
A Case Study in Statistical Testing
of Reusable Concurrent Objects

Hélène Waeselynck and Pascale Thévenod-Fosse

LAAS - CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex 4 - FRANCE
{waeselyn, thevenod}@laas.fr

Abstract. A test strategy is presented which makes use of the information
got from OO analysis and design documents to determine the testing levels
(unit, integration) and the associated test objectives. It defines solutions for
some of the OO testing issues: here, emphasis is put on applications which
consist of concurrent objects linked by client-server relationships. Two
major concerns have guided the choice of the proposed techniques:
component reusability, and nondeterminism induced by asynchronous
communication between objects. The strategy is illustrated on a control
program for an existing production cell taken from a metal-processing plant
in Karlsruhe. The program was developed using the Fusion method and
implemented in Ada 95. We used a probabilistic method for generating test
inputs, called statistical testing. Test experiments were conducted from the
unit to the system levels, and a few errors were detected.

1 Introduction

A large number of testing techniques have already been defined for programs developed
according to hierarchical approaches and written in procedural languages (see e.g., [3]).
But object-oriented (OO) development process corresponds to a different approach to
software construction. The design of a program is organized around the data it
manipulates and their relationships, which leads to highly decentralized architecture.
OO languages provide powerful mechanisms like entity instantiation, genericity,
inheritance, that have no equivalent in procedural languages. Hence, testing approaches
must be revisited to take into account the characteristics of OO technology (see e.g.,
[5, 12]). Yet, few complete experiments that follow design and testing in a systematic
way have been reported. The paper focuses on such an experiment.

We present a test strategy based on the information got from analysis and design
documents produced during an OO development process. This strategy defines proper
solutions for some of the OO testing issues: here, emphasis is put on applications
which consist of concurrent objects linked by client-server relationships. The case
study used as an experimental support to our investigation is adapted from an existing
industrial production cell [13]. Its aim is to forge metal blanks got from a feed belt.
An OO version of the control program [1] provides us with an example of a complete
OO development: Fusion analysis and design [6], Ada 95 implementation.

Some OO specific difficulties are raised by the case study: How to determine the
unit and integration testing levels (decentralized architecture of objects)? At each
testing level, how to define the test objectives from the analysis and design
documents? How to determine conformance of the test results to the expected ones
(oracle checks)? How to solve the controllability and observability problems that are
drastically increased by object encapsulation? The choice of the proposed solutions is
guided by the consideration of two major concerns:

• Component reusability. OO design is intended to favor reusability: components are
defined by interface models, and their internal behavior is hidden (encapsulation). In
order to define a cost-effective strategy, testing of reusable components has to be
performed without making any assumption on the operational context.

• Nondeterminism involved by concurrency between objects communicating by
asynchronous events. It means that there are many possible interleavings of event
reception and event treatment, depending on the reaction time of the environment.
This issue has already been identified in work on protocol testing [14]; unlike in
protocol testing where the hypothesis of a slow environment may sometimes be
acceptable, no timing assumption may be done for concurrent objects.

Main related work is briefly reviewed in Section 2. Section 3 introduces the
probabilistic method for generating test inputs we use to automatically generate test
input sequences in accordance with given test objectives [15]. Section 4 describes the
case study. An overview of the global strategy is presented in Section 5. Then,
emphasis is put on unit testing (Section 6). Section 7 summarizes the results of the
experiments conducted from the unit to the system levels; and finally, we highlight
the main lessons learnt from this theoretical and experimental investigation.

2 Related Work

There is now a general agreement among the testing community that OO concepts
raise a number of problems from the perspective of testing (see e.g., [5, 12]). The case
study presented in this paper does not exhibit all of these problems. For example, its
design is more object-based than object-oriented: there are few inheritance relations,
and only between very basic classes. Hence this paper does not address the problem of
how to test new and inherited features (see e.g., [8]). The focus is on decentralized
architecture of communicating concurrent objects, which raises the following issues:

• Determination of testing levels. The traditional unit and integration levels of
testing do not fit well in the case of OO programs. Their decentralized architecture
makes it difficult to determine where to start testing, and there is no obvious order
for an integration strategy. Related work defines the testing levels by considering
the number of stubs to be produced [10], or the most significant paths and
interactions in the application [9].

• Selection and control of test sequences. State-based testing techniques are usual for
small OO subsystems [11, 16]. But concurrency introduces nondeterminism, which

has to be taken into account. The problem is well-known in the field of protocol
testing. For example, it is shown in [14] that a simple system of two
communicating deterministic automata yields nondeterministic behavior that cannot
be modeled by a finite number of states. Transferring classical state-based criteria –
such as the Wp method chosen by these authors – to communicating systems
requires assumptions to be made (bounded queues and communication channels,
system run in a “slow” environment).

• Observability and oracle checks. Observability is impeded by the principle of
encapsulation and information hiding: as shown in [17], this is detrimental to state
error propagation, and hence to the revealing of faults during testing. The systematic
introduction of built-in test capabilities in the design of classes (set/reset capabilities,
executable assertions, operations reporting the internal state) is studied in [4]. In
our case, the issue is further compounded by concurrency which raises the problems
of (i) choosing an appropriate conformance relation as the basis of the oracle checks
and, (ii) synchronizing the control and observation with the activities of the objects.

