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1. Introduction

Let F := (f1, f2, . . . , fk) : Kn → Kk be a polynomial mapping, where K := R or K := C. We

define the  Lojasiewicz exponent at infinity L∞(F ) of the mapping F to be the smallest upper

bound of the set of all real numbers l > 0 which satisfy the condition: there exist positive

constants c, r such that

‖F (x)‖ ≥ c‖x‖l for ‖x‖ ≥ r.

If the set of all the exponents is empty we put L∞(F ) := −∞.

The  Lojasieiwcz exponent at infinity is of fundamental importance in singularity theory. In a

natural way one fundamental question appears:

• How to determine the  Lojasiewicz exponent at infinity L∞(F ).

In the case K = C, Chadzynski and Krasinski [2] proved that the  Lojasiewicz exponent at

infinity L∞(F ) of a complex polynomial mapping F := (f1, f2, . . . , fk) : Cn → Ck is attained on

the set {x ∈ Cn | f1(x)f2(x) . . . fk(x) = 0}. On the other hand, the following example shows that

a real version of this result fails to hold.

Example 1.1. Let

F := (f1, f2) : R2 → R2, (x, y) 7→ (f1(x, y) := (x− y)2, f2(x, y) := (x− y)2 + y4).

It is obvious that {(x, y) ∈ R2 | f1(x, y)f2(x, y) = 0} = {(x, x) | x ∈ R} and

‖F (x, x)‖ = |x|4.

Moreover, one can show directly that L∞(F ) = 2. Hence, the  Lojasiewicz exponent L∞(F ) is not

attained on the set {(x, y) ∈ R2 | f1(x, y)f2(x, y) = 0}.

In the case K = R, using polar curves, Gwoździewicz [5] (see also [6]) presented an explicit

bound for the  Lojasiewicz exponent at infinity of a real polynomial function under the assumption

of compactness of its zero fiber. Moreover, it was shown in [8] that: if f : R2 → R is a positively

defined polynomial in two real variables (i.e., f(x) > 0 for ‖x‖ → ∞), then the  Lojasiewicz

exponent L∞(f) is attained along on a polar curve. It seems, however, more difficult to obtain

similar results in the general case.

Let now f : Rn → R be a nonconstant real polynomial function. The object of this manu-

script is to provide a method to determine the  Lojasiewicz exponent L∞(f) at infinity, using the

information from “the curve of tangency” (see Section 2 for the definition). It is worth noting,

different from the results in [5] and [8], that we need not assume the compactness of the fiber

f−1(0) of the polynomial f.

As an application, we give a computational criterion to decide if the  Lojasiewicz exponent at

infinity is finite or not. We also obtain a formula to calculate the set of points at which the

polynomial f is not proper. This set was introduced and studied by Jelonek in several papers
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(see [9], [10], for instance); it plays a substantial role for the geometric approach to the Jacobian

Conjecture.

Moreover, based again on the curve of tangency, some links between the  Lojasiewicz exponent

at infinity of f and the following interesting problems are also established:

• How can one tell if the polynomial f is bounded from below or not; and

• Suppose that the polynomial f is bounded from below. Find the global infimum

f∗ := inf{f(x) | x ∈ Rn}.

The first problem was originally posed in a work of Shor [16] in his fundamental paper about

optimization of real multivariable polynomials. On the other hand, as is well-known, the second

problem is NP-hard even when the degree of f is fixed to be 4 [15].

The results obtained by Chadzynski and Krasinski in [2], [3] have played an inspiring role in

undertaking this research. On the other hand, the main idea used in our argument is the notion

of curve of tangency, which was taken from [7].

The paper is organized as follows. The notion about the curve of tangency, which plays an

important role in the results, is recalled in Section 2. The main result and its proof are given in

Section 3. Some conclusions about the  Lojasiewicz exponent at infinity are obtained in Section 4.

