (6) and (7).

If γ ≥ 0, then the proof of (b) for the sufficiency of Conditions (6) - (8)

was given in Nelson and Cao (1992). If γ is negative, then it can be shown that

Conditions (6) and (7) entail that ψk ≥ 0 for all positive k, as follows. First note

that, γ < 0 implies r1 > (p − 1)r∗. Thus, ψn =
∑p

i=1 riλ
−n−1
i ≥ r1λ

−n−1
1 − (p −

1)r∗|λ2|−n−1, for all n ≥ 0. Therefore, λn+1
1 ψn ≥ r1 − (p − 1)r∗|λ1|n+1/|λ2|n+1 ≥

(p − 1)r∗(1 − |λ1|n+1/|λ2|n+1) ≥ 0. Consequently, ψn ≥ 0 for all n ≥ 0. This

completes the proof of Theorem 1.

Several remarks follow. Conditions (6) and (7) can be easily checked, while

Condition (8) reduces an infinite number of inequality constraints to a finite num-

ber of inequalities. The assumption that |λ1| < |λ2| is needed for the constant

{log r1 − log((p − 1)r∗)}/(log |λ1| − log |λ2|) to be well-defined. The distinct-root

assumption for 1− β(z) is not needed for the necessity of Conditions (6) and (7).

This is because ψk in (4) admits an integral representation:

ψk =
1

2πi

∫
Γ

Ψ(w)

wk+1
dw, k = 0, 1, ...,

where Γ is some circle on the complex plane that centers at zero and of a positive

radius > 1, cf. p.83 of Titchmarsh (1939). Thus, the ARCH(∞) representa-

tion (3) of σ2
t is continuous with respect to the parameters α′s and β′s, subject

to assumptions (A1) and (A2), and hence the desired results upon passing to the

limit. Moreover, except for a parametric set of zero Lebesgue measure, the roots

of 1 − β(z) = 0 are distinct, and |λ1| < |λ2| (see also Theorem 1 (c) of Tsai and

Chan, 2007).
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Theorem 2 and the fact that the product of two absolutely monotonic functions

is again absolutely monotonic (Theorem 2a of Widder, 1946, p. 145) can be used to

construct simple sufficient conditions for higher order GARCH(p, q) models from

known results of GARCH(1, q) and GARCH(2, q) models.

Example 1: if the ARCH coefficients (α’s) of a GARCH(p, q) model are all non-

negative, the model has non-negative conditional variances if the non-negativity

property holds for the associated GARCH(p, 1) models.

Example 2: consider a GARCH(4, 1) model for which α1 ≥ 0, λ1 and λ4 are real

numbers, λ4 > 1, λ2 = a+ bi, where a and b are real numbers, a ≥ λ1 > 1, and λ3

is the complex conjugate of λ2. Then by Theorem 3 (a), (b), and (d) of Tsai and

Chan (2006), {ψi}∞i=1 is non-negative for this particular GARCH(4, 1) model.

Example 3: consider a GARCH(3,3) model with 1−β(z) = (1−β2,1z)(1−β1,1z−
β1,2z

2), and

α(z)

1− β(z)
= z

α1,1 + α1,2z

(1− z/λ1)(1− z/λ2)

α2,1 + α2,2z

1− z/λ3

.

Now, consider the following two conditions: (i) |λ1| ≤ |λ2|, λ1 > 1, α1,1+α1,2λ1 > 0,

α1,1 ≥ 0, and α1,2 + α1,1β1,1 ≥ 0, (ii) λ3 > 1, α2,1 + α2,2λ3 > 0, α2,1 ≥ 0, and

α2,2 + α2,1β2,1 ≥ 0. If conditions (i) and (ii) are satisfied, then by Theorems 1

and 2 of Nelson and Cao (1992) and the aforementioned result of Widder (1946,

p. 145, Theorem 2a), {ψi}∞i=1 is non-negative for the GARCH(3, 3) model.

These examples complement the well-known necessary and sufficient condi-

tion for the non-negativity of GARCH(1, q) and GARCH(2, q) models obtained by

Nelson and Cao (1992).

Recently, Conrad and Haag (2006) derived necessary and sufficient condi-

tions for the non-negativity of the conditional variance in the Fractionally In-

tegrated Generalized Auto-Regressive Conditional Heteroscedastic (FIGARCH)

(p, d, q) model of the order p ≤ 2 and two sets of sufficient conditions for p ≥ 3.

The second set of sufficient conditions stated in Theorem 4 of Conrad and Haag

(2006) is analogous to the sufficient condition of Nelson and Cao (1992) for the

GARCH(p, q) model. It might be possible to adopt the idea of the proofs of The-

orem 1 to show that the sufficient condition stated in Theorem 4 of Conrad and
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Haag (2006) is also a necessary condition for the FIGARCH (p, d, q) model, which

is an interesting future research problem.
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