Reusability is also one of our concerns: we are interested in assessing the behavior
of software components that may be reused in the framework of different applications.
This problem shares similarities with other work concerned with the interface
robustness of commercial off-the-shelf software components [7, 18]; however, unlike
them, we do not consider fault injection and fault containment techniques. Our aim is
not to assess the ability of the component to handle faults in its environment, but to
increase confidence in its ability to react according to its interface model for a large
population of possible users. Hence we have to consider a larger range of solicitation
profiles (e.g., frequency and sequencing of calls to the operations of the objects) than
the ones that are possible in the original application.

Central to the case study is the problem of the interactions of objects with their
environment. The interaction schemes may be very complex depending on the many
possible interleavings of concurrent events. Since it is not tractable to test for all
possible interleavings in a given operational context, and since reusable objects should
be tested for several operational contexts, sampling approaches have to be defined. The
approach that we propose is based on statistical testing designed according to
functional criteria.

3 Statistical Testing Designed According to a Test Criterion

Test criteria are related to the coverage of either a white box or a black box model of
the software (see e.g., [3]). For example, the program control flow graph is a well-
known white box model; automata are black box models that may be used to describe
some software functions. Given a criterion (e.g., branch or transition coverage), the
conventional method for generating test inputs proceeds according to the deterministic
principle: it consists in selecting a priori a set of test inputs such that each element
defined by the criterion is exercised (at least) once. But a major limitation is due to the
imperfect connection of the criteria with the real faults: exercising once, or very few

times, each element defined by such criteria cannot ensure a high fault exposure power.
Yet, the criteria provide us with relevant information about the target piece of software.

A practical way to compensate for criteria weakness is to require that each element
be exercised several times. This involves larger sets of test inputs that have to be
automatically generated: it is the motivation of statistical testing designed according to
a test criterion [15]. In this approach, the information provided by criteria is combined
with an automatic way of producing input patterns, that is, a random generation.

The statistical test sets are defined by two parameters, which have to be determined
according to the test criterion: (i) the input distribution, from which the inputs are
randomly drawn and, (ii) the test size, or equivalently the number of inputs that are
generated. As in the case of deterministic testing, test criteria may be related to a
model of either the program structure, which defines statistical structural testing, or of
its functionality, which defines statistical functional testing.

The determination of the input distribution is the corner stone of the method. The
aim is to search for a probability distribution that is proper to rapidly exercise each
element defined by the criterion. Given a criterion C – say, transition coverage – let S
be the corresponding set of elements – the set of transitions. Let P be the occurrence
probability per execution of the least likely element of S. Then, the distribution must
accommodate the highest possible P value. Depending on the complexity of this
optimization problem, the determination of the distribution may proceed either in an
analytical or in an empirical way (see [15] for detailed examples). The latter way is
used in the case study presented in this paper (Section 6.3).

The test size N must be large enough to ensure that each element is exercised
several times under the input distribution defined. The assessment of a minimum test
size N is based on the notion of test quality with respect to the retained criterion. This
quality, denoted qN, is the probability of exercising at least once the least likely
element of S. Relation (1) gives the value of N under the assumption of statistical
independence (see [15] for examples where the assumption does not hold). It can be
explained as follows: (1-P)N is an upper bound of the probability of never exercising
some element during N executions with random inputs. Then, for a required upper
bound of 1-qN, where the target test quality qN will be typically taken close to 1.0, a
minimum test size is derived.

N = ln(1-qN) / ln(1-P) (1)

Returning to the motivation of statistical testing – exercising several times each
element defined by the criterion, it is worth noting that Relation (1) establishes a link
between qN and the expected number of times, denoted n, the least likely element is
exercised: n ≅ - ln(1-qN). For example, n ≅ 7 for qN = 0.999. This relation is used to
tune the test size N when the input distribution is empirically determined.

The main conclusions arising from previous work conducted on procedural programs
were that: (i) statistical testing is a suitable means to compensate for the tricky link
between test criteria and software design faults, (ii) the most efficient approach should
be to retain weak criteria (e.g., transition coverage) facilitating the search for an input
distribution, and to require a high test quality with respect to them (e.g., qN = 0.999).

We are now studying the use of statistical testing for OO software. In the work
presented in Sections 5 and 6, we adopt a functional approach consisting in basing the
probabilistic generation of test patterns on the information got from the OO analysis
and design documents. The production cell case study allows us to investigate this
issue taking the example of the Fusion method [6].

4 Presentation of the Case Study

The case study is adapted from an industrial production cell. It was launched by the FZI
(Forschungszentrum Informatik) inside the framework of the German Korso Project
[13]. In addition to the informal specification, a Tcl/Tk simulator was made available
by the FZI: it mimics the movements of the physical devices of the cell (Fig. 1).

deposit belt

robot

elevating

press

rotary table

lower
rm

upper arm (arm 1)

feed belt

up /
down

electromagnets

 (arm 2)

crane

container

Fig. 1. Top view of the production cell

The aim of the production cell is the transformation of metal blanks into forged
plates and their transportation from the feed belt into a container. The production cycle
of each blank is the following: the blank is put on the feed belt by an operator; the
feed belt conveys the blank to the table which rotates and lifts to put the blank in the
position where the first robot arm is able to magnetize it; this arm places the blank
into the press where it is forged; the second robot arm places the resulting plate on the
deposit belt; then the crane magnetizes the plate and brings it from the deposit belt
into a container. At a given time, several blanks may be in transit within the cell.