2. The curve of tangency

In this section we briefly recall the notion of the curve of tangency. For details the reader may

consult [7] (see also [4]).

Throughout this paper let f : Rn → R be a nonconstant polynomial function, and we shall

denote by Σ(f) the set of critical points of f.

Set

X := {(x, a) ∈ Rn × Rn | rank

(

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

x1 − a1 x2 − a2 · · · xn − an

)

≤ 1}.

For a ∈ Rn, let Γ(a, f) ⊂ Rn be defined by

Γ(a, f) := {x ∈ Rn | x 6∈ Σ(f) and (x, a) ∈ X}.

Geometrically, the set Γ(a, f) consists of all points x 6∈ Σ(f) where the level sets of f are tangent

to S‖x−a‖(a), here Sr(a) := {x ∈ Rn | ‖x−a‖ = r} denotes the sphere in Rn centered in the point

a and with radius r. We will also write Br(a) := {x ∈ Rn | ‖x− a‖ < r} for the open ball.

The following is a simple fact about the set Γ(a, f).

Lemma 2.1. With the previous notations:

(i) Γ(a, f) is a nonempty, unbounded and semi-algebraic set;

(ii) There exists a proper algebraic set Ω ( Rn such that for each a ∈ Rn \ Ω the set Γ(a, f) is

a one-dimensional sub-manifold of Rn.
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Proof. (i) Clearly, the sets X and Σ(f) are algebraic; and hence, by definition, Γ(a, f) is semi-

algebraic.

We shall prove that Γ(a, f) is a nonempty and unbounded set. So let us define

C := {x ∈ Rn | f(x) = min{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}},

D := {x ∈ Rn | f(x) = max{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}}.

Then, the sets C and D are semi-algebraic and obviously unbounded in Rn. Moreover, there

exists r > 0 such that one of the following conditions holds

• C \ Br(a) ⊂ Γ(a, f);

• D \ Br(a) ⊂ Γ(a, f).

Indeed, suppose that this is not the case. Then, by the Curve Selection Lemma at infinity

(see [13], [14]), there exist δ > 0 and Nash (i.e., analytic algebraic) functions ϕ : (0, δ] → C and

ψ : (0, δ] → D such that the following conditions hold

• limτ→0 ‖ϕ(τ)‖ = limτ→0 ‖ψ(τ)‖ = ∞; and

• ϕ(τ) 6∈ Γ(a, f) and ψ(τ) 6∈ Γ(a, f) for all τ ∈ (0, δ].

According to Lagrange’s multipliers theorem, this implies that

gradf [ϕ(τ)] = gradf [ψ(τ)] = 0 for all τ ∈ (0, δ].

Consequently, the derivatives (f ◦ϕ)′ and (f ◦ψ)′ vanish in the interval (0, δ]. So that the functions

τ 7→ f [ϕ(τ)] and τ 7→ f [ψ(τ)], τ ∈ (0, δ], are constants. Hence the polynomial f is constant, which

is a contradiction.

(ii) Consider the set Y := Σ(f) × Rn. We shall show that X \ Y is a smooth manifold of

dimension n + 1. Indeed, let (x0, a0) ∈ X \ Y. Without loss of generality, we can assume that
∂f
∂xn

(x0) 6= 0. Then there exists a neighbourhood U of x0 in Rn such that ∂f
∂xn

(x) 6= 0 for all x ∈ U.

Consequently, we may write

(X \ Y ) ∩ (U × Rn) = {(x, a) ∈ U × Rn | Φi(x, a) = 0, i = 1, 2, . . . , n− 1},

where

Φi(x, a) := (xn − an)
∂f

∂xi
(x) − (xi − ai)

∂f

∂xn
(x).

A direct computation shows that

det
(

∂Φi

∂aj
(x, a)

)

1≤i,j≤n−1
=

[

∂f
∂xn

(x)
]n−1

6= 0 for all (x, a) ∈ U × Rn.

