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Abstract

This paper introduces some properties of two sets of matrices, the Ortho-
Skew, which are simultaneously Orthogonal and Skew-Hermitian, and the
real Ortho-Sym matrices, which are Orthogonal and Symmetric. The in-
troduced relationships, all demonstrated, consist of closed-form compact ex-
pressions of trigonometric and hyperbolic functions that show these matrices
working as angles in the matrix field. The analogies with trigonometric and
hyperbolic functions, such as the periodicity of the trigonometric functions
and some properties of the inverse functions are all shown. Additional expres-
sions are derived for some other functions of matrices such as the logarithm,
exponential, inverse, and power functions. All these relationships show that
the Ortho-Skew and the Ortho-Sym matrices can be considered as the ex-
tension to the matrix field of the imaginary and the real units, respectively.

Introduction

The computation of functions of square matrices, real or complex, is an important
topic in many engineering application fields and, in general, in linear algebra and
applied mathematics. Exponential, logarithm, subsequent power, as well as trigono-
metric, hyperbolic and many other functions often are needed to be evaluated. Unfor-
tunately, in general, this problem does not admit closed-form solutions; however, as
it will be shown in this paper, it is possible to develop compact closed-form solutions
for several different functions of two matrix sets: the Ortho-Skew and the Ortho-Sym
matrix sets.

There are several methods to evaluate functions of a matrix. In particular, many
books[1, 2, 3, 4], dedicate full chapters on functions of a matrix. The function of a
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matrix f(M) can be introduced and defined in different ways that are all equivalent[5].

Among the most rigorous definitions of f(M) there is the line integral definition[6]

f(M) =
1

2πi

∮

Γ
f(z) (zI −M)−1 dz (1)

that is computed on a closed contour Γ that encircle the eigenvalues λ of M . As noted
in Ref. [3], this definition is the matrix version of the Cauchy integral Theorem. In
fact, indicating with fk,j and gk,j(z) the [k, j] elements of f(M) and (zI − M)−1,
respectively, Eq. (1) can be written in scalar form

fk,j =
1

2πi

∮

Γ
f(z) gk,j(z) dz (2)

Other existing methods to define f(M) use the Jordan decomposition M = W J W−1

(see Refs. [7, 8]), where W and J are the eigenvector matrix and the Jordan form
of M , and the Schur decomposition M = H T H†, where H and T are orthogonal
and upper triangle matrices[9], respectively. For both these decompositions f(M) is
defined as

f(M) = W f(J) W−1 and f(M) = H f(T ) H† (3)

respectively. In the Jordan decomposition, f(J) is a block diagonal matrix with upper
triangle blocks fi(J) that are associated with the Ji blocks of J accordingly with

Ji =




λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi




→ fi(J) =




fi f
(1)
i

f
(2)
i

2!
· · · f

(mi−1)
i

(mi−1)!

0 fi f
(1)
i · · · f

(mi−2)
i

(mi−2)!

0 0 fi · · · f
(mi−3)
i

(mi−3)!
...

...
...

. . .
...

0 0 0 · · · fi




(4)

where λi is the eigenvalue of the mi×mi block Ji and where f
(k)
i is the kth derivative

of f(x) computed at λi. Note that the computation of W in Eq. (3) is unnecessary

because of the Sylvester’s (or Lagrange-Sylvester) formula[1] that requires only the
computation of the eigenvalues of M

f(M) =
n∑

j=1

f(λj) Zj where Zj =
n∏

i=1,i6=j

1

(λj − λi)
(M − λiI) (5)

The Jordan decomposition given in Eq. (3) is a specific case of a more general
relationship relating two similar matrices, A and B. In this case, if

A = C B C−1 then f(A) = C f(B) C−1 (6)

It is to be noted that there are some computational difficulties with the Jordan
decomposition approach, unless M is not defective (can be diagonalized) and has

well-conditioned eigenvectors[3].
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For the Schur decomposition, once H and T have been evaluated, the computation of
f(M) is reduced to the computation of f(T ), where T is upper triangular. Explicit
expressions for f(T ) easily become very complicated. To overcome this problem,
Ref. [9] has introduced a recursive method that has completely solved this problem.
The Jordan and Schur decomposition methods are more general in the sense that an
arbitrary function of a given square matrix can be computed using these algorithms.