The cell is an industry-oriented problem where safety requirements play a significant
role: 21 safety requirements and 1 liveness requirement (« every blank introduced in
the cell will be forged and eventually dropped into the container ») are listed in the
informal specification. Two examples of safety requirements are given below.

Requirement 18. A new plate may only be put on the deposit belt if the photoelectric
cell, installed at the end of the belt, has detected the previous plate.

Requirement 21. If there is a blank on the table, the robot arm 1 may not be moved
above the table if it also conveys a blank (otherwise the two blanks collide).

A control program for the production cell has been developed using the Fusion
method [1]. This provides us with an example of a complete OO development process:
Fusion analysis, Fusion design, and Ada 95 implementation. Fusion [6] is presented
by its authors as a synthesis of prominent OO methods (OMT/Rumbaugh, Booch,
Objectory, CRC). It includes some aspects coming from formal specification methods
(pre- and postconditions). In this section, only few elements of the Fusion analysis
phase are described: the ones that are used for the definition of the test experiments.

The Fusion analysis starts with the creation of the system context diagram of the
controller (Fig. 2): it consists of six concurrent agents communicating by
asynchronous events. Note that, since the controller is an active concurrent system, it
has been separated – as proposed in Section 3.5 of [6] – to view it as a set of
cooperating agents, each of which being developed using Fusion. The meaning of
arrows is the following: an event may be sent at any time; the receiving agent queues
the event until it is able to treat it; the sending agent is blocked until the end of the
event treatment. The principle underlying event emission is that each agent is
autonomous: it will do as many actions as it can independently. And for this, an agent
may reorder the events it has queued: the order of event treatments does not always
correspond to the order of event receptions into the waiting queues.

Operator

Robot

Table

Press

DepositBelt

FeedBelt

Controller

Crane
add_blank

go_unload_position
pick_from_table go_load_position

go_load_position
forge

load_press

pick_from_belt

deposit_on_belt

pick_from_press

bring_past_end

feed_table

Fig. 2. System context diagram (inside view)

The expected behavior of an agent is described by its interface model which consists
of a lifecycle and an operation model. The lifecycle specifies the order of event
treatments and emissions by the agent. It is defined in terms of regular expressions.
For example, the Table lifecycle is shown below:

initialize.#feed_table.(go_unload_position.#pick_from_table.go_load_position.#feed_table)*

It means that the first event to be treated is initialize which leads to the emission of
feed_table (prefix # denotes emission); then any number of cycles of go_unload_position

and go_load_position (with event emissions) may be treated by the Table agent.

The treatment of each event by the receiving agent is specified in the operation
model which includes pre- and postconditions. For example, the treatment of
go_load_position by Table corresponds to the following conditions:

Precondition: No blank on the table.
Postcondition: The table is in load position.

An event feed_table has been sent to FeedBelt.

In this example, the precondition of go_load_position is implied by the postcondition
of pick_from_table treated by the Robot agent. But the order specified in the lifecycle
does not always guarantee that the preconditions hold. In such cases, the receiving
agent has to queue the event until the precondition becomes true: other events can be
treated in the meantime. Thus, the interface model implies the reordering of events by
the receiving agent: the order of event treatments must comply with both the agent
lifecycle and the operation preconditions.

5 Overview of the Test Strategy

The test strategy is based on two kinds of information: the list of 21 safety
requirements, and the models got from the Fusion analysis phase. A first problem is
the determination of testing levels. To tackle this problem, we consider the possibility
of associating a functional description with a (set of) class(es):

• The unit level corresponds to small subsystems that are meaningful enough to have
interface models in Fusion. From Section 4, there are 6 such subsystems: FeedBelt,
Table, Robot, Press, DepositBelt and Crane. Each of them is already an aggregation
of classes. It means that basic classes (e.g., the Electro_Magnet class) are not tested
in isolation: they are tested through their embodying subsystems (e.g., Robot).

• The integration process is guided by the consideration of the safety and liveness
requirements. For example, requirement 21 leads to the definition of an integration
test for the subsystem Robot+Table. Thus, four integration tests (FeedBelt+Table,
Robot+Table, Robot+Press, Robot+DepositBelt) and one system test are defined.

The respective focus of each testing level (unit, integration) is determined in order
to define a cost-effective test strategy for reusable components. The concern is to
identify what can be tested once for all at the unit level and what has to be tested
during the integration process specific to each application.

Unit testing is focused on verifying conformance to interface models. For reusability
purposes, unit testing is designed without making any assumption on the operational
context: it is well-recognized that a component that has been adequately tested in a
given environment is not always adequately tested for another environment. Hence the
test sequences are not restricted to the ones that are possible in the production cell
context. Roughly speaking, the units are placed in an “hostile” environment: there is
no timing or sequence assumption related to the events sent to them. This allows us
to verify the correct reordering of events, and the correct treatment of the reordered
events, in response to arbitrary solicitations. If the unit is not robust enough to pass
the test, its design can be improved. Or, at least, the test results allow the
identification of usage assumptions that must be added to its interface model.