Applying the implicit function theorem to the mappingU×Rn → Rn−1, (x, a) 7→ (Φ1(x, a),Φ2(x, a),

(. . . ,Φn−1(x, a)), we see that the set X \ Y is a one-dimensional sub-manifold of Rn × Rn.

We now consider the second projection π2 : X \ Y → Rn, (x, a) 7→ a. By an algebraic version

of Sard’s theorem (see [1]), there exists a proper algebraic set Ω ( Rn such that for each a ∈

Rn \ Ω, π−1
2 (a) is a smooth manifold of dimension (n + 1) − n = 1. This implies that the set

Γ(a, f) = π1(π−1
2 (a)) is a one-dimensional sub-manifold of Rn, where π1 is the first projection

X \ Y → Rn, (x, a) 7→ x.
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This ends the proof. �

Definition 2.1 (see [4], [7]). The set Γ(a, f), when it is a smooth manifold of dimension 1, will

be called the curve of tangency of f with respect to a ∈ Rn.

Remark 2.1. In [4], [7], the curves of tangency of polynomials are used for different purposes.

3. The main result

In order to formulate the main theorem at hand we first need some definitions.

Let Ω be as in Lemma 2.1. Fix a ∈ Rn \Ω, this means that Γ(a, f) is the curve of tangency of

f. It is not hard to see that for r > 0 sufficiently large, the set Γ(a, f) \ Br(a) consists of a fixed

number of one dimensional connected components, say Γ1,Γ2, . . . ,Γs. Taking r large enough, we

have, for i = 1, 2, . . . , s, that there exist δ > 0 and a Nash function θi : (0, δ] → Rn, τ 7→ θi(τ),

such that Γi is the germ of the curve x = θi(τ) as τ → 0. Note that θi (or rather its germ at 0)

is given by a real algebraic Puiseux series in τ. Let

‖θi(τ)‖ := aiτ
αi + higher order terms in τ, ai ∈ R \ {0}, αi ∈ Q.(1)

Since ‖θi(τ)‖ → +∞ as τ → 0, αi < 0. We may also assume (taking δ > 0 small enough if

necessary) that the function ‖θi‖ : (0, δ] → R, τ 7→ ‖θi(τ)‖, is strictly decreasing. Moreover, the

function f ◦ θi : (0, δ] → R, τ 7→ f [θi(τ)], is strictly increasing, or strictly decreasing or constant

for δ small. Hence, it has a limit ti := limΓi
f in R ∪ {+∞,−∞}. Furthermore, we expand also

f [θi(τ)] := biτ
βi + higher order terms in τ, bi ∈ R.(2)

If the series f [θi(τ)] is identically zero, we can set bi = 0 and βi arbitrary (not meaningful).

Assume that the connected components Γ1,Γ2, . . . ,Γs are numbered in such a way that t1 ≤

t2 ≤ · · · ≤ ts. There are only the following cases which can occur:

(A1) f [θi(τ)] ≡ 0 for some i ∈ {1, 2, . . . , s}.

(A2) t1 = −∞ and ts = +∞.

(A3) −∞ < t1 < 0.

(A4) 0 < ts < +∞.

(A5) 0 ≤ t1 and (A1) is not true.

(A6) ts ≤ 0 and (A1) is not true.

The main result of this paper can now be formulated.

Theorem 3.1. (Notations as above). If one of Cases (A1)-(A4) holds then L∞(f) = −∞; other-

wise, there exists a Nash function ϕ : (0, ǫ] → Rn (ǫ > 0) with the property that limτ→0 ‖ϕ(τ)‖ = ∞

such that one of the two following statements holds:

(i) ϕ(τ) ∈ Σ(f) for all τ ∈ (0, ǫ] and L∞(f) = 0;

(ii) ϕ(τ) ∈ Γ(a, f) for all τ ∈ (0, ǫ] and

L∞(f) = min

{

β1

α1
,
βs

αs

}

.
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Proof. It is not difficult to check (see also [7]) that one of Cases (A1)-(A4) holds if and only if

the set f−1(0) is not compact, which gives L∞(f) = −∞.