Another general method to define any f(M) that will extensively used throughout
this paper comes from the power series representation of functions or, in other words,
from the Taylor series. This implies that, if

f(x) =
∞∑

k=0

ckx
k then f(M) =

∞∑

k=0

ckM
k (7)

Equation (7) holds if the f(λi) do not diverge, where λi are the eigenvalues of M . In
particular, Eq. (7) may represent the Maclaurin series expansion. Therefore,

f(x) =
∞∑

k=0

1

k!

dkf

dxk

∣∣∣∣∣
x=0

xk then f(M) =
∞∑

k=0

1

k!

dkf

dxk

∣∣∣∣∣
x=0

Mk (8)

Equation (8) requires the evaluation of infinite terms and infinite powers of matrix.
This is this reason its use is limited to approximate f(M)†. However, the unusual
aspect of this paper is that, in the contrary, the Maclaurin series expansion of a
matrix function here constitutes the key definition. In fact, this paper shows that the
Maclaurin series expansion yields to compact and closed-form solutions for several
matrix functions applied to two set of matrices, the Ortho-Skew and the Ortho-
Sym matrix sets. In particular, for the case of trigonometric and hyperbolic matrix
functions, the regularization with the scalar formulations is so impressive that justifies
to speak of matrix trigonometry.

The Ortho-Skew and Ortho-Sym Matrix Sets

The Ortho-Skew matrices = ∈ Cn×n are simultaneously Orthogonal and Skew-Hermitian

=†= = I and = = −=† =⇒ =2 = −I (9)

Reference [10] has shown that the Ortho-Skew matrix set presents very interesting
properties, some of which, are summarized in the following. The general expression
of these matrices, whose eigenvalues are only pure imaginary ±i, is

= = i
p∑

k=1

ck c†k − i
n∑

k=p+1

ck c†k where c†i cj = δij (10)

†The rational Padé approximation[3] is commonly used to approximate the specific and important
case of matrix exponentials.
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where p indicates the number of positive eigenvalues +i (0 ≤ p ≤ n). Note that,
if p = n then = = i I, and if p = 0 then = = −i I. Based on their definitions,
subsequent powers of these matrices obey the following rule

=k =





= += if k = 4m + 1
= −I if k = 4m + 2
= −= if k = 4m + 3
= +I if k = 4m

(11)

where m can be any integer. In general, an Ortho-Skew matrix is complex. However,
in even dimensional spaces, it is possible to build real = matrices as follows

= =
n/2∑

k=1

Pk =2P
T

k where Pk = [ ck
... c†k ] and =2 =

[
0 1

−1 0

]
(12)

is the 2× 2 simplectic matrix.

Similarly the Ortho-Sym real matrices < ∈ Rn×n, which have been introduced in Ref.
[11], are simultaneously Orthogonal and Symmetric

<T< = I and < = <T =⇒ <2 = I (13)

Subsequent powers of these matrices obey the simple rule

<k =

{
= < if k is odd
= I if k is even

(14)

The general expression of these matrices, whose eigenvalues are only ±1, is

< =
p∑

k=1

rkr
T

k −
n∑

k=p+1

rkr
T

k where rT

i rj = δij (15)

where p (0 ≤ p ≤ n) indicates the number of positive eigenvalues +1. Since the rk

are orthogonal, if p = n, then < = I whereas if p = 0, then < = −I.

Thanks to the properties of Eqs. (11) and (14), subsequent powers of the Ortho-
Skew and the Ortho-Sym matrices, we now have simple expressions that allow us to
compact infinite series expansions as shown in the following sections.

Exponential functions

The series expansion of a matrix exponential function can be written as[12]

eM = I + M +
M2

2!
+

M3

3!
+ · · · =

∞∑

k=0

Mk

k!
(16)
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Equation (11) allows us to write e=α, where α is a scalar, as follows

e=α = I + =α− I
α2

2!
−=α3

3!
+ I

α4

4!
+ =α5

5!
− I

α6

6!
−=α7

7!
+ · · · (17)

Collecting the coefficients of the matrices I and =, we obtain

e=α = I

(
1− α2

2!
+

α4

4!
− α6

6!
+ · · ·

)
+ =

(
α− α3

3!
+

α5

5!
− α7

7!
+ · · ·

)
(18)

Now, the elements between parentheses, are nothing other than the series expansion
of the trigonometric functions[12]

cos α =
∞∑

k=0

(−1)k α2k

(2k)!
and sin α =

∞∑

k=0

(−1)k α2k+1

(2k + 1)!
(19)

Therefore, Eq. (18), can be written in the compact form

e=α = I cos α + = sin α (20)

which appears to extend the fundamental Euler’s formula

ei α = cos α + i sin α (21)

to the matrix field. In this light, we can see the imaginary unit
√−1 as the 1 × 1

Ortho-Skew matrix.