Whether or not these assumptions hold in a given context (e.g., the production cell)
has to be verified during the integration process. Also, integration testing allows the
verification of safety requirements involving several units of the production cell. The
liveness requirement is verified by the final system test. Contrary to the design of unit
testing, the design of integration testing takes into account some characteristics of the
cell. This leads to a more constrained version of the environment. For example, when
testing Robot+Table, it is not possible to sent a load_press event to Robot while the
previous one had not yet been treated. This is so because the robot is connected to a
single press, and this press is blocked until the previous load_press is treated.

An overview of all experimental results is shown at the end of this paper. Section 6
focuses on the design of unit testing only (see [2] for the complete case study).

6 Unit Testing of Reusable Components

The unit testing process can be decomposed into phases that accompany the Fusion
phases. The main objective – verify the conformance of the units to their interface
models – has first to be refined in terms of workable test criteria and conformance
relations. Fusion analysis models are examined with a view to testing: this leads to their
reformulation in a compact and non ambiguous form (Section 6.1) from which test
criteria are derived (Section 6.2). Statistical test sets are designed in accordance with
the criteria (Section 6.3) and an oracle procedure is specified (Section 6.4). Then the
development of a test environment supporting the refined objective requires a number
of controllability and observability problems to be handled (Section 6.5): solutions to
these problems must be determined in relation to the choices taken in the late phases
of the production cell development (Fusion design and Ada implementation).
Experiments are performed using the resulting test environments (Section 6.6).

6 . 1 Reformulation of the Fusion Interface Model

The lifecycle model specifies the order in which each unit should process input events
and send output events. The processing of input events is made more precise in the
operation model, where in particular pre- and postconditions are stated. The textual

lifecycle expression can be put into an equivalent form: a finite state automaton
recognizing the regular expression. However, this automaton is not sufficient to
describe the allowed sequences of processed events because no operation should be
triggered outside its precondition: the set of allowed sequences should be further
constrained by considering whether the postcondition of one operation implies the
precondition of the next one. This leads us to reformulate the Fusion interface model.

First, a completed version of the operation model is required for testing purposes.
According to the Fusion method, a condition that has to be true both before and after
the operation is not listed, neither as a precondition nor as a postcondition; and the
granularity of the operation model does not distinguish between the case where the
condition remains true throughout the operation execution, and the case where it turns
to false and then returns to true before the end of the operation. In both cases, it is
important to check the validity of the condition after the operation. Hence, pre- and
postconditions are expanded in the completed operation model. For example, in the
model of the Table operation go_load_position (Section 4), pre- and postconditions are
added, including the following ones: the rotation and elevation motors are off.

Then, combining the lifecycle expression and the completed operation model, the
allowed sequences of event treatment for each unit are reformulated as finite state
automata. Figure 3 shows the reformulation of the lifecycle of Robot which is the
most complex unit (for the other units, we get 2-states automata). The textual
lifecycle expression would have given us a 4-states automaton, depending on which
arm is carrying a plate. The examination of the operation model shows that presence
or absence of a plate in the press should also be taken into account: Robot is not
allowed to process pick_from_press if it did not previously load the press.

The lifecycle automata describe the allowed sequences of event treatments, but they
say nothing about the event reordering functionality to be supplied by the units. Input
events are supposed to be stored in a waiting queue if the unit is not ready to process
them. When no timing and sequence assumption related to the events sent to the unit
is made, the size of the waiting queue may be infinite: the reordering mechanisms of
event processing cannot be modeled by an automaton with a finite number of states.

deposit_
on_belt

deposit_
on_belt pick_from_table

#go_load_position

Pressrm1Empty rm2

pick_from_table

initialize pick_from_table

#go_load_position

load_press

#forge

ick_from_press

#go_load_position

Arm12
Press

Arm2
Press

Arm12 Arm1
Press

load_press

#forge

pick_from_table

#go_load_position

deposit_on_belt

deposit_on_belt

pick_from_press

#go_load_position

#go_load_position

Fig. 3. Robot lifecycle automaton

In order to represent both the reordering mechanisms and the allowed sequences of
event treatments, we need a formalism that is more powerful than finite state
automata. The solution retained is to attach an input event queue to each state of the
lifecycle automaton: this queue is characterized by the number of events of each
category (for Robot, pick_from_table, pick_from_press, load_press, deposit_on_belt) that are
waiting to be processed. It is worth noting that the reformulated model (automaton +
queues) may involve nondeterminism, for example (Fig. 3) when state Arm12 is
reached while both deposit_on_belt and load_press events are queued.

6 . 2 Test Criteria

Two different test criteria are needed, based on the reformulated models. As regards the
correct treatment of reordered events, the criterion retained is the coverage of the
transitions of the lifecycle automata with a high test quality of qN = 0.999. This test
quality implies that the least likely transition should be exercised 7 times on average
by a given test set (Section 3).

As regards the correct reordering of events, the retained criterion is the coverage of
four classes of queue configurations for each category of event: the number of queued
events of that category is 0, 1, 2 or ≥3. We require the same test quality as previously.
Note that queue configurations with more than one event are not possible in the
production cell context. Yet, they are forced during testing for reusability purposes.

6 . 3 Design of Statistical Test sets

Controlling coverage of transitions and queue configurations is not trivial. Due to
concurrency, the internal behavior of one unit depends not only on the order in which
events are received, but also on the interleavings of event reception and event treatment.