Conversely, suppose that all Cases (A1)-(A4) do not occur, which is equivalent to say that the

set f−1(0) is compact. This implies, in Expansion (2), that bi 6= 0, i = 1, 2, . . . , s. Moreover, by

(1) and (2), asymptotically as τ → 0, we have

|f [θi(τ)]| ≃ ‖θi(τ)‖
βi
αi , i = 1, 2, . . . , s,

where A ≃ B means that A/B lies between two positive constants. Hence, by the definition of

L∞(f), we get

(3) L∞(f) ≤ min
i=1,2,...,s

βi

αi

.

As in the proof of Lemma 2.1 we let

C := {x ∈ Rn | f(x) = min{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}},

D := {x ∈ Rn | f(x) = max{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}}.

There are three different cases to discuss.

Case 1: C \Br(a) * Γ(a, f) for all r > 0. Then there exist ǫ > 0 and a Nash function ϕ(0, ǫ] → C

such that the two following conditions hold

• limτ→0 ‖ϕ(τ)‖ = ∞; and

• ϕ(τ) 6∈ Γ(a, f) for all τ ∈ (0, ǫ].

In view of Lagrange’s multipliers theorem, we get

gradf [ϕ(τ)] = 0 for all τ ∈ (0, ǫ].

This implies that the function τ 7→ f [ϕ(τ)] is constant, say m, for τ small. As a corollary, we get

L∞(f) ≤ 0. On the other hand, we have m > 0 because the set f−1(0) is compact. Moreover,

by definition, |f(x)| = f(x) ≥ m > 0 for ‖x‖ large enough. This leads to L∞(f) ≥ 0. Therefore

L∞(f) = 0.

Case 2: D \Br(a) * Γ(a, f) for all r > 0. By entirely analogous arguments as in Case 1, we also

get the statement (i).

Case 3: C \ Br(a) ⊆ Γ(a, f) and D \ Br(a) ⊆ Γ(a, f) for some r > 0. Since f−1(0) is compact,

f(x) does not change sign for ‖x‖ sufficiently large. Taking −f instead of f if needed, we can

assume that f(x) > 0 for ‖x‖ large enough.

Let us notice that the set C is semi-algebraic and unbounded in Rn. Hence, it follows from

C \Br(a) ⊂ Γ(a, f) that C \Br(a) must contain the connected component Γ1 and, possibly, some

other connected components, say Γ2,Γ3, . . . ,Γk.

Let x ∈ Rn, ‖x‖ ≫ 1. Since limτ→0 ‖θ1(τ)‖ = ∞ and the function τ 7→ ‖θ1(τ)‖ is strictly

decreasing, we have ‖θ1(τ) − a‖ = ‖x− a‖ for some τ ∈ (0, δ]. Hence,

|f(x)| = f(x) ≥ min{f(y) | ‖y − a‖ = ‖x− a‖} = f [θ1(τ)].
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On the other hand, it follows from Expansions (1) and (2) that

f [θ1(τ)] ≃ ‖θ1(τ) − a‖
β1

α1 = ‖x− a‖
β1

α1 .

Therefore L∞(f) ≥ β1

α1
. This fact, together with Inequality (3), proves Statement (ii), and hence

the theorem is proved. �

Remark 3.1. Suppose that the set of critical points of f is compact. Then, by Theorem 3.1,

to determine the  Lojasiewicz exponent L∞(f) of f it suffices to compute Puiseux expansions at

infinity of the curve of tangency Γ(a, f), which can be performed using a version at infinity of

Mac-Millan’s result in [12] (see also [11]).