Similarly, Eq. (14) allows us to expand e<α as follows

e<α = I + <α + I
α2

2!
+ <α3

3!
+ I

α4

4!
+ <α5

5!
+ I

α6

6!
+ <α7

7!
+ · · · (22)

Collecting on the terms I and <, we obtain

e<α = I

(
1 +

α2

2!
+

α4

4!
+

α6

6!
+ · · ·

)
+ <

(
α +

α3

3!
+

α5

5!
+

α7

7!
+ · · ·

)
(23)

In Eq. (23), the series in parenthesis are nothing other than the series expansion of
the hyperbolic functions

cosh α =
∞∑

k=0

α2k

(2k)!
sinh α =

∞∑

k=0

α2k+1

(2k + 1)!
(24)

Therefore, Eq. (22), assumes the compact form

e<α = I cosh α + < sinh α (25)

which represent the extension to the matrix field of the fundamental formula

eα = cosh α + sinh α (26)
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In this case, the real unit “1”, that multiplies sinh, can be considered the 1 × 1
Ortho-Sym matrix.

Equations (20) and (25) yield the trigonometric identities

I cos α =
e=α + e−=α

2
and = sin α =

e=α − e−=α

2
(27)

and the hyperbolic identities

I cosh α =
e<α + e−<α

2
and < sinh α =

e<α − e−<α

2
(28)

Trigonometric and Hyperbolic Functions

Let us apply the series expansion of the trigonometric functions[12] to the Ortho-Skew
matrices. We have





sin(α=) = =α + =α3

3!
+ =α5

5!
+ =α7

7!
+ · · · = = sinh(α)

cos(α=) = I + I
α2

2!
+ I

α4

4!
+ I

α6

6!
+ · · · = I cosh(α)

(29)

From Eq. (29), it is possible to evaluate

{
tan(α=) = = tanh(α)
cot(α=) = −= coth(α)

(30)

Similarly, for the Ortho-Sym matrices, we have the relationships





sin(α<) = <α−<α3

3!
+ <α5

5!
−<α7

7!
+ · · · = < sin(α)

cos(α<) = I − I
α2

2!
+ I

α4

4!
− I

α6

6!
+ · · · = I cos(α)

(31)

which allows us to evaluate the tangent function

{
tan(α<) = < tan(α)
cot(α<) = < cot(α)

(32)

The series expansion of the hyperbolic functions[12] of α= gives





sinh(α=) = =α−=α3

3!
+ =α5

5!
−=α7

7!
+ · · · = = sin(α)

cosh(α=) = I − I
α2

2!
+ I

α4

4!
− I

α6

6!
+ · · · = I cos(α)

(33)
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From this equation, it is possible to evaluate
{

tanh(α=) = = tan(α)
coth(α=) = −= cot(α)

(34)

The hyperbolic functions of Ortho-Sym matrices, gives




sinh(α<) = <α + <α3

3!
+ <α5

5!
+ <α7

7!
+ · · · = < sinh(α)

cosh(α<) = I + I
α2

2!
+ I

α4

4!
+ I

α6

6!
+ · · · = I cosh(α)

(35)

which allows us to evaluate the hyperbolic tangent functions
{

tanh(α<) = < tanh(α)
coth(α<) = < coth(α)

(36)

Summarizing, we have the sine properties,
{

sin(α=) = = sinh(α)
sinh(α=) = = sin(α)

and

{
sin(α<) = < sin(α)
sinh(α<) = < sinh(α)

(37)

the cosine properties,
{

cos(α=) = I cosh(α) = cosh(α<)
cosh(α=) = I cos(α) = cos(α<)

(38)

the tangent expressions,
{

tan(α=) = = tanh(α)
tanh(α=) = = tan(α)

and

{
tan(α<) = < tan(α)
tanh(α<) = < tanh(α)

(39)

and the cotangent expressions
{

cot(α=) = −= coth(α)
coth(α=) = −= cot(α)

and

{
cot(α<) = < cot(α)
coth(α<) = < coth(α)

(40)

The effect of the cosine and the hyperbolic cosine applied to α= and α< is interesting.
Since the series expansion for both of them contains only even matrix powers (which
are, in turn, associated with identity matrices), the result is diagonal matrices which
depend on the α constant only. In fact, Eq. (38) allows us to write