To illustrate the problem, let us assume that a test sequence first takes the robot to
the Arm12 state (Fig. 3) with no queued event, and then is continued by subsequence
load_press.deposit_on_belt.pick_from_table. The robot behavior may be different depending
on the triggered interleaving (Fig. 4). If the time intervals between the three events are
such that none of them is received before the previous one has been processed (Fig.
4a), then deposit_on_belt is processed before pick_from_table and the queue remains empty.
If both deposit_on_belt and pick_from_table are received before completion of the load_press

operation (Fig. 4b), then one of the events is queued and the other processed depending
on some implementation choice. The choice in Figure 4b is the one of the Ada
program: deposit_on_belt has lower priority than load_press and pick_from_table. Examples
4a and 4b show that the triggered coverage of transitions and queue configurations may
be quite different for two interleavings of the same sequence of events. This leads us to
introduce some notion of time in the definition of test sequences.

It is not possible to know in advance the exact duration of one operation: the best
that can be done is to estimate a conservative upper bound of it. Then, if the delays
between input events are long enough compared to the reaction time of the units (slow
environment), specific interleavings such as the one of Figure 4a are forced, making it

possible to assess the coverage supplied by a given sequence of events. Such an a
priori assessment is impossible when the units are not run in a slow environment,
because the occurrence of a specific interleaving depends on uncontrollable factors: the
behavior may be non reproducible from one run to the other. Yet, interleavings such
as the one of Figure 4b should not be excluded from the test input domain if they may
occur in operational contexts. For example, if the treatment of events is not atomic, it
must be possible to trigger the reception of events during an on-going treatment. And
irrespective of the atomicity hypothesis, it must be possible to trigger schemes where
several concurrent events are received in the meantime between two treatments. To
account for all these schemes, the proposed sampling approach is to consider several
load profiles, i.e. profiles of time intervals between two successive events. Then a test
sequence is defined as a sequence of input events with time intervals between events.

deposit_on_belt

pick_from_table

load_press

treatment of
load_press

treatment of
deposit_on_belt

(a)

deposit_on_belt

pick_from_table

load_press

treatment of
load_press

(b)

treatment of
pick_from_table

Fig. 4. Different possible interleavings for a same sequence of events

Event sequences are first designed. Assuming a slow environment, it is possible to
search for a probability distribution of input events that is proper to ensure rapid
coverage of the criteria. The analysis proceeds empirically: coverage measures are
collected from programs simulating the reformulated model of each unit (automaton +
queues). Then, input distributions are determined by successive trials with random sets
of events. Robot is the unit for which the empirical process required the largest
number of trials: in the retained distribution, the probability of events is tuned
according to the current state and queue configuration. For the other units, making all
events equally likely (uniform stimulation) turns out to provide a balanced coverage of
transitions and queue configurations. Sets of event sequences are randomly generated
according to the retained distributions. Each set provides the required test quality of
qN = 0.999 with respect to the criteria: every transition and queue configuration is
exercised more than 7 times. Note that since the initialization is one of the transitions
to be exercised, each set contains at least 7 test sequences beginning with initialize. For
example, the Robot test set contains 12 test sequences involving a total number of
N = 306 events. An example of sequence included in this set is provided below. It is
one of the shortest sequences (the size varying over the range [5..40]):

initialize . pick_from_table . load_press . deposit_on_belt . pick_from_table . pick_from_press .
load_press . pick_from_press . load_press . pick_from_table . deposit_on_belt

The time intervals between successive events are generated according to 3 load profiles:

• A low load profile: the time intervals are large compared to the reaction time of the
unit (long delays).

• A high load profile: the time intervals are shorter than, or the same order of
magnitude as, the reaction time of the unit (short delays).

• An intermediate load profile (mix of short, long and middle delays).

Hence, each set of events will be executed three times, once under each load profile.
In this way, different interleavings are triggered for a same sequence of events. One of
these interleavings, the one forced by the low load profile, ensures coverage of the
criteria with the test quality previously assessed. The other two profiles induce
interleavings like the one of Figure 4b, possibly in a nondeterministic way.

The values associated to the three profiles take into account the average response
time of the FZI simulator, but could be calibrated for other environments in a similar
way. With the simulator, the reaction time of each unit to process one event is of the
order of magnitude of a few seconds. Accordingly, the time intervals are generated as
follows: 1) uniform generation over [15s..20s] for the low load profile; 2) uniform
generation over [1s..15s] for the intermediate load profile; 3) uniform generation over
[0s..5s] for the high load profile. For the previous Robot test sequence, the values
generated under the low load profile are shown below:

initialize . (16s) pick_from_table . (15s) load_press . (18s) deposit_on_belt . (15s) pick_from_table .
(15s) pick_from_press . (17s) load_press . (15s) pick_from_press . (18s) load_press . (20s)
pick_from_table . (18s) deposit_on_belt

6 . 4 Oracle checks

The role of the oracle is to determine conformance of the test results to the expected
ones. Most of the corresponding checks are based on our reformulation of the interface
models. They take advantage of the fact that the lifecycle automata turn out to possess
a remarkable property: for any test sequence, the final state and the number of
processed events at the end of the sequence do not depend on the nondeterministic
choices made during the execution. For example, the interleavings of Figure 4 both take
the robot to the Arm1/Press state with an empty queue, irrespective of the intermediate
behavior. Accordingly, the oracle conformance checks are specified as follows:

• The observed sequences of input events processed and output events sent must be
recognized by the lifecycle automaton.