Example 3.1. Let f(x) := [
∑n

i=1 xi]
2+1. We can choose a the origin in Rn. A direct computation

shows that

Σ(f) = {x ∈ Rn |
n

∑

i=1

xi = 0},

Γ(a, f) = {x ∈ Rn \ {0} | x1 = x2 = · · · = xn}.

Moreover the  Lojasiewicz exponent L∞(f) (= 0) of f is attained on the set Σ(f).

Example 3.2. Consider the following polynomial in three variables

f(x, y) := (xy − 1)2 + x2 + (z − 1)2.

Clearly, f−1(0) = ∅. We can choose the center a := (0, 0, 0) ∈ R3. Then the curve of tangency

Γ(a, f) is given the equations

2zxy2 − 2zy + 2x = 0 and 2zx2y − 2zx− 2zy + 2y = 0.

Using MAPLE we obtained that there are ten (real) connected components of the curve of tan-

gency

Γ±1 : ϕ±1 = (s−1 + 1
2s+ 1

4s
3 + · · · , s + 1

2s
3 + · · · ,−s−4 + 1

2s
−2 + · · · ),

Γ±2 : ϕ±2 = (−1
2s+ 3

8s
3 + · · · ,−2 s−1 − s+ 3

4s
3 + · · · , 1 − 17

4 s
2 + · · · ),

Γ±3 : ϕ±3 = (2
3s

−1 + 1
4s−

33
64s

3 + · · · ,−2
3s

−1 + 1
2s−

33
32s

3 + · · · ,−9
4s

2 + 27
16s

4 + · · · ),
Γ±4 : ϕ±4 = (2 s−1 − 1

4s−
7
64s

3 + · · · , 2 s−1 − 1
2s−

7
32s

3 + · · · ,−1
4s

2 − 3
16s

4 + · · · ),
Γ±5 : ϕ±5 = (0, 0, s−1).

here s→ ±0. Then substituting these expansions in f we get

f |Γ±1
= s−8 − s−6 +O

(

s−4
)

,

f |Γ±2
=

1

4
s2 +

71

4
s4 +O

(

s6
)

,

f |Γ±3
=

16

81
s−4 +

32

27
s−2 +

20

9
+

451

96
s2 +O

(

s4
)

,

f |Γ±4
= 16 s−4 − 16 s−2 + 2 +

117

32
s2 +O

(

s4
)

,

f |Γ±5
= 2 + s−2 − 2s−1.
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Consequently,
α±1 = −4, β±1 = −8,
α±2 = −1, β±2 = 2,
α±3 = −1, β±3 = −4,
α±4 = −1, β±4 = −4,
α±5 = −1, β±5 = −2.

Hence,

L∞(f) = min

{

−8

−4
,

2

−1
,
−4

−1
,
−4

−1
,
−2

−1

}

= −2.

4. Corollaries

Let us keep the notations of Section 3. We give in this section some applications of Theorem

3.1. The easiest consequence is the following which is an answer to the question of [16]:

Corollary 4.1. The following statements hold

(i) f is bounded from below if and only if t1 > −∞.

(ii) f is bounded from above if and only if ts < +∞.

Proof. The statement follows immediately from the proof of Theorem 3.1. �

Next we consider the set

S∞(f) := {t ∈ R | ∃xk → ∞, f(xk) → t and gradf(xk) = 0}.

By standard argument, based on the curve selection lemma at infinity (see [13], [14]), we have

S∞(f) ⊂ f(Σ(f))-the set of critical values of f. According to an algebraic version of Sard’s

theorem (see [1]), this implies that the set S∞(f) is finite. Put

t∗ :=







t1 if S∞(f) = ∅,

min{t1, min
t∈S∞(f)

t} if S∞(f) 6= ∅,

and

t∗ :=







ts if S∞(f) = ∅,

max{ts, max
t∈S∞(f)

t} if S∞(f) 6= ∅.

For each t ∈ R we will denote by f − t the polynomial Rn → R, x 7→ f(x) − t.