{
cos(α=1) = cos(α=2) = cosh(α<1) = cosh(α<2) = I cosh(α)
cosh(α=1) = cosh(α=2) = cos(α<1) = cos(α<2) = I cos(α)

(41)

for =1 6= =2 and <1 6= <2. In other words, the cosine and the hyperbolic cosine of =
and < completely delete all the information (eigenvalues and eigenvectors) contained
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in these matrices. It appears that the cosine functions are a sort of projection aligned
with all the eigenvalues and eigenvectors of these two matrix sets.

From Eqs. (29) and (33), we can derive that

{
cos2(α=1) + sin2(α=2) = I
cosh2(α=1)− sinh2(α=2) = I

(=1 6= =2) (42)

while, from Eqs. (31) and (35), we obtain

{
cos2(α<1) + sin2(α<2) = I
cosh2(α<1)− sinh2(α<2) = I

(<1 6= <2) (43)

It is to be noted that the relationships given in Eqs. (42) and (43) are quite different
from the identities {

cos2(M) + sin2(M) = I
cosh2(M)− sinh2(M) = I

(44)

that, in turn, hold for any matrix M .

Equations (29), (31), (33), and (35), allow us to derive the general power relationships
for the sines

(k even)





sink(α=) = (−1)k/2I sinhk(α)

sinhk(α=) = (−1)k/2I sink(α)
sink(α<) = I sink(α)

sinhk(α<) = I sinhk(α)

(k odd)





sink(α=) = (−1)(k−1)/2= sinhk(α)

sinhk(α=) = (−1)(k−1)/2= sink(α)
sink(α<) = < sink(α)

sinhk(α<) = < sinhk(α)

(45)

as well as for the cosines
{

cosk(α=) = I coshk(α) = coshk(α<)

coshk(α=) = I cosk(α) = cosk(α<)
(46)

Inverse Trigonometric and Hyperbolic Functions

As for the inverse functions, they can straightforwardly be derived from the expres-
sions obtained for the direct functions. Let us, just for example, derive one of them.
From the identity sin(β=) = = sinh(β) given in Eq. (37), we obtain

sin−1[sin(β=)] = β= = sin−1[= sinh(β)] (47)

Now, setting
α = sinh(β) ⇐⇒ β = sinh−1(α) (48)
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Eq. (47) becomes
sin−1(α=) = = sinh−1(α) (49)

By analogous procedures, the following inverse trigonometric functions are derived





sin−1(α=) = = sinh−1(α)
tan−1(α=) = = tanh−1(α)
cot−1(α=) = −= coth−1(α)

and





sin−1(α<) = < sin−1(α)
tan−1(α<) = < tan−1(α)
cot−1(α<) = < cot−1(α)

(50)

while, for the inverse hyperbolic functions, we obtain





sinh−1(α=) = = sin−1(α)
tanh−1(α=) = = tan−1(α)
coth−1(α=) = −= cot−1(α)

and





sinh−1(α<) = < sinh−1(α)
tanh−1(α<) = < tanh−1(α)
coth−1(α<) = < coth−1(α)

(51)

The inverse trigonometric cosine functions have the expressions





cos−1(α=) =
π

2
I −= sinh−1(α)

cos−1(α<) =
π

2
I −< sin−1(α)

(52)

which have been derived using the trigonometric identity

cos−1(α) =
π

2
− sin−1(α) (53)

and the properties given in Eq. (50). The expressions of the inverse hyperbolic
functions are 




cosh−1(α=) =
π

2
=+ I sinh−1(α)

cosh−1(α<) = i
π

2
I − i< sin−1(α)

(54)

that can be derived from the scalar hyperbolic identity

cosh−1(iα) = i
π

2
+ sinh−1(α) (55)

Equations (52) and (54) allow us to write the identities

{
cosh−1(α=) = = cos−1(α=)
cosh−1(α<) = i cos−1(α<)

(56)

Alternatively, the inverse functions can be derived from their series expansions. For
instance, for the inverse tangent, we have the expression

tan−1 x =
∞∑

k=0

(−1)k x(2k+1)

(2k + 1)
(57)
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that provides the same result of Eq. (50) for the Ortho-Skew matrices

tan−1(α=) = =
∞∑

k=0

α2k+1

2k + 1
= = tanh−1(α) (58)

and for the Ortho-Sym matrices

tan−1(α<) = <
∞∑

k=0

(−1)k α2k+1

2k + 1
= < tan−1(α) (59)