• The number of events that are processed by the unit is the same as the number of
events that would be processed by the lifecycle automaton exercised with the same
test sequence. Due to the property mentioned above, adding this check to the previous
one ensures that the implementation has the same deadlocks as the specification.

• After each treatment of event, the associated postconditions got from the completed
operation model must hold.

In addition to the previous checks, our oracle procedures include the verification of
15 safety requirements that can be related to one unit taken in isolation. For example,

requirement 18 (see Section 4) is included in the DepositBelt oracle. Although
verifying safety requirements is not the main objective of unit testing, it is interesting
to consider them at the unit level: if they are shown to hold when testing in a
“hostile” environment, then a fortiori they should hold in the production cell context.
Indeed, the experimental results will provide examples of requirements that are violated
at the unit level when no assumption is made on the operational context; yet,
integration tests show that they hold when the unit is placed in the production cell.

6 . 5 Unit Test Environments

Having defined the test sets and test oracles, we have now to develop the test
environments allowing us to perform the experiments. As expected, this raises a
number of controllability and observability issues.

Let us recall that the test environment must be able to control any arbitrary input
sequence: there is no ordering assumption related to the events sent to the units. Since
the sending of events is blocking, we must be careful not to introduce deadlocks when
the event order departs from the one specified in the lifecycle. Let us take the example
of a unit having a lifecycle defined as (E1.#e1.E2#e2)*, and exercised with an input
sequence having order E2.E1. The expected behavior of the unit is to treat both events
in the lifecycle order: the treatment of E2 is delayed until E1 has been processed and e1

has been sent. If the test driver is implemented by a single Ada task sequentially
sending E2 and E1, then the driver will be blocked on E2: E1 will never be sent. This is
not acceptable since the test environment should always be able to send the next
event, as defined in the sequence. To handle this controllability problem, the adopted
solution is to have the input events sent by several concurrent drivers.

Observability is prerequisite to the feasibility of oracle checks: appropriate
information is to be monitored by the test environment. Checking conformance to the
lifecycle automata relates to the observation of the treatment of input events and
emission of output events. However, the reordering of input events according to the
lifecycle is encapsulated in the units: once the input events have been received by a
unit, the test environment may be unable to know the order of their internal treatment.
This problem is solved by inserting a print statement at the start point of the
treatment in the Ada code, thus making observable the beginning of each operation.
Postconditions and safety requirements relate to the state of the physical devices
controlled by the software units (e.g., position of the robot arms). In our test
environment, their verification is implemented by instrumenting the FZI simulator
used to mimic the reaction of the physical devices. All the observations must be
synchronized with the behavior of the units, and some ordering relations must be
preserved by the results of (possibly concurrent) observers: for example, for a given
unit, observation of the beginning of one operation is always reported before the end
of this operation; postconditions checks are always performed and reported before the
beginning of the next operation of this unit.

A generic view of the resulting test environments is provided in Figure 5. The
corresponding design choices are justified in [2], and we do not further detail them in

this paper. Let us just mention two important remarks. First, it can be seen that a
number of test components had to be developed in order to control and observe the
unit under test. Second, it is worth noting that a few postconditions were not
implemented in the oracle procedures: due to synchronization constraints, making
them observable would have required an important instrumentation of the
corresponding units and this was considered as too intrusive.

Main
driver

Auxiliary drivers sending
events to the unit

(1 auxiliary driver per event)

Unit under test
Stubs receiving output events
and activating the verification
of observable post-conditions

Tcl/Tk Simulator

Creation and
initialization

Output
event

Input event (driver blocked
until event treatment)

Termination report

Verification requests

Commands and
status requests status

Creation and
initialization

Fig. 5. Generic view of unit test environments

With these test environments, each test experiment generates a trace file recording:

• The sequence of every event treated or sent by the unit under test.
• The number and category of input events not treated at the end of the test

experiment.
• The results of the checks for the status of the devices at the end of the operations.
• The error messages of the FZI simulator. The FZI simulator has built-in

mechanisms to issue an error message in case of abnormal situations like collision
of devices, or falling of metal plates.

Then the trace file is analyzed off-line by an oracle program in order to issue an
acceptance or rejection report.

6 . 6 Experimental Results

The test experiments first revealed a synchronization problem that was observed
whatever the unit under test (violation of postconditions and safety requirements). It
concerns communication with the FZI simulator: the synchronization mechanisms do
not ensure that requests to stop the physical devices are received in time by the
simulator. For example, when the Robot operation load_press is executed, the
extension of the upper arm (arm 1) over the press may be actually stopped too late so
that the blank falls beside the press. Failures are all the more frequent as the load

profile is high, but their occurrences are not repetitive from one run to the other:
executing several times a same test set systematically produces failures, but possibly
at different times during the experiment. These intermittent faulty behaviors are
closely related to the real-time behavior of the program which is not adequately
addressed by the Fusion method. Nevertheless, the fault is repeatedly exposed by the
statistical test sets. It is fixed by modifying the Ada code of two basic classes
(Sensor_Server, Actuator_Server) in charge of the communication with the physical
devices. With this fix, four agents (FeedBelt, Table, Press, Crane) pass their test. For
the other two agents (Robot, DepositBelt) errors are detected.