Corollary 4.2. With the previous notations:

(i) For each t ∈ (t∗, t
∗) we have

L∞(f − t) = −∞.

(ii) f is not bounded either from below or from above if and only if

L∞(f − t) = −∞ for all t ∈ R.

(iii) f is proper if and only if L∞(f − t) is a positive constant for all t ∈ R.

(iv) Suppose that f is not proper. We have
8



(iv-1) If t∗ > −∞, then

L∞(f − t) = 0 if and only if t < t∗.

(iv-2) If t∗ < +∞, then

L∞(f − t) = 0 if and only if t > t∗.

Proof. (i) The statement follows from definitions that f−1(t) is not compact for all t ∈ (t∗, t
∗).

(ii) By Corollary 4.1, f is not bounded either from below or from above if and only if t1 = −∞

and ts = +∞, which is equivalent to the fact that f−1(t) is not compact for all t ∈ R. This proves

Statement (ii).

(iii) If L∞(f) > 0, then obviously f is a proper mapping. Conversely, suppose that f is proper.

Then the set f−1(0) is compact. Moreover, the exponent βi, i = 1, 2, . . . , s, in Expansion (2) must

satisfy the following inequality βi < 0. But αi < 0, i = 1, 2, . . . , s. Hence, by Theorem 3.1, we get

L∞(f) = min

{

β1

α1
,
βs

αs

}

> 0.

On the other hand, it is worth noting that f is proper if and only if for each t ∈ R the

polynomial f − t is proper. Therefore Statement (iii) is proved.

(iv) We shall only show the statement (vi-1). The statement (iv-2) is proved using entirely

analogous arguments. So let us suppose that f is not proper and t∗ > −∞. Hence, in particular,

t∗ = ts = +∞. Then, one can easily see that β1 ≥ 0. There are two cases to be considered.

Case 1: The set S∞(f) is empty. If f [θ1(τ)] − t1 ≡ 0 for τ small. Then it is clear that

L∞(f − t) =

{

−∞ if t ≥ t1,

0 if t < t1.

Let us now suppose that the series f [θ1(τ)] − t1 is not identically zero. Then it is not difficult

to see that the proof of Theorem 3.1 also show that L∞(f − t1) < 0. On the other hand, by

Corollary 4.2(i), L∞(f − t1) = −∞ for all t > t1. Moreover, a direct computation shows that

L∞(f − t) = 0 for all t < t1. This proves (iv-1) in Case 1.

Case 2: The set S∞(f) is not empty. Then, it is not hard to verify that

L∞(f − t) =



















0 if t < t∗,

−∞ if t > t∗,

−∞ if t = t∗ and the set {f = t∗} is not compact,

l if t = t∗ and the set {f = t∗} is compact,

here l is a negative rational number. As a corollary, we get (iv-1) in Case 2.

This ends the proof of the corollary. �

From Corollary 4.2, we immediately obtain

Corollary 4.3. Let f : Rn → R be a polynomial function. Then either

(i) the function R → Q ∪ {−∞}, t 7→ L∞(f − t), is constant; or
9



(ii) there exists a stratification

R = (−∞, λ) ∪ {λ} ∪ (λ,+∞)

such that the function t 7→ L∞(f − t) is constant on each stratum.

Proof. Let

λ :=

{

t∗ if t∗ > −∞,

t∗ if t∗ < +∞.

Then the statements follow from Corollary 4.2. �

Let us recall that the polynomial f : Rn → R is not proper at a point t ∈ R if there is no

neighbourhood U of t such that f−1(U) is compact. In other words, f is not proper at t if there

is a sequence xk → ∞ such that f(xk) → t. Let J(f) denote the set of points at which the

polynomial f is not proper. The following corollary says that the set J(f) can be computed using

the information from the curve of tangency and the  Lojasiewicz exponent at infinity.