Trigonometric and Hyperbolic Functions Periodicity

A surprising aspect of the Ortho-Skew and the Ortho-Sym matrices is that they fully
respect the periodicity of the trigonometric and hyperbolic functions. In fact, we have





cos(−α=) = cos(α=)
sin(−α=) = − sin(α=)
tan(−α=) = − tan(α=)
cot(−α=) = − cot(α=)

and





cos(−α<) = cos(α<)
sin(−α<) = − sin(α<)
tan(−α<) = − tan(α<)
cot(−α<) = − cot(α<)

(60)

which are simply to demonstrate. As for the kπ, and the 2kπ function periodicity,
we have the relationships





sin(α=) = sin(α=+ 2kπI)
sin(α=± πI) = − sin(α=)
cos(α=) = cos(α=+ 2kπI)
cos(α=± πI) = − cos(α=)
tan(α=) = tan(α=+ kπI)
cot(α=) = cot(α=+ kπI)

and





sin(α<) = sin(α<+ 2kπI)
sin(α<± πI) = − sin(α<)
cos(α<) = cos(α<+ 2kπI)
cos(α<± πI) = − cos(α<)
tan(α<) = tan(α<+ kπI)
cot(α<) = cot(α<+ kπI)

(61)

while for the π/2 shifting relationships, we obtain

{
cos(α=) = sin(α=+ π/2I)
tan(α=) = cot(−α=+ π/2I)

and

{
cos(α<) = sin(α<+ π/2I)
tan(α<) = cot(−α<+ π/2I)

(62)

All the relationships given in Eqs. (61) and (62) can be demonstrated through spectral
decomposition and series expansions. As an example, let us demonstrate the identity
cos(α<+2kπI) = cos(α<) = I cos(α). Let < = CΛCT be the spectral decomposition
of <

α<+ 2kπI = C(αΛ)CT + C(2kπI)CT = C(αΛ + 2kπI)CT (63)

Then, the series expansion of the cosine allows us to write

cos(α<+ 2kπI) = C

[ ∞∑

n=0

(−1)n

(2n)!
(αΛ + 2kπI)2n

]
CT (64)
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First, we notice that (αΛ + 2kπI)2n are powers of diagonal matrices, that can be
substituted by powers of their scalar diagonal elements. Secondly, Λ contains only
elements λ = ±1 and, therefore, these scalars can be written in the form 2kπ ± α,
which means that the series for the diagonal elements (the only nonzero elements)
converges either to cos(2kπ + α) or to cos(2kπ−α), both equal to cos(α). Therefore,
Eq. (64) can be re-written as

cos(α<+ 2kπI) = C I cos(α) CT = I cos(α) = cos(α<) (65)

which, thanks to Eq. (41), allows us to write





cos(α<1 + 2mπI) = cos(α<2 + 2nπI) = I cos(α)
cosh(α=1 + 2mπI) = cosh(α=2 + 2nπI) = I cos(α)
cos(α=1 + 2mπI) = cos(α=2 + 2nπI) = I cosh(α)
cosh(α<1 + 2mπI) = cosh(α<2 + 2nπI) = I cosh(α)

(66)

for any values of the integers m and n, and for <1 6= <2, and =1 6= =2. The
demonstration of the other formulae follows similar paths.

Power Function

As for the power series, it is always possible to write

{
(α=+ βI)n = ξ

(n)
1 I + ξ

(n)
2 =

(α<+ βI)n = ξ
(n)
3 I + ξ

(n)
4 < (67)

For even values of n, the coefficients of Eq. (67) have the closed-form expression

(n even)





ξ
(n)
1 = n! βn

n/2∑

j=0

(−1)j

(n− 2j)! (2j)!

(
α

β

)2j

ξ
(n)
2 = n! βn

n/2−1∑

j=0

(−1)j

(n− 2j − 1)! (2j + 1)!

(
α

β

)2j+1

ξ
(n)
3 = n! βn

n/2∑

j=0

1

(n− 2j)! (2j)!

(
α

β

)2j

ξ
(n)
4 = n! βn

n/2−1∑

j=0

1

(n− 2j − 1)! (2j + 1)!

(
α

β

)2j+1

(68)
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while, for odd values of n, the coefficients become

(n odd)





ξ
(n)
1 = n! βn

(n−1)/2∑

j=0

(−1)j

(n− 2j)! (2j)!