As regards Robot, the number of deposit_on_belt treated by the Ada program is lower
than the expected one: when several deposit_on_belt are queued, only one of them is
treated and the others are ignored. Failures are observed whatever the load profile, but
their rate is raised under the high load profile since the waiting queues are larger. These
test results show that the Robot agent is not robust enough to be used in any context
of applications: its correct behavior assumes that no new deposit_on_belt event is sent to
Robot before the previous one has been processed. The fault is fixed by a simple
modification of the deposit_on_belt operation (replacement of a Boolean flag by a
counter), and the fixed Robot passes its unit test.

As regards DepositBelt, it is first observed that two events sent during the treatment
of the initialize operation occur in the reverse order compared to the one defined in the
Fusion lifecycle. After analysis, our diagnosis is that both orders are consistent with
the initial (informal) specification of the application, and none of them may lead to
the violation of safety requirements. Our oracle procedure is modified in accordance
with this diagnosis and it is requested that this modification is integrated in the Fusion
analysis document. A second and more significant problem is related to the dropping
of plates on the belt. It is observed that plates may be dropped too close to each other,
so that they collide or fall at the end of the belt; two safety requirements are violated
(e.g., requirement 18 in Section 4). The problem is due to the fact that the dropping of
plates is not encapsulated into an operation of DepositBelt. Then the DepositBelt
agent is not robust enough to be used in any context of applications: its correct
behavior assumes that plates are dropped only when expected by the belt, that is, when
the previous plate has already reached the end of the belt.

Fixing this fault requires the modification of the DepositBelt interface, and thus of
the interface of the Robot agent which interacts with DepositBelt. The modifications
would have repercussions at every level from the Fusion analysis document to the Ada
code. In the context of the production cell, such substantial modifications are not
needed if it can be shown that the correct usage assumption holds. Indeed, one of the
preconditions of the Robot operation deposit_on_belt should ensure that the robot cannot
drop a plate while there is another one at the beginning of the belt. Hence, the
decision to perform the modifications is delayed: the correct behavior of the subsystem
Robot+DepositBelt has to be verified by integration testing (Section 7).

Besides the exposure of faults, the test experiments give us feedback on the internal
behavior of the Ada program under the various load profiles. We have instrumented the
oracle procedures checking conformance to the lifecycle automata, in order to collect
statistics on the number of times each transition is actually executed. The statistics

confirm that transition coverage heavily depends on the load profile. For instance,
some transitions of the Robot automaton are never or seldom executed under the high
load profile, and others are much more exercised. This is due to the fact that when
numerous events are available in the waiting queues, their order of treatment is
enforced by the priority choices taken in the Ada implementation. For example (Fig.
3), the robot transition from Arm2 to Arm12 state (triggered by pick_from_table) is
never exercised under the high load profile: lower load profiles are required to reveal
faults related to this transition. Conversely, our test results show that the high load
profile may be more effective in some cases. This corroborates our expectation that
the use of different load levels should strengthen the fault revealing power of test sets.

7 Summary and Conclusion

Table 1 displays the results of the whole set of test experiments. A complete
description of the integration testing process is available in [2]. Let us note that the
integration test experiments do not reveal any fault related to the joint behavior of the
units under test: in particular, the two safety requirements violated during unit testing
of DepositBelt are satisfied by the subsystem Robot+DepositBelt: as expected from
the Robot interface model (Section 6.6), the assumption governing the correct
behavior of DepositBelt does hold. At the system level, only one input can be
controlled: the introduction of blanks in the production cell; it is worth noting that the
experiments confirm that the interleaving of the internal events is quite different
depending on the time intervals between the successive blanks.

This theoretical and experimental investigation allows us to draw more general
conclusions on testing of reusable concurrent objects. The main lessons learnt are
summarized below. They are classified according to three issues: object-oriented
technology, concurrency and reusability.

Table 1. Overview of the test results

Unit Tests FeedBelt, Table, Press, Crane Robusts, 8 safety requirements satisfied
Robot Made robust

➥ 5 safety requirements satisfied

DepositBelt Assumption on the usage context,
2 safety requirements violated

Integrat ion
T e s t s

Robot+DepositBelt Assumption holds in the
production cell context

➥ the 2 safety requirements are satisfied

FeedBelt+Table
Robot+Table
Robot+Press

2 safety requirements satisfied
1 safety requirement satisfied
2 safety requirements satisfied

System Test 1 liveness requirement satisfied

As regards object-oriented technology, the information got from OO development
methods should allow us to design efficient statistical functional test sets: this has
been exemplified using Fusion analysis document; but, the information used is quite
similar to the one provided by other OO methods. However, whatever the chosen
testing approach, the requirements of the test environments must be identified early in
the development process, in accordance with the pursued test objectives. Especially, it
must be identified what is to be controlled and what is to be observed. Then, how to
handle the resulting controllability and observability issues is necessarily constrained
by the design and the implementation choices taken for the application. This leads us
to recommend that the development of the test environments accompany the
corresponding development phases of the application. This is not new, since
recommended for a long while in the well-known "V development process". But, it is
still more crucial in cases of OO software because of the testability problems increased
by encapsulation mechanisms. Returning to the Fusion example, the determination of
the testing levels, test criteria and oracle checks must accompany the analysis phase;
as for the design and implementation of the test environments, they must be conducted
during the Fusion design and implementation phases.