Corollary 4.4. We have

J(f) =











∅ if t∗ = t∗,

R if t∗ = −∞ and t∗ = +∞,

{t ∈ R | L∞(f − t) < 0} otherwise.

Proof. The statement follows directly from Corollary 4.2. �

We now suppose that the polynomial f : Rn → R is bounded from below and consider the

global optimization problem:

f∗ := inf{f(x) | x ∈ Rn}.

As is well known, if the polynomial f attains a minimum in x∗ ∈ Rn, i.e., f(x∗) ≤ f(x) for all

x ∈ Rn, then the gradient of f vanishes at x∗; in other words, f∗ = f(x∗) is a critical value of

f. On the other hand, there are polynomials that are bounded from below on Rn and yet do not

attain a minimum on Rn. In such cases, the following result shows that the global infimum of

polynomials is characterised in terms of the  Lojasiewicz exponent at infinity.

Corollary 4.5. Suppose that the polynomial f : Rn → R is bounded from below. If f does not

attain its infimum f∗, then L∞(f − f∗) is a negative (finite) number and moreover,

L∞(f − t) =

{

0 if t < f∗,

−∞ if t > f∗.

Proof. Indeed, it is not difficult to see that f∗ = t1. Then the statement follows from Corollary

4.2. �

Let now F := (f1, f2, . . . , fk) : Rn → Rk be a polynomial mapping. Let us notice that the

 Lojasiewicz inequality does not depend on a particular norm in Rn, so, we shall use the Euclidian
10



norm ‖ · ‖. Then consider the polynomial function ‖F‖2 : Rn → R, x 7→ ‖F (x)‖2. By definition,

one can easily see that

L∞(F ) =
1

2
L∞(‖F‖2).

Hence, directly from Theorem 3.1 we get

Corollary 4.6. If the set F−1(0) is not compact, then L∞(F ) = −∞; otherwise, there exist ǫ > 0

and a Nash function

ϕ : (0, ǫ] → Σ(‖F‖2) ∪ Γ(a, ‖F‖2), τ 7→ ϕ(τ),

such that limτ→0 ‖ϕ(τ)‖ = ∞ and

L∞(F ) =
val(‖F [ϕ(τ)]‖)

val(‖ϕ(τ)‖)
,

where val(·) denotes the natural valuation of series with respect to τ ; in particular, the number

L∞(F ) is rational.

Remark 4.1. By entirely analogous arguments but instead of working in the complement of

a large sphere we work in a small sphere, it is not hard to obtain similar results for the local

 Lojasiewicz exponent of real analytic mapping germs. We will leave it to the reader to verify.
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[7] Hà H. V. and Thȧ’o N. T., On the topology of real polynomials, in preparation.
[8] Jankowski P., The  Lojasiewicz exponent at infinity of a polynomial of two real variables, Bull. Polish Acad.

Sci. Math., 50 (2002), No. 1, 25-31.
[9] Jelonek Z., The set of points at which a polynomial map is not proper, Ann. Polon. Math., 58 (1993), 259-266.

[10] Jelonek Z., Testing sets for properness of polynomial mappings, Math. Ann., 315 (1999), 1-35.
[11] Maurer J., Puiseux expansion for space curves, Manuscripta Math., 32 (1980), No. 1-2, 91-100.
[12] Mac Millan W. D., A method for determining the solutions of a system of analytic functions in the neighborhood

of a branch point, Math. Ann., 72 (1912), No. 2, 180-202.
[13] Milnor J., Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University

Press, 1968.
[14] Némethi A. and Zaharia A., Milnor fibration at infinity, Indag. Math., 3 (1992), 323-335.
[15] Nesterov Y., Squared functional systems and optimization problems, High Performance Optimization, H. Frenk

et al. (eds.), Kluwer Academic Publishers, (2000), 405-440.
[16] Shor N. Z., Class of global minimum bounds of polynomial functions, Cybernetics, 23 (1987), No. 6, 731-734.

11