(
α

β

)2j

ξ
(n)
2 = n! βn

(n−1)/2∑

j=0

(−1)j

(n− 2j − 1)! (2j + 1)!

(
α

β

)2j+1

ξ
(n)
3 = n! βn

(n−1)/2∑

j=0

1

(n− 2j)! (2j)!

(
α

β

)2j

ξ
(n)
4 = n! βn

(n−1)/2∑

j=0

1

(n− 2j − 1)! (2j + 1)!

(
α

β

)2j+1

(69)

Logarithmic Function

The logarithmic functions ln(I + M) has the series expansion[12]

ln(I + M) =
∞∑

k=0

(−1)k M (k+1)

(k + 1)
(70)

Therefore, we have

ln(I + α=) = =α + I
α2

2
−=α3

3
− I

α4

4
+ =α5

5
+ I

α6

6
− · · · =

= I
∞∑

k=0

(−1)k α2(k+1)

2(k + 1)
+ =

∞∑

k=0

(−1)k α2k+1

2k + 1

(71)

It is possible to demonstrate that the first series in Eq. (71) converges to

∞∑

k=0

(−1)k α2(k+1)

2(k + 1)
=

ln(1 + α2)

2
(72)

while the second series is the same as Eq. (59). Therefore, we obtain the solution

ln(I + α=) = I
ln(1 + α2)

2
+ = tan−1(α) (α 6= ±i) (73)

The logarithmic series for the Ortho-Sym matrices

ln(I + α<) = <α− I
α2

2
+ <α3

3
− I

α4

4
+ <α5

5
− I

α6

6
+ · · · =

= −I
∞∑

k=0

α2(k+1)

2(k + 1)
+ <

∞∑

k=0

α2k+1

2k + 1

(74)
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The first series converges to

∞∑

k=0

α2(k+1)

2(k + 1)
= − ln(1− α2)

2
(75)

while the second series coincides with that of Eq. (58). Therefore, Eq. (74) becomes

ln(I + α<) = I
ln(1− α2)

2
+ < tanh−1(α) (α 6= ±1) (76)

Inverse Function

It is possible to apply the series expansion of the following inverse function

(1− x)−1 =
∞∑

k=0

xk (77)

that, when applied to the Ortho-Skew matrices, will results in (α 6= ±i)

(I − α=)−1 = I
∞∑

k=0

(−1)kα2k + =
∞∑

k=0

(−1)kα2k+1 =
1

1 + α2
(I + α=) (78)

while, for the Ortho-Sym matrices, it gives (α 6= ±1)

(I − α<)−1 = I
∞∑

k=0

α2k + <
∞∑

k=0

α2k+1 =
1

1− α2
(I + α<) (79)

Equations (78) and (79) allow us to write

{
(I + =)(I −=)−1 = (I −=)−1(I + =) = =
(I + i<)(I − i<)−1 = (I − i<)−1(I + i<) = i< (80)

which are Isomorphic Cayley Transforms since they map the = and the i< matrices
onto themselves, respectively. The first of Eq. (80) can be easily understood since

the Cayley mapping functions f(z) =
1− z

1 + z
maps z = ±i into f(z) = ∓i (see Ref.

[13]) that are, in turn, the eigenvalues of =. The second of Eq. (80) involves the pure
imaginary matrix i< which, in turn, has eigenvalues λ = ±i only. This is the main
reason that Cayley Transforms become Isomorphic for this matrix.

Conclusion

This paper presents some interesting compact expressions of matrix functions of two
matrix sets, namely, the Ortho-Skew and the Ortho-Sym matrices. The Ortho-Skew
matrix set is made of complex matrices (that may become real in even dimensional
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spaces), which are simultaneously Orthogonal and Skew-Hermitian, while the Ortho-
Sym matrices are real matrices and are Orthogonal and Symmetric, respectively.

Mainly based on the their properties for subsequent powers, simple analytical expres-
sions can be derived from the series expansions of many matrix functions for these
two kind of matrices. In particular, the regularization of the presented formulae and
the analogies with the scalar trigonometric and hyperbolic functions are so impres-
sive that it is possible to speak of matrix trigonometry of Ortho-Skew and Ortho-Sym
matrices.

Additionally, other matrix functions such as the inverse, the power, and the loga-
rithmic functions are taken into consideration and compact general expressions have
been found for them.
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