As regards concurrency, the concern is not to exclude any event interleaving that
may occur in operational contexts, that is, to account for nondeterminism induced by
asynchronous communication. To tackle this problem, it is necessary to introduce
some notion of time in the definition of the test sequences: for each sequence of events
to be sent during testing, time intervals between successive events must be generated
according to several load profiles that mimic different types of operational contexts.
We propose to use a sampling technique based on three typical load profiles: long
delays compared to the reaction time of the subsystem under test; short delays; and a
mix of short, long and middle delays. Another notable impact of concurrency is related
to the design of test environments which may become complex compared to the
subsystem under test: the environments must consist of concurrent drivers and stubs
in order to handle the controllability and observability problems added by concurrency.

Finally, the reusability concern influences the choice of the test criteria that guide
the selection of test inputs: the test sequences must not be restricted to the ones that
are possible in the context of the application under test. The test input domain is
enlarged. Yet, the benefit of testing for reusability – when it remains feasible – is
significant: either the unit under test is robust enough to pass the test, or it is not. If it
is, it may be used in any context without requiring further testing. If it is not, its
design can be made robust, or at least the test results allow the identification of usage
assumptions that are required for the unit to conform to its interface model.

Acknowledgments. This work was partially supported by the European
Community (ESPRIT Project n° 20072: DeVa). It has benefited from many fruitful
discussions with our DeVa partners, in particular: Stéphane Barbey, Didier Buchs,
Marie-Claude Gaudel, Bruno Marre and Cécile Péraire. We also wish to thank Damien
Guibouret and Olfa Kaddour very much for their useful contribution to the case study,
within the framework of student projects.

References

1. Barbey, S., Buchs, D., Péraire, C.: Modelling the Production Cell Case Study Using the
Fusion Method. Technical Report 98/298, EPFL-DI, 1998

2. Barbey, S., Buchs, D., Gaudel, M-C., Marre, B., Péraire, C., Thévenod-Fosse, P.,
Waeselynck, H.: From Requirements to Tests via Object-Oriented Design. DeVa Year 3
Deliverables (1998) 331-383. Also available as LAAS Report no 98476

3. Beizer, B.: Software Testing Techniques. 2nd edn. Van Nostrand Reinhold, New York
(1990)

4. Binder, R.: Design for Testability in Object-Oriented Systems. Communications of the
ACM 37 (1994) 87-101. Also available in [12]

5. Binder, R.: Testing Object-Oriented Software – A Survey. Software Testing, Verification
& Reliability 6 (1996) 125-252

6. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes, P.:
Object-Oriented Development – The Fusion Method. Object-Oriented Series, Prentice
Hall (1994)

7. Fabre, J-C., Salles, F., Rodriguez Moreno, M., Arlat, J.: Assessment of COTS
Microkernels by Fault Injection. In Proc. 7th IFIP International Working Conference on
Dependable Computing for Critical Applications (DCCA-7), San Jose (1999) 19-38

8. Harrold, M-J., McGregor, J., Fitzpatrick, K.: Incremental Testing of Object-Oriented
Class Structures. In Proc. 14th IEEE Int. Conf. on Software Engineering (ICSE-14),
Melbourne (1992) 68-80. Also available in [12]

9. Jorgensen, P., Erickson, C.: Object-Oriented Integration Testing. Communications of
the ACM 37 (1994) 30-38. Also available in [12]

10. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y-S., Song, Y-K.:
Developping an Object-Oriented Software Testing and Maintenance Environment.
Communications of the ACM 38 (1995) 75-87. Also available in [12]

11. Kung, D., Lu, Y., Venugopala, N., Hsia, P., Toyoshima, Y., Chen, C., Gao, J.: Object
State Testing and Fault Analysis for Reliable Software Systems. In Proc. 7th IEEE
International Symposium on Software Reliability Engineering (ISSRE'96), White Plains
(1996) 76-85. Also available in [12]

12. Kung, D., Hsia, P., Gao, J. (eds): Testing Object-Oriented Software. IEEE Computer
Society (1998)

13. Lewerens, C., Linder, T. (eds): Formal Development of Reactive Systems – Case Study
Production Cell. Lecture Notes in Computer Science, Vol. 891, Springer-Verlag (1995)

14. Luo, G., Bochman, G. v., Petrenko, A.: Test Selection Based on Communicating
Nondeterministic Finite-State Machines Using a Generalized Wp-Method. IEEE Trans.
on Software Engineering 20 (1994) 149-162

15. Thévenod-Fosse, P., Waeselynck, H., Crouzet, Y.: Software Statistical Testing. In:
Randell, B., Laprie, J-C., Kopetz, H., Littlewood, B. (eds): Predictably Dependable
Computing Systems. Springer-Verlag (1995) 253-272

16. Turner, C., Robson, D.: The State-Based Testing of Object-Oriented Programs. In Proc.
IEEE Conference on Software Maintenance (1993) 302-310. Also available in [12]

17. Voas, J.: Object-Oriented Software Testability. In Proc. 3rd International Conference on
Achieving Quality in Software , Chapman & Hall (1996) 279-290

18. Voas, J.: Certifying Off-the-Shelf Software Components. IEEE Computer 31 (June
1998) 53-59